
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 6, No. 1, January-February 2006

Cite this article as follows: K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,:
“Software Design Metrics for Object-Oriented Software”, in Journal of Object Technology, vol. 6.
no. 1, January-February, pp. 121-138 http://www.jot.fm/issues/issue_2007_01/article4

Software Design Metrics for Object-
Oriented Software

K.K.Aggarwal, Yogesh Singh, Arvinder Kaur and Ruchika Malhotra
University School of Information Technology, Guru Gobind Singh Indraprastha
University, Kashmere Gate, Delhi 110006, India

Abstract
The importance of software measurement is increasing leading to development of new
measurement techniques. As the development of object-oriented software is rising,
more and more metrics are being defined for object-oriented languages. Many metrics
have been proposed related to various object-oriented constructs like class, coupling,
cohesion, inheritance, information hiding and polymorphism. The applicability of metrics
developed by previous researchers is mostly limited to requirement, design and
implementation phase. Exception handling is a desirable feature of software that leads
to robust design and must be measured. This research addresses this need and
introduces a new set of design metrics for object-oriented code. Two metrics are
developed that measure the amount of robustness included in the code. The metrics are
analytically evaluated against Weyuker’s proposed set of nine axioms. These set of
metrics are calculated and analyzed for standard projects and accordingly ways in
which project managers can utilize these metrics are suggested.

1 INTRODUCTION

Programs fail mainly for two reasons: logic errors in the code and exception failures.
Exception failures occur when a program is prevented by unexpected circumstances from
providing its specified service. Exception failures can account for up to two-thirds of
system crashes [Cristian95]; hence, are worthy of serious attention. On 4th June 1996,
maiden flight 501 of the European Space Agency's new Ariane 5 heavy-lift rocket,
developed at a cost of $7000 M over a 10 year period, ended in failure, after 39 seconds
of its launch [Aggarwal01, Maxion98]. The problem was identified as a software
exception caused during execution of a data conversion from 64-bit floating point to 16-
bit format; the number was too big, so that an overflow error resulted after 36.7 seconds.
This resulted in an operand error. The data conversion instructions were not protected
from causing an operand error. No justification was found for not making the software
robust.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Software is robust if it behaves “reasonably”, even in circumstances that were not
anticipated in the requirement specification-for example, when it encounters incorrect
input data or some hardware malfunction (say a disk crash). A program that assumes
perfect input and generates an unrecoverable run-time error as soon as the user
inadvertently types an incorrect command would not be robust. It might be correct,
though, if the requirement specification does not state what the action should be upon
entry of an incorrect command. It implies that software should be capable of diagnosing
certain classes of errors. Robust design dictates error conditions to be anticipated and
error-handling paths to be set up to re-route or cleanly terminate processing, when an
error does occur. This is achieved after using exception-handling mechanism. A number
of metrics have been proposed by researchers [Braind98, Briand99, Lorenz94,
Harrison98, Chidamber94, Chhabra04], which measure the desirable characteristics of
software. Exception handling is also a desirable software feature that leads to robust
design and must be measured. A set of metrics has been proposed in this paper, to
measure the robustness of design. The metrics are proposed, analyzed and evaluated on
sample data set. The effect of using error handling functions in place of exception
handling mechanism is also studied.

The paper is organized into following sections: Section 2 gives introduction to
exception handling. Section 3 gives overview of proposed software metrics and formally
defines them. Section 4 introduces various techniques available to find number of
possible exceptions. Section 5 states Weyuker’s properties and evaluates the metrics on
these properties. A brief description of the sources from which the empirical data is
collected and then analysis of metrics based on this data has been done in section 6. The
discussion of work carried is presented in section 7.

