
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 1, January-February 2007

Cite this column as follows: John McGregor, “CM – Configuration Change Management”, in Journal of
Object Technology, vol. 6, no. 1, January - February 2007, pp. xx-xx http://www.jot.fm/issues/
issue_2007_01/column1

CM – Configuration Change Management

John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Configuration management, the traditional CM, has been subsumed by a new CM,
change management. The strategic organization looks ahead and this includes planning
for change. This is an area of particular interest to software product line organizations. A
product line organization must manage multiple options and control implementations of
those options. In this issue of Strategic Software Engineering I will highlight some of the
issues in old CM that are resolved by the new CM and describe some techniques for
addressing the issues.

1 INTRODUCTION

Recently I have had several conversations about configuration management with
colleagues who have a variety of responsibilities in the development of software-
intensive products. Their perspectives range from developers to business unit managers.
Most jump into a discussion of problems they are having, or their people are having, with
specific portions of their change process. After several meandering discussions, it is
apparent that (1) many people see only the “version control” aspect of configuration
management, (2) even those who understand the need for the broader context of
configuration management do not have a clear definition of “configuration,” and (3)
many of the problems have more to do with a strategic view of change and less to do with
the mechanics of controlling specific configurations.

A configuration is the set of artifacts that comprise a unit of interest such as a
product or an asset [McGregor 03]. I realize this is a very abstract definition but it must
cover the different types of configurations that a product line organization manages. The
canonical example is the product deployment configuration that includes all of the
elements shipped with a product including executables, language files, images, manuals,
licenses, and installers. Others include the development configurations for assets or
products that includes tools, source, test cases, and models. Even design patterns result in
a type of configuration.

A configuration can be thought of as defining a coupling that binds together artifacts
that serve some common purpose. That means changes to one of the artifacts in the
configuration is likely to trigger changes to other artifacts. From the examples you can
see that this is a multi-dimension problem. A software module is bound into

CM – CONFIGURATION CHANGE MANAGEMENT

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

configurations for each product in which it is composed. That same module belongs to a
development configuration that associates test cases and documentation used when the
module is to be modified.

From a tactical perspective, configuration management must provide tools that
manage the individual modifications to assets and products and a procedural environment
in which distributed, concurrent work is facilitated. (I will refer to configuration
management as CMt in the rest of this article.) An active development project faces many
issues related to how content producers will deliver their own work into the production
system and how they will be able to request/execute changes to the content of others. The
CMt tool set must include policies and processes, such as defining what constitutes a
baseline or how and when to merge their work into the baseline, that guide personnel
through their day-to-day actions.

From a strategic perspective, change management is needed to guide the long term
health of the organization’s assets and products. (I will refer to change management as
CMs in the rest of this article.) An organization’s ability to respond quickly to product
opportunities depends at least in part on its ability to manage an inventory of assets and to
rapidly configure and produce products from that inventory. In fact, I will go so far as to
say that many of the problems faced by organizations involving CMt can be resolved by
doing a better job at CMs.

In a software product line organization a variety of artifacts are managed. Production
plans, processes, and software architectures are just a few examples of reusable assets.
Each of these will evolve over time. They will evolve at different rates and be introduced
at different times as independent team execute their processes. These artifacts must be
versioned like any code artifact but there are additional issues specific to the product line
environment. For example, how is an artifact tracked through the management system
when it moves from being a product-specific asset to a core (product line-wide) asset?

I am going to assume that readers understand the basics of configuration
management and only provide a brief overview as part of discussing change management
as an introduction to the issues related to software product lines. Then I will focus on
product line-related issues.

2 BASIC CHANGE MANAGEMENT

Version control manages the change in artifacts over time. The basic management goal is
to support concurrent, distributed work while preventing the destruction of existing work
by accident or by whim. Version control systems provide a repository for managed items.
The system automatically appends a version identifier that essentially renames the artifact
to differentiate it from previous versions.

