
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol.6, No. 1, January - February 2007

Cite this article as follows: C. Anantaram: “A Framework to specify Declarative Rules on Objects,
Attributes and Associations in the object model”, in Journal of Object Technology, vol. 6, no. 1,
January-February 2007, pp. 91-106 http://www.jot.fm/issues/issue_2007_01/article2

A Framework to specify Declarative
Rules on Objects, Attributes and
Associations in the object model

C. Anantaram, Tata Consultancy Services Limited, 249 D&E Udyog Vihar
Phase IV, Gurgaon 122016, India.

Abstract
There are various mechanisms for creating an application object model. These
mechanisms are used for modeling the application Meta model and the user models.
Some of the mechanisms allow constraints to be specified on object entities.
Constraints are expressions and evaluate to either true or false, and are used to specify
invariants or act as guards on objects, their attributes or associations. However, they do
not derive new states from existing states, nor do constraints create new objects or
assert an association dynamically. Thus it becomes cumbersome to specify business
rules during modeling, especially the kind of business rules that have an impact on the
association between objects. We present a framework for specifying declarative rules
on objects, attributes and associations in the object-model for a domain. Our framework
permits the specification of an association which has related business rules, such that
the rules are apparent during modeling, and also provides a mechanism to evaluate the
rules before the association is created between run-time instances of the classes. Using
such a framework, some of the business rules can be stated during modeling and need
not be buried in the code or be separately defined in a rule language. We discuss the
framework and its advantages during modeling.

1 INTRODUCTION

Real-world objects are best modeled as self-contained entities that contain both data and
functionality. In the object-oriented methodology, this is expressed as objects with
attributes and operations. Modeling tools and methodologies support the software
development process. For modeling the application, there are various standards such as
Unified Modeling Language (UML), Entity-Relationship model (E-R model), etc. Most
modeling tools and methodologies are based on fixed, explicitly stated models such as the
UML model, E-R models, etc.

Rules are the heart of business logic. Businesses implement their information
systems upon the pillars of business rules. Usually, business rules have been buried deep

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

inside the code. With the advent of business rule engines, rules could be specified
separately from the main processing flow of the business application. This allows the
application to be flexible and configurable to dynamic changes in the business
environment, as the rules could be easily changed and modified. Generally, a business
policy is coded as a set of business rules and workflow processes [Streng94][Date2000].
While this provided some temporary relief, the absence of specification of business rules
in the object model during modeling imposed various restrictions. Model developers
could not explicitly specify when a particular relationship (modeled as an ‘association’)
had rules. The rules which were known during modeling were hidden in code.

Some mechanisms have been developed to attach rules with methods present in the
model. However, no mechanism exists to express rules on an object, its attributes and its
associations in a declarative way using the power of logic.

Rules can be used to specify semantic checks based on object properties and
associations. Allowing rules on the object, attributes and associations will provide
evaluating conditions and also carrying out some actions. New states can be derived from
existing states and this new state can be used for further processing. Application
developer will be able to write rules to create objects, instantiate associations based upon
some conditions, define rules on classes and their attributes. This will be useful for
modeling integrity constraints on the model, derive new attribute values and specify rules
to instantiate an association based on the evaluation of a rule. Thus one can model
strategies in the business components.

We present a framework for model developers to specify declarative and procedural
rules on the objects, attributes and associations in the object model itself, using the power
of logic programming to make new derivations and assertions on the model elements.

2 RELATED WORK

The Object Management Group’s Object Constraint Language (OCL) [OCL03] and Meta
Object Facility (MOF) [MOF03] standards have been incorporated to include constraints
(or invariants) on objects and associations. OCL is a formal language used to describe
expressions on UML models. These expressions typically specify invariant conditions
that must hold for the system being modeled or can be used to specify queries over
objects described in a model. While the OCL expression itself cannot alter the state of the
corresponding executing system (i.e. it cannot change anything in the model), an OCL
expression may contain operations / actions that when executed can alter the state of the
system. OCL expressions are not directly executable and the evaluation of an expression
is instantaneous. OCL expressions have been used for a number of different purposes
such as a query language, as invariants on classes and types in the class model, as type
invariant for Stereotypes, as pre- and post conditions on Operations and Methods, as
Guards, and as derivation rules for attributes in a UML model. Invariants can be
described on classes using the Universal(∀ ) and Existential(∃) operators to provide a

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 93

constraint on all elements of a collection, or test the existence of at least one element in
the collection, respectively. Derived-value expressions allow the specification of
expression states which can be used to set the value of an attribute or an association-end
from the evaluation of the expression. Guards are expressions that are linked to state
transitions, and are evaluated at the moment the transition is attempted.