2 EXCEPTION HANDLING FUNDAMENTALS

Exceptional conditions are any unexpected occurrences that are not accounted for in a
system's normal operation. Many different types of conditions can cause exceptions,
depending on the specific program under consideration. Examples of such conditions
include trying to divide by zero, stack overflow/underflow, array index out of bound,
illegal use of null pointer reference, type mismatch, wrong command-line argument,
security violation, and invalid data returned from another program. Failure due to
exceptional conditions is a serious problem, not only in mission-critical applications, but
also in commercial software systems and custom, home-developed code where quick,
accurate results are essential. Programs are often logically correct but, nevertheless, fail
due to mishandled exceptions. Some sort of error handling mechanism can be used to
deal with such exceptional conditions. Error handling mechanism helps in constructing a
robust system and reduces the cost to failure. In OO languages such as C++ and Java, this
error handling mechanism is called exception handling. In computer languages that do
not support exception handling, errors must be checked and handled manually through
error codes, which is quite troublesome and cumbersome process. Exception handling is

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 123

the method of building a system to detect and recover from exceptional conditions.
Reducing the occurrence of exception failure is beneficial for several reasons:

1. Software would be more robust, resulting in lower operating cost and higher
availability.

2. A substantial percentage of security vulnerabilities would be removed. The
computer security community has observed common mechanisms (e.g., buffer
overflow) that cause exceptions and security vulnerabilities simultaneously and
claim that eliminating exception failures would remove about 50 percent of
security vulnerabilities [Maxion00].
Exception Handling Model in Java and C++ consists of three constructs

[Venugopal97]:
Try: The block of code in which the exception can occur is specified in try block.

There can be nested try blocks.
Catch: In catch block, the action to be taken if any exception occurs is specified.

In some cases, more than one exception can be raised by a single piece of code. In such
cases more than one catch block can be specified. Each catch clause catches a different
type of exception.

Throw: It is used to manually raise an exception. The innermost try block in
which the exception is raised is used to select the catch block that specify action to be
taken when the exception occurs.

Java adds two more constructs finally and throws:
Throws: An exception thrown out of a method is specified by throws.
Finally: It contains code that must be executed before a method return.
Syntax of Try and Catch block is as follows:

try {
 . . .
} catch (. . .) {
 . . .
} catch (. . .) {
 . . .
} . . .

Java defines several exception classes and also allows the programmer to create new
exception classes to handle situations specific to particular application. Exceptions can be
generated by runtime system or they can be manually generated by the code [Schildt01].

Some popular runtime exceptions are: arithmetic error e.g., divides by zero, array
index out of bound, assignment of an array element of incompatible type, creation of an
array with negative index, invalid use of null reference etc. Exceptions generated
manually can be invalid range of an input variable, incorrect date format and so on. These
exceptions can be specific to an application.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

3 DESIGN MEASURES

Two metrics are defined here that measures the robustness of the software by measuring
the amount of exceptions considered while designing the software. If the developer
includes exception handling, few methods in each class consist of try blocks to monitor
code as well as catch blocks, which specify action to be taken if an exception occurs. The
metrics are defined as follows:

Metric 1: Number of Catch Blocks per Class (NCBC)

Definition: Consider a class K1, with methods M1,……..Mn. Let each method have
C1,……..Cm catch blocks. Then it is defined as the ratio of catch block in a class to the
total number of possible catch blocks in a class:

100

 NCBC

1 1

1 1 ×=

∑∑

∑∑

= =

= =
n

i

l

k

ik

n

i

m

j

ij

C

C
 (1)

where n = Number of Methods in a class
 m = Number of Catch Blocks in a Method
 Cij is jth Catch Block in ith Method
 Cik is kth Catch Block in ith Method

l = Maximum Number of possible Catch Blocks in a Method
The metric counts the percentage of the catch blocks in each method of the class. The
NCBC denominator represents the maximum number of possible catch blocks for class
Cik. This would be the case where all possible exceptions in Cik have a corresponding
catch block to handle these exceptions. Thus the value of denominator will be equal to
maximum possible exceptions in a class. The metric is applied on the example code
shown in Figure 1.