Version control activities are partially automated using tools such as CVS and
Subversion; however, there is usually some portion of the configuration management
process that relies on policies and human cooperation. Developers must branch to protect
the main stream of development, they must check in code that does not break the build,

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 9

and the process of declaring a baseline must ensure integrity as future development builds
on the baseline.

Once assets or products are baselined, changes to them are controlled. Often a
change control board with wide representation approves the content and timing of
changes. This coordinates the inevitable ripple effect of changes to dependent assets. The
oversight ensures changes do not interfere with near term deliveries or other milestones
unless the change is sufficiently high priority.

Every development effort should have a comprehensive, overarching CMt plan but
the philosophy of CMt must be woven into the individual role descriptions in the
development processes. The plan should coordinate the efforts of those developing assets
and products, those who deploy the products, and those who maintain them. The plan
coordinates between levels of control, perhaps at the developer, team and project levels.
The plan describes such procedures as merge processes that define how new work is
incorporated into the main stream of development and patching processes that control the
amount of variation between separate branches of a basic module.

The plan describes a governance structure that may include multiple change control
boards. Horizontal and vertical lines of authority among the boards correspond to the
management structure. Individual teams have a first level change board. These boards
interact with other boards on the same level when there is a dependency between the
teams. A high level project, business unit, or organization board will hear appeals from
the lower levels of control.

Berczuk provides a set of configuration management patterns[Berczuk 01]. I will list
a few of them and give my spin on them. I suggest interested readers check out the full
list.

• Private versioning – I want everything I do to be retrievable but I often branch
off to try things in increments that are not appropriate for checking into the
project-level repository. I want a private “sandbox” where I can play without
disturbing others. This can be implemented simply by providing independent
repositories for each developer.

• Incremental integration – The “Big Bang” may be an interesting theory in
astronomy but not in software development. Combining small pieces involves far
fewer dependencies and far less potential for conflict than waiting until all the
pieces are ready and integrating all at once. Incremental integration is much more
likely to happen if integration is automated. Often tools such as make and ant are
used for automating builds.

• Independent builds – I want to be able to build my code, using a recent baseline,
but I do not want to be distracted from the development of my logic to handle the
changing dependencies brought on by new builds. Each developer needs a private
area, see the first pattern, where they can build their code with a recent, but not
ncessarily current, build until they are ready to check the code into the project-
level repository. Often this is implemented by allowing each developer to create a
branch of their own.

CM – CONFIGURATION CHANGE MANAGEMENT

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

These patterns suggest a number of features of the version tree being managed, more
about this later.

3 TIME AND SPACE

In a software product line organization artifacts vary not only in time but also in the
product variation space. Existing version control systems typically are linear in time. That
is, each revision of an artifact is considered the “next” version of the artifact with the
previous version now being out of date.

Periodically a branch is created in this linear progression. This allows a developer to
explore an idea without disturbing the linear progression until the idea has proven
valuable. Work proceeds linearly along this branch until the new idea is verified or
abandoned. Then the work on the branch is either merged into the main line of
development or is pruned from the version tree.

CMt builds on version control by maintaining a description of the set of resources
that comprise an artifact. Just as artifacts evolve, configurations also evolve. New
versions of various resources are accepted into the configuration and it must be versioned
to manage the changes. Each new version of a configuration should be regression tested
the same as any other asset.

A software product line organization also varies across its multi-dimensional
variation space. Elements may belong to multiple configurations at the same time.
Individual assets may evolve at different rates from the other assets. By extending the
CMt patterns discussed above: there should be separate version trees for each asset and
each product. This is where CMt is no longer sufficient and CMs is required because now
there should be some degree of coordination among the version trees.

4 EVOLUTION

Change management, CMs, adds a strategic view of the evolution of the assets and
products to the tactics of CMt. CMs encompasses planning, policies, and processes for
managing evolution of assets and products. In a product line organization, CMs must be
multi-dimension to accommodate the wide range of dependencies that exist among assets
and products.