During the evaluation of an OCL expression, two important points are assumed:

1. States of objects in the model cannot change during the evaluation
2. An expression must be true for all instances of that type for which the expression

is defined.

The above points form a sort of restriction, as they do not allow dynamic creation of
objects based on the constraints and also do not permit a constraint to be “false” for some
of the objects in its collection. Hence constraints do not permit the model developer to
specify an association that is “conditionally instantiated” for a set of objects. Further, the
constraints by themselves do not derive any state (for example, like the conclusion that is
derived in a rule-execution) and hence cannot be used in further reasoning (i.e. there is no
derived state which could be used in other constraints or business rules of the
application).

OMG is evaluating a couple of RFPs, viz. 'production rules representation' RFP
[PRRP05] and the 'Business semantics of business rules' RFP [SBVR05]. Both these
RFPs are focused on defining business rules from the business perspective and do not
provide logic programming power on object models.

Some of the other work in the area has been to model rules as component objects,
separate from business objects and application logic [RuleMachines05]. While the
business user is free to define and modify the rules, these business rules are themselves
not defined in the object model. This approach is more like the traditional business rules
approach in applications, wherein rules are actually described separately from the
application and is not concerned with stating rules in object models. It is significantly
different from the approach that we are taking in this paper.

Adaptive Object-Models have been used to address the need for change by casting
information like business rules as data rather than code. Using objects to model such data
and coupling an interpretation mechanism to that structure, a domain-specific language
allows users themselves to change the system following the evolution of their business. A
system with an Adaptive Object-Model has an explicit object model that it interprets at
run-time. If the object model is changed, the system changes its behavior. Since objects
have states and respond to events by changing state, the Adaptive Object-Model defines
the objects, their states, the events, and the conditions under which an object changes
state [Yoder02]. However, this work does not address the aspect of defining rules during
modeling such that the rules could be specified in the object model itself.

In the framework that we describe, we provide the flexibility of defining rules on
objects, attributes and associations in the object model by enabling logic programming
power (Prolog-kind) in terms of binding, unification, backtracking etc. over object

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

models. Our framework enables the specification of rules during modeling to qualify
association with conditions, and enables the creation of that association at run-time
between the objects that satisfy the conditions at run-time. Previously, such business rules
were not modeled and were buried deep inside the code. Model developers and model-
maintainers would be oblivious to such rules and the object model may not actually
reflect the true state of the run-time model. Our framework attempts to address these
aspects.

3 TERMINOLOGY

In order to make the paper complete we present our explanation of some terminology that
we will refer.

Object Meta Model

The Object Meta Model is an object-oriented representation of the Domain for which the
software application is envisaged. Typically it consists of entities of the domain
categorized as ‘Objects’ with ‘attributes’. These entities are identified by the Domain
Analyst and created in an object-modeling tool. Objects may be related to each other
through ‘associations’. The Meta model is exported from the object-modeling tool to the
software application in order that the application can use the entities of the domain model
to create the actual model of the domain at run-time.

User Model

The User Model consists of the ‘Object’ entities and their associations that are specified
in the Meta model of the domain. These Object entities are treated as ‘Classes of objects’
that are instantiated into real-world objects at run-time. Thus the User Model is an
instance of the Meta Model at run-time.

Rulebase

Rulebase is the collection of all rules that are possible on the object entities and their
associations in the Meta model. These consist of conditional statements of the form “if
<conditions> then <actions>”. The conditions consist of the object entities combined
with other entities through mathematical relations. The actions are specific computational
instructions that can be performed on the object entities when the conditions are met.