Let number of possible catch blocks in A and B is 3 and 6 respectively.
The values of proposed metric NCBC for classes A and B are:
NCBC (A) 2= /3
NCBC (B) 4= /6

class A{
 public void M1(){
 try{//monitor block of code
 try{//nested try block
 …}
 catch(…)
 { //action to be taken if exception occurs

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 125

 …}
 catch(…)
 { //action to be taken if exception occurs
 …}
 }//end of upper try block
 }//end of function M1()
}
class B {

public void M2(){
 try{ //monitor block of code ….}

 catch(…){
 //action to be taken if exception occurs…}
 try{ //monitor block of code
 ….}
 catch(…){
 //action to be taken if exception occurs
 …}

 }//end of function M2()
public void M3(){
 try{ //monitor block of code
 ….}
 //each catch block catches a different type of exception
 catch(…){
 //action to be taken if exception occurs
 …}
 catch(…){
 //action to be taken if exception occurs
 …}

 }//end of function M3()
}

Figure 1: Source code for calculating metric NCBC

Metric 2: Exception Handling Factor (EHF)

Definition: It is formally defined as the ratio of number of exception classes to the total
number of possible exception classes in software:

100
ClassesException Possible ofNumber Total

ClassesException ofNumber EHF ×= (2)

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Number of exception classes is the count of exceptions covered in a system. The
exception class is passed as an argument to the catch construct as type of argument arg.
This type of argument specifies types of exception classes. The count of exception classes
is the total number of exception classes that occur irrespective of the number of times the
same exception class occurs. For example, ArithmeticException class in Java can be used
as argument in multiple catch blocks but to calculate EHF it will be counted once only.

The metric is applied on the example code shown in Figure 2.
In the example code, Java Build in exception used in classes A and B are :

1. ArithmeticException
2. ArrayIndexOutOfBoundsException
3. IllegalAccessException

Subclass of Exception class created in class B is:
4. MyException

Thus, Number of Exception classes 4= and if we assume Number of possible exception
classes=6 (class A and class B).

Exception Handling Factor (EHF) = 4/6.

class A{
 public void A1(){
 try{ //monitor block of code
 …}
 catch(ArithmeticException e){ //catch if exception occurs
 System.out.println(“Divide by 0:”+e);
 }

 try{ //monitor block of code
 …}
 catch(ArrayIndexOutOfBoundsException e){

 //catch if exception occurs
 System.out.println(“Array out of bound exception:”+e);
 }
 }//end of method A1()
 public void A2(){
 try{ //monitor block of code
 …}
 catch(IllegalAccessException e){ //catch if exception occurs
 System.out.println(“Access to the class id denied:”+e);
 }

 try{ //monitor block of code
 …}
 catch(ArrayIndexOutOfBoundsException e){

 //catch if exception occur
 System.out.println(“Array out of bound exception:”+e);

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

 }
 }//end of method A2()
}
class B{
 public void B1(){
 try{ //monitor block of code
 …}
 catch(ArithmeticException e){ //catch if exception occurs
 System.out.println(“Divide by 0:”+e);
 }

 try{ //monitor block of code
 …}
 catch(MyException e){ //catch if exception occurs
 //Manually created exception class i.e. custom exception type
 System.out.println(“Array out of bound exception:”+e); }
 }//end of method B1()
}

Figure 2: Source code for calculating metric EHF

4 TECHNIQUES TO FIND POSSIBLE EXCEPTIONS

To apply above metrics, there is need to calculate the number of possible exceptions. The
number of possible exceptions can be counted by using techniques such as Collaboration,
N-Version diversity and Dependability cases [Maxion00]. Collaboration technique states
that few people work together to find the possible exception cases. N-version diversity
technique states that more than one person independently finds all possible exceptions
and then finally these exceptions are merged. Another technique called Dependability
cases comprises of an organizing framework for thinking about exceptions and the
conditions under which they occur. For this purpose, hazard analysis, fault trees or
fishbone diagrams can be used. Figure 3 shows an example roughly in the shape of a fish,
which shows exceptions that could be encountered in a software system. At the “head” of
the fishbone are the exception failures, which should be avoided. The ribs are labeled
with categories of events that cause exception failures; the events within each rib are
examples of specific causes. For example, the rib labeled “computational exception” lists
uninitialized variable as an exemplar. The fishbone in Figure 3 lays out a set of exception
causes, which commonly occur in a program. A complete fishbone for a particular
program would require an in-depth analysis of the faults to which it is susceptible and a
corresponding modification of the fishbone. These techniques should be used by both
designers to cover maximum exceptions during design as well as by testing team to find
all possible exceptions.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 3: Fishbone diagram showing exception categories and exemplars [reprinted from IEEE Trans. on