Evolution is long-term change, where long-term is relative to the domain. Six
months is long-term in the cellular telephone domain but three years is more realistic in
satellite control systems. Applying patches to repair defects and extending an assets’s
behavior to meet new requirements are just some of the forces that drive the evolution of
an asset.

Figure 1 represents the Evolve Each Asset product line pattern [Clements 02]. This
pattern describes the various practices that are needed to accommodate the evolution of

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 11

an asset [SEI 06]. Configuration management is just one of several practices that are
needed.

• Technical Planning – The owner of an asset plans enhancements to the asset.
Changes are coordinated so that the impact on other assets is accommodated and
so that periodic releases of an asset can be accompanied by releases of required
dependencies.

• Tool Support – The tools used to produce an asset, whether a word processor or
an integrated development environment, should support automatation of as much
of the asset development as possible. Templates and high level models support
this automation. These tools should interface with the configuration management
tool to manage the changes to the asset.

• Process Definition – The process by which an asset is used to produce products
must be updated as the asset evolves. As an integral part of the asset this process
is attached to the asset and is part of any configuration that includes the asset.

• Testing – An automated regression test suite is used to check the correctness of
modified assets. As an asset evolves, its regression test suite must evolve as well.
(The test suite for a non-code asset is a list of scenarios used to review the asset.)
The test suites, text plan, and test data are part of the development configuration
for the asset.

• Configuration Management – Beyond configuration management tools, policies
and procedures guide the asset developer in how to control and manage the
evolution of the asset. This practice is woven nto the development process so that
asset developers will operate the process as a integral part of their everyday work.

• Data Collection, Metrics, and Tracking – Program assets may be measured for
qualities such as performance and security while non-program assets may be
measured by their completeness or clarity. Complexity measures and measures of
“goodness” should be tracked to keep the evolving asset within manageable
limits.

CM – CONFIGURATION CHANGE MANAGEMENT

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Tested, Baselined Asset w/Attached Process PA*

Tool Support
Process
Definition

Technical
Planning

Data Collection, Metrics, and Tracking

Configuration
Management

Testing

Tools

Attached Process

Test Cases

CM ProcessData Work Plan
Progress
and Changes

Work Plan

Figure 1 Evolve Each Asset

5 PRODUCT LINE EVOLUTION

In a software product line organization, a number of types of changes must be
anticipated, planned for, and managed.

• A new variant value might be added to an existing variation point to
accommodate evolution in the product domain.

• Adding products to the product line may lead to the identification of a new
variation point.

• Splitting a variation point into two variation points may result in an expanded
scope and the need to add or modify assets.

• Requests for new products will drive changes to the membership in a product line
and hence its scope.

• Eventually sufficient new variation may be identified that it becomes useful to
consider splitting into multiple product lines.

Mohan and Ramesh present three recommendations for change management in a software
product line [Mohan 06]:

1. Modularize changes and variation points – The intent is to encapsulate a variation
point to prevent changes at that point from rippling into other parts of the
products.

2. Track the scope and life of variations – The strategic part of these
recommendations is to establish traceability of variations over time and products.
Maintenance of variations is a necessary part of the product line life cycle and
traceability is critical to the efficient modification of the core assets.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 13

3. Facilitate reuse based on knowledge sharing – The original variation architecture
must be communicated to all the designers and then changes to that architecture
must be propagated as well. The feature model and the software architecture are
vehicles for this notification.

Product line practice is to create a business case for a product to determine that it is
economically sound to include the product in the product line. The change management
process should ensure that appropriate practices are in place to control the evolution of
the product line definition, represented in the scope definition. Product line patterns such
as “What to Build” identify dependencies between the scope and business case assets.
These patterns define a type of configuration in which the assets produced by one
practice have dependencies on assets produced by other practices.