Declarative object-model-enabled Rule Engine

The declarative object-model-enabled rule engine is an inference engine that can read,
parse, interpret, translate and execute rules in the Rulebase. While the engine could use
one of the mechanisms for rule execution, viz. forward-chaining using RETE [Forgy82]
or backward-chaining using WAM [Ait-Kaci91], it would need some extensions. The

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 95

engine has to have the ability to perform operations on a User Model and can treat objects
as Facts and as Parameters for Logical Predicates. The Rule Engine has the declarative
power of logic programs, such as Unification and Binding of logical variables, Assertion
and Retraction of facts, Resolution, Backtracking, Freeing of bound variables, Existential
and Universal quantifiers etc.

Domain Application

The domain application consists of the core software that is written for a specific purpose.
Its entities are based on the User model and create the real-world objects at run-time. The
workflow and control of the application directs what functions are carried out in the
domain.

4 FRAMEWORK TO DEFINE RULES ON OBJECT MODELS

In our framework we have focused on three important questions that we believe should
be addressed in object modeling:

1. how to specify an association which has related business rules, such that the rules
are apparent during modeling

2. how can the business rules attached to an association be evaluated before the
association is created between run-time instances of the classes

3. how can the association be dynamically created for some of the objects and
deleted depending on the dynamic states of the objects.

In the following sections we discuss our framework that helps address the above
questions.

Core Framework

Our framework focuses on the specification of associations in a declarative way, using
the power of logic programming, through which it is possible to derive an
implementation to create, delete and maintain associations in object models. Primarily, in
the framework there are four main aspects:

a) Treating classes and associations as predicates in a logical framework and allow it
to bind to their instances.

Every class and association in the object model is automatically treated as a
logical predicate with the class name or association name as the name of the
predicate. The instances of the classes and associations in the model are treated as
facts in a factbase. A predicate that represents a class will have one logical
variable that would bind to instances of that class at runtime. On the other hand, a
predicate that represents an association would have two logical variables, such
that the variables would bind to the two objects between which the association is
created. A predicate can take a TRUE or a FALSE value depending on whether the
instance of the class or association exists or does not exist in the factbase at

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

runtime. A predicate can also have an associated rule that will be evaluated to
determine if the predicate is TRUE or FALSE, in case the relevant facts do not
exist.

b) Treating class instances and association instances as facts in a factbase for logical
reasoning.

When the logical variable of the predicate representing a class does not have an
associated value, we call it a free variable. The variable can bind to object
instances of that class at runtime. Similarly, the logical variables of the predicate
representing an association, binds to object instances of the classes between which
the association is defined. Thus we treat the runtime class instances and
association instances as facts in a factbase. When the logical variables are bound
to a value and the corresponding class or association instance does not exist, then
the predicate would return a value FALSE. On the other hand, if the instance does
exist then the predicate would return a value TRUE.

Our framework assumes that these predicates automatically get a first and a
next method to permit the fetch of the first instance from the factbase and the
next subsequent set of instances. In the execution of a predicate rule, when all
instances are considered, next method will return FALSE.

c) Allowing class instances and association instances as predicate parameters to
permit binding, unification etc.

Business rules require a complex set of conditions that need to be evaluated and,
if their conditions are TRUE, a conclusion is asserted (or derived / set). In our
framework, the rules could have any number of predicates, some of which could
represent classes or associations in the model. Other predicates in the rulebase can
have parameters that bind to class instances or association instances of the model.
This facilitates using the instances for logical operations such as unification,
binding, freeing, and logical reasoning.

d) Allowing creation of class instances and association instances at run-time and
make assertions and retractions on them.

Each predicate that represents a class or an association would have the following
methods automatically created: assert, retract, bind, free, test, first and next. Class
instances and association instances can be created at runtime with the assert
method, and deleted with the retract method. The bind method will search for an
instance and bind it to the predicate variables. The free method would un-bind the
variables. The test method would check the existence of a given instance in the
factbase. The first and next methods would get the first and subsequent instances
from the factbase.

The above aspects are explained in the later sections with examples. It should be noted
that our framework does not propose a formal specification language for addressing the

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 97

above aspects or its formal implementation mechanism. However, we discuss a possible
mechanism to implement the framework using a pseudo business rules format.