Software Engineering, vol 26, No. 9,September 2000]

5 AXIOMATIC EVALUATION OF METRICS ON WEYUKER’S
PROPERTIES

Several researchers have recommended properties that software metrics should possess to
increase their usefulness. For instance, Basili and Reiter suggest that metrics should be
sensitive to externally observable differences in the development environment, and must

Exception
Failure

Divide by zero

Uninitialized
variable

access to class
denied

Insufficient
percision

Overflow /
underflow

Computational
exception

Insufficient
disk space
Power failure

undesired
interrupts

Disconnected/
dismounted
Timeout

Corrupt
memory

System Crash

Transient
errors

Hardware
exception

File does not
exits

File cannot be
read
File corrupted

File moved

Invalid
file name

Output file
not

File locked by
another program

I/O and file
exception

Standard libraries
not available

Standard libraries
modified

Incorrect return
code from external

Incorrect parameters
passed to external
function

Library-function
exception

data file empty
Incorrect
delimiters

Non-numerics
in numeric

Non-ascii

Extraneous data

Missing data
Data value
outside of range

Missing end
of file

Data-input
exception

Failure to
handle error
return code

Values of
arguments
invalid

Wrong number
of arguments

Wrong type of
arguments

Return-value problem:
function/procedure call

Incorrect
command line
arguments

Erroneous
response
to prompt

Late response
to prompt

No response
to prompt

External user/
client problem

Illegal access

Buffer overflow

Corrupt memory

memory not
allocated

Insufficient memory

Memory allocation error

Array out of index

Invalid use of a null reference

Null pointer and
memory exception

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 129

correspond to notions about the differences between the software artifacts being
measured [Basili79]. However, most recommended properties tend to be informal in
evaluation of metrics. It is always desirable to have a formal set of criteria with which the
proposed metrics can be evaluated. Weyuker has developed a formal list of properties for
software metrics and has evaluated number of existing software metrics against these
properties [Weyuker98]. Although many authors have criticized [Zuse90, Fenton91] this
approach but still it is a widely known formal analytical approach and have been referred
by many notable authors for evaluating their measures [Henderson96, Chidamber94]. The
similar approach has been followed in this paper for analysis of proposed metrics.

Weyuker’s (1988) first four properties address how sensitive and discriminative
the metric is. The fifth property requires that if two classes are combined their metric
value should be greater than metric value of each individual class. The sixth property
addresses the interaction between two programs/classes. It implies that interaction
between program/class A and program/class B is different than interaction between
program/class C and program/class B given that interaction between program/class A and
program/class C is same. The seventh property requires that a measure be sensitive to
statement order within a program/class. The eighth property requires that renaming of
variables does not affect the value of a measure. Last property states that the sum of the
metric values of a program/class could be less than the metric value of the program/class
when considered as a whole [Henderson96].

Let u be metric of program/class P and Q
Property 1: This property states that

))()()((),(QuPuQP ≠∃∃

It ensures that no measure rates all program/class to be of same metric value.
Property 2: Let c be a nonnegative number. Then there are finite numbers of
program/class with metric c. This property ensures that there is sufficient resolution in the
measurement scale to be useful.
Property 3: There are distinct program/class P and Q such that)()(QuPu = .

Property 4: For object-oriented system, two program/class having the same functionality
could have different values.