In a software product line organization many products may be under development at
the same time. Each product will need some product unique artifacts but some of these
will be promoted to core assets eventually. The CM process can interact with the
promotion process to ensure that the artifact that becomes a product line-wide asset still
supports the original use that brought it into existence. One product line evolution
guideline is that promoted assets should remain backward compatible with their previous
use.

6 IMPLICATIONS OF CHANGE

The change management system must help preserve three characteristics of the assets and
products:

• Correctness - Changes in assets and products must be tracked and propagated so
that the change results in the original target asset being correct and all affected
assets and products still bveing correct.

• Completeness – Changes in assets and products that modify a specification must
be reviewed to determine that the new specification is complete with respect to
the commitments made to other assets and products. Changes in assets and
products that affect the membership of the product line must be accompanied by a
validation of the scope definition.

• Consistency – Changes in assets and products must maintain “appropriate
consistency” in the asset base and the product portfolio. By “appropriate” I mean
that a product line asset base may contain contradictions among variant choices
for a specific variation point but a particular configuration of assets should be
internally consistent.

Each of these characteristics require traceability mechanisms to ensure that the
evolutionary ripples do not adversely affect related assets. Traceability is enhanced by a
development approach that emphasizes modeling. The Unified Modeling Language
(UML) provides a means of capturing relationships among conceptual entities[OMG 06].
Models of algorithms provide connections among the pieces of data. Beyond the
software, the Software Process Engineering Meta-model (SPEM) provides the basis for

CM – CONFIGURATION CHANGE MANAGEMENT

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

models that capture relationships among process elements such as the various
workproducts being controlled [OMG 05]. Models built using the Eclipse Process
Framework MethodComposer are examples of process models[Eclipse 06] that provide
sufficient information to support predicting the impact of changes made to one asset on
the other assets. These models focus attention on the set of assets that should be inspected
or tested to ensure they are still correct, complete, and consistent.

Periodic reviews, triggered by some milestone or event such as a change request
being cleared, are needed to verify that assets still possess the appropriate properties. The
change management process must have wide participation. All stakeholders need to
participate in the reviews and be represented on change control boards to ensure that all
perspectives are represented as changes are considered.

7 SUMMARY

Change is inevitable. Anticipating and managing change can have a strategic impact on
the organization and its ability to produce products. Tools, policies, and processes are
needed to manage both the short-term changes and the long term evolution. Version
control, configuration management, and change management come together in a
comprehensive strategy to support the production capability of the organization. These
techniques provide an infrastructure that supports the controlled modification of
completed work and that manages the dependencies among the assets and products to
ensure that changes are appropriately propagated. By structuring the infrastructure to be
compatible with the relationships among assets, change management becomes more
tightly integrated and more supportive. This type of infrastructure is strategically
important in software product line organizations whose success is predicated on long-
lived, multi-use assets.

REFERENCES

[Berczuk 01] Steve Berczuk. Configuration Management Patterns, http://www.bell-
labs.com/cgi-user/OrgPatterns? ConfigurationManagementPatterns,
2001.

[Clements 02] Paul Clements and Linda M. Northrop. Software Product Lines:
Practices and Patterns. Boston, MA: Addison-Wesley, 2002.

[Eclipse 06] www.eclipse.org. Eclipse Process Framework v. 1.0, 2006.

[McGregor 03] John D. McGregor. The Evolution of Product Line Assets, Software
Engineering Institute, CMU/SEI-2003-TR-005, 2003.

[Mohan 06] Kannan Mohan and Balasubramaniam Ramesh. Change Management
Patterns in Software Product Lines, Communications of the ACM, v. 49,
n. 12, 2006.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 15

[OMG 05] Object Management Group. Software Process Engineering Meta-model
v. 1.1, 2005.

[OMG 06] Object Management Group. Unified Modeling Language v 2.1, 2006.

[SEI 06] Software Engineering Institute, “Framework for Product Line Practice,”
http://www.sei.cmu.edu/productlines, 2006.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests include software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