()()(() ())∃ ∃ ≡ ≠P Q P Q u P u Q and
Property 5: When two program/class are concatenated, their metric should be greater
than the metrics of each of the parts.

()() () () () ())∀ ∀ ≤ + ≤ +P Q u P u P Q u Q u P Q (and
Property 6: This property suggests non-equivalence of interaction. If there are two
program/class bodies of equal metric value which, when separately concatenated to a
same third program/class, yield program/class of different metric value.
For program/class P, Q, R

()()() (() () () ())∃ ∃ ∃ = + ≠ +P Q R u P u Q u P R u Q R and
Property 7: This property is not applicable for object-oriented metrics [Chidamber94].

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Property 8: It specifies that “if P is a renaming of Q; then)()(QuPu = ”

Property 9: This property is not applicable for object-oriented metrics [Chidamber94].

Axiomatic Evaluation of NCBC on Weyuker’s Properties

Property 1 is satisfied by the proposed metric as two object-oriented classes P and Q can
always differ in catch block count. Let nP =)(μ then there are finite numbers of class
with metric value n ensuring sufficient resolution. Thus Property 2 is also satisfied. There
is probability (non zero) that)()(QuPu = . Therefore Property 3 is satisfied. The decision
of implementing catch blocks in methods per class is totally independent of functionality
i.e. logic used in the class. This satisfies Property 4.
Let pPu =)(and qQu =)(.
Then mqpQPu −+=+)(,

where m is the catch blocks common to a class. In some cases

.
)()(
)()(

QPuQu
QPuPu

+≥
+≥

This does not satisfies Property 5. Now, Let pPu =)(and pQu =)(, and a class R has
number of catch blocks r such that it has m catch blocks common with class P and n
common with Q, where nm ≠ .

nrpRQu
mrpRPu

−+=+
−+=+

)(
)(

This shows that)()(RQuRPu +≠+ and Property 6 is satisfied. The renaming of class
or method does not affect the value of metric proposed hence satisfying Property 8.

Axiomatic Evaluation of EHF on Weyuker’s Properties

Let)(Pu and)(Qu be metric of Program P and Q.

Property 1 is satisfied by the proposed metric, as two object-oriented program can
always differ in exception value. There can be many different values of the proposed
metric. This satisfies Property 2. The proposed metric also satisfies Property 3. It is
assumed that classes are not dependent on each other in system P, then the metric of P
will be nothing but the summation of exception classes, which can be same for another
different unrelated system Q. The choice of exception classes is design decisions, which
does not depend upon the functionality of software, therefore Property 4 is satisfied.
Let pPu =)(and qQu =)(.

Then mqpQPu −+=+)(.

Let y and b be total number of possible exception classes in program P and program Q.
Let x and a be number of exception classes in program P and program Q then,

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

)/()()(
/)(/)(

byaxQPu
baQuyxPu

++=+
== and

where x + a is the number of exception classes combined by concatenating program P
and program Q.

y + b is the number of possible exception classes combined by concatenating
program P and program Q.

Thus, it is possible that,)()(QPuPu +≥ or)()(QPQu +≥
Therefore, Property 5 is not satisfied. Now, let P and Q be two programs such that

pQuPu ==)()(and let R be another program with EHF value rRu =)(. Then,
nrpRQumrpQPu −+=+−+=+)(similarly ,)(. This shows that

)()(RQuRPu +≠+ . Therefore, Property 6 is satisfied. The renaming of systems P and
Q does not affect the metric values. Hence, Property 8 is satisfied.

Thus all properties except 5 are satisfied by both metrics. The property 5 is not
satisfied by many earlier metrics like DIT of Chidamber and Kemerer [Chidamber94].

6 ANALYSIS OF METRICS ON EMPIRICAL DATA

To analyze proposed metrics their values are computed for five different projects out of
which case studies and design of three projects are presented in book “Introduction to
Object-Oriented Analysis and Design” and “Object-Oriented and Classical Software
Engineering”, authored by S.R. Schach. Their respective codes are available on Internet
at [Schach02, Schach04]. The projects are developed in Java language and will be
referred herein after as Project 1, Project 2, and Project 3. The proposed metrics is also
applied on another project referred here as Project 4. Project 4 enables intranet users to
book holidays and uses Java programming for developing the system. Project 5 is same
version of Project 1 but uses validation functions instead of exception handling in some
cases whereas in other cases probable faults are not covered by the code.

Analysis of Metric NCBC on Collected Data

The summary statistics and histogram for Project 1 to Project 4 are shown below. To
indicate the metric value the histograms of the NCBC value are given. The percentages of
classes are shown on Y-axis. In the first column of Figure 4(a) the classes for which the
NCBC value was 0 percent is shown. The other columns indicate the classes for which
metric NCBC equal to 37, 57, 71, 89 and 100 percent respectively.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

(a) (b)

(c) (d)

Figure 4: Number of Catch Blocks per Class for (a) Project 1 (b) Project 2 (c) Project 3 (d) Project 4

Similar histograms are drawn for projects 2 to 4. The histogram for Project 5 is not
shown, as the metric values for all the classes in this project are zero. In Table 1 the min.,
max. and mean values for NCBC metric applied on Project 1 to Project 4 are shown.

 Metric Project 1 Project 2 Project 3 Project 4

Min NCBC 0 0 0 0
Max NCBC 100 100 100 100
Mean NCBC 53.33 62.2 70.33 80.5

Table 1: Data Statistics for NCBC metric

There is similarity in the distribution of the metric value in all four projects; most of the
classes have NCBC values 0 or 100. This shows that one of the advantages of using
information from metrics is that a clear picture of system emerges with greater insight
into class implementation. The reason for 0 metric value could be that developers do not
use exception-handling mechanism in practice and/or exceptions is not taken into

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 133

consideration. The data collected from projects gives the project team information about
number of expected faults covered in each class.

Project 5 is the same version of Project 1 and does not use exception handling at
all. We have considered Project 5 and Project 1 for gaining further insight, to find the
effect of using validation functions instead of exception handling on lines of code (LOC).
The following observations are made when NCBC metric applied on Project 1 and
Project 5. In Project 5 the value of NCBC is zero. One of the exceptions handled by the
classes in these projects was to check the format of date at various points. Project 1 used
exception handler indicated by catch keyword to take action if the format of date entered
was incorrect whereas in Project 5 function called valid_date() was used for validating
the date format. By adding valid_date() function, LOC for this class increased to almost
three times. Increase in the size of code increases unnecessary effort and complexity.
Figure 5 compares absolute LOC values of classes in Project 1 and Project 5. The
percentage of LOC increased in classes, which include validation functions instead of
using exception handling, is shown in Figure 6. The increase in LOC varies from 7- 41%.
Some exceptions like “File cannot be read” were not caught in classes at Project 5. At
class testing time it was observed that test cases in Project 5 had increased as compared to
Project 1. Thus classes with less NCBC values will have more LOC count in including
error handling mechanism in classes.

94

395

37

762

182

342

91
136

542

126

446

52

882

204

375

108
152

580

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9

Li
ne

s
of

 C
od

e(
LO

C
)

Classes with Exception Handling Classes with Validation functions

 Class #

Figure 5: Comparison of LOC in classes of Project 1 and Project 5

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 6: Percentage increases in LOC in Project 5

Analysis of Metric EHF on Collected Data

The summary statistics and histogram for Project 1 to Project 5 are shown in Figure 7.
The bar graph as in Figure 7 shows the percentage of EHF value calculated for all
projects taken for analysis. In Table 2 the min., max. and mean values for EHF metric
applied on Project 1 to Project 5 are shown.

Figure 7: Bar Chart of Exception Handling Factor

Metric Min Max Mean

EHF 0 100 72.6

Table 2: Data Statistics for EHF metric

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135

Exceptions in Project 1 Validation functions in Project 5
EOFException CheckEOF

Exception FileNotfound
ParseException CheckDate

Table 3: Exception and Validation functions used in Projects

The EHF value in Project 1 is 100 % whereas in Project 5 it is 0 % (Figure 7). The reason
for abnormal termination and invalid output would be least revealed in Project 5 whereas
Project 1 is more helpful in finding faults. Project 1 allows project team to gather
information about cause of exception during validation testing. Also the metric gives
project team information about the amount of error-handling effort already included in
the code at the system level. Table 3 shows some classes included in Project 1 and
corresponding validation functions in Project 5. In Project 5 EHF value indicates that
more development effort is needed in adding functionality to incorporate some
validations so that exceptions (runtime or manual) do not cause invalid termination
or/and output. Some validations have not been added in Project 5 so the system fails at
these points during testing. These failures were revealed in later stages of software
development, which will increase the total cost. If these exception/faults had been
included during development time the cost would have been much less. In Project 5 the
more effort would be required in tracing the causes of abnormal termination. The metric
value in Project 1 gives the project team information about causes of occurrences of
failure by displaying diagnostic messages. In Project 2 and Project 3 more exception
classes were covered as compared to Project 5 but less than Project 1 and Project 4.
Therefore, the project team in Project 1 and Project 4 would require less development
effort as compared to Project 2 and Project 3.

7 DISCUSSIONS

Two new measures have been proposed and axiomatically evaluated against Weyuker’s
properties. It has been observed that higher the value of proposed metric, more robust
will be the class/system. The small values of these metrics indicate that either developer
have not made sufficient effort in including code for possible exceptions or they are not
experienced to look for possible exceptions. These metrics should be applied and
evaluated by review teams. The effect of using error handling functions in place of
exception handling mechanism is also studied. The result shows that the size and hence
complexity of the software increases with error handling functions. Also more
development effort is required in adding error functions in place of exception mechanism.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

REFERENCES

[Aggarwal01] K.K Aggarwal, Yogesh Singh, Software Engineering. New Age
International, Publishers, 2001.

[Basili79] V.Basili, R.Reiter. Evaluating Automable Measures of Software Models.
IEEE, Workshop on Quantitative Software Models, 107-116, 1979.

[Briand98] L.Briand, W.Daly and J. Wust, Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software Engineering,
3, pp. 65-117, 1998.

[Briand99] L.Briand , W.Daly and J. Wust, A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on software
Engineering, 25, pp.91-121, 1999.

[Chidamber94] S.R.Chidamber and C.F.Kamerer, A metrics Suite for Object-Oriented
Design. IEEE Trans. Software Engineering, vol. SE-20, no.6, 476-493, 1994.

[Cristian95] F. Cristian, Exception Handling and Tolerance of Software Faults, Software
Fault Tolerance, M. R. Lyu, ed., Wiley, Chichester, pp.81-107, 1995.

[Fenton96] N.Fenton et al, Software Metrics: A Rigorous and practical approach.
International Thomson Computer Press, 1996.

[Harrison98] R.Harrison, S.J.Counsell, and R.V.Nithi, An Evaluation of MOOD set of
Object Oriented Software Metrics. IEEE Trans. Software Engineering, vol.
SE-24, no.6, pp. 491-496, June 1998.

[Henderson96] B.Henderson-sellers, Object-Oriented Metrics, Measures of Complexity.
Prentice Hall, 1996.

[Jitender04] Jitender Kumar Chhabra, K. K. Aggarwal and Yogesh Singh, Measurement
of, object-oriented software spatial complexity. Information and Software
Technology, Volume 46, Issue 10(2004) 689-699

[Lorenz94] M.Lorenz, and J.Kidd, Object-Oriented Software Metrics. Prentice-Hall,
1994.

[Maxion00] R. A. Maxion and R. T. Olszewski, Eliminating Exception Handling Errors
with Dependability Cases: A Comparative, Empirical Study. IEEE
Transactions on Software Engineering, vol. 26, no. 9, pp.888-906, 2000.

[Maxion98] R. A. Maxion and R. T. Olszewski, “Improving Software Robustness With
dependability cases”, Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, pp.346-355, June 1998.

[Pressman01] R.Pressman, Software Engineering. McGraw-Hill, Boston, 2001.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

[Schach04] S.R.Schach, Introduction to Object-Oriented Analysis and Design. Tata,
McGraw-Hill, 2004, Site: http://highered.mcgraw-hill.com/sites/0072826460/
student_view0/case_studies.html.

[Schach02] S.R Schach, Object-Oriented and Classical Software Engineering. Tata,
McGraw-Hill, 2002, Site: http://www.mhhe.com/engcs/compsci/schach5/
student/airgourmet.java.java.

[Schildt01] H.Schildt, Java 2: The Complete Reference Tata McGraw-Hill, 2001.

[Venugopal97] K.R. Venugopal, Rajkumar, T.Ravishankar, Mastering C++. Tata
McGraw Hill,1997.

[Weyunker98] E.Weyuker, Evaluating Software Complexity Measures. IEEE
Transactions on Software Engineering, vol 14, pp.1357-1365, 1998.

[Zuse90] H.Zuse, Software Complexity: Measures and Methods. Walter de Gruyter,
Berlin, 1990.

About the authors
K. K. Aggarwal is vice chancellor at the Guru Gobind Singh
Indraprastha University, India. He received his doctorate from
Kurushetra University. He was president of the Institution of
Electronics and Telecommunication Engineers (IETE) from 2002
through 2004. Recently he was awarded “Delhi Ratan Bhuddhijeevi
Samman” by the All India Conference of Intellectuals (AICI). Prof.

Aggarwal has written few books and many of his articles have appeared in several books
published by IEEE of USA. He is coauthor of a book on software engineering and has
published more than 300 publications in national and international journals and
conferences. He can be reached by e-mail at kka@ipu.edu.

Yogesh Singh is a professor with the University School of Information
Technology and the School of Engineering and Technology, Guru
Gobind Singh Indraprastha University, Kashmere Gate, India. He
received his master’s degree and doctorate from the National Institute of
Technology, Kurukshetra. His area of research is Software Engineering
focusing on Planning, Testing, Metrics and Neural Networks. He is

coauthor of a book on software engineering, and is a Fellow of IETE and member of
IEEE. He has more than 150 publications in international and national journals and
conferences. Singh can be contacted by e-mail at ys66@rediffmail.com.

SOFTWARE DESIGN METRICS FOR OBJECT-ORIENTED SOFTWARE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Arvinder Kaur is a Reader with the University School of Information
Technology. She obtained her doctorate from Guru Gobind Singh
Indraprastha University and her master’s degree in computer science
from Thapar Institute of Engg. and Tech. Her research interests include
software engineering, object-oriented software engineering, software
metrics, microprocessors, and operating systems. She is also a lifetime

member of ISTE and CSI. Kaur has published more than 30 research papers in national
and international journals and conferences. Her paper titled “Analysis of object oriented
Metrics” was published as a chapter in the book Innovations in Software Measurement
(Shaker -Verlag, Aachen 2005). She can be reached by e-mail at
arvinderkaurtakkar@yahoo.com.

Ruchika Malhotra is a research scholar with the University School of
Information Technology, Guru Gobind Singh Indraprastha University,
India. She is working as a visiting faculty with Amity Institute of
Information Technology, India. She received her master’s degree in
software engineering from the University School of Information
Technology, Guru Gobind Singh Indraprastha University, India. Her

research interests are in improving software quality, statistical and adaptive prediction
models for software metrics, neural nets modeling, and the definition and validation of
software metrics. She has more than 10 publications in international journals and
conferences. Her paper titled “Analysis of object oriented Metrics” was published as a
chapter in the book Innovations in Software Measurement (Shaker -Verlag, Aachen
2005). She can be contacted by e-mail at ruchikamalhotra2004@yahoo.com.