Mechanism to implement framework in a pseudo rule language

Business rule formats that are defined in literature for business applications follow either
a Event-Condition-Action format, or a Logic-based format (viz. Data-driven rules or
Goal-driven rules), or a procedural rule format [Date2000] [Dayal88] [Knolmayer94]
[Streng94] [Tsalgatidou90] [Winston92] [SBVR05] [PRRP05]. These formats do not
support the use of the power of first-order-logic constructs and logic programming in the
rule language to define declarative rules on an object model. While a pure first-order-
logic based rule language might be difficult for business users to define and modify rules,
we believe that a fine mix of procedural rules with Prolog-like restricted first-order logic
constructs would make a powerful framework for defining both declarative and
procedural rules. A fine mix would allow seamless invocation of procedural rules from
declarative rules and vice-a-versa.

In our approach, we treat classes and associations in an object model as predicates in
a logical rule. This enables us to treat class instances and association instances as facts
and make assertions and retractions on them. In an object model, this implies that we can
make assertions of new objects (i.e. create new objects based on some conditions) and
create instances of associations (i.e. associations can be dynamically created based on
conditions specified in the rule). These are powerful techniques as they permit the
modeling of dynamic states of an object model during the Meta-model and User model
phase.

To illustrate this further, let us consider the following object meta-model as shown in
Figure 1. We discuss the mechanism to specify the business rules on any such model, in a
pseudo business rule language.

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Figure 1: A sample object meta-model from a financial bank domain

Declaring logical variables

The rule language permits the specification of logical variables that can bind to a value
and can be freed from a binding. The binding should be permitted on object or
association instances. An example would be a variable called CustA that could bind to
object instances say “Customer_Ram”, or “Customer_Shyam”.

Declare logical predicates

The rule language permits the definition of predicates that can bind to instances of a class
or an association. For example, let us say that Customer is a predicate that can bind to
instances of Customer class. We need to define its arity (i.e. the arguments that it will
take) and the type in the model to which it will be attached; for example, the predicate
Customer is attached to Customer class. Any assertions would occur for creating new
objects in the Customer class, while any retractions would occur on the objects existing
in the Customer class. A psuedo code of the predicate definitions is shown below.

Customer

Property
accNo
Name
Status
Age

Account

Property
accNo

Transaction

Property
TransDate
Amount
Status

HasAccount

Owner

ConsistsOf

HasTransaction

Bonus

Property

HasBonus

Balance
IncomeTax

Profession

ArePartner

PartnerOf

BonusNo
Amount

Type

BonusOf

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 99

PREDICATE Customer
ARITY 1
MODEL_TYPE Customer

Similarly, the predicate HasAccount would be attached to the association HasAccount
and would have an arity of 2. The type to which this predicate would be attached would
be both Customer class and the Account class. Any assertions and retractions would
involve the instances of both the classes, and in-turn the instance of the association.

PREDICATE HasAccount
ARITY 2
MODEL_TYPE Customer
MODEL_TYPE Account

Define Predicate rules

Definition of rules for predicates would allow a predicate to get a value either from the
factbase or from the rules. For example, we could define a predicate called Bonus that
could either be an asserted fact or be derived by a rule as shown below:

PREDICATE_RULE Bonus
IF (THERE_EXISTS(Customer(CustA)) AND
CustA.Status EQ ‘Privileged’)
THEN assert_fact (Bonus (CustA));

Manage a factbase

Asserting facts into a factbase and retracting facts from the factbase are basic
mechanisms required. This should be implemented in such a way that the instances of
classes or associations are also treated as part of the factbase. What this implies is that
when an assert_fact operation is invoked with a class or association as the parameter,
object instances and association instances can be created. Similarly when a
retract_fact operation is invoked with a class or association instance as the
parameter, the relevant instance is deleted. For example, in the rule shown in the previous
section, Bonus is a class for which a new instance is created for CustA.

Binding of facts

When predicates are given with unbound logical variables then facts in the factbase that
are asserted for that predicate are searched and are bound to the variables of the predicate.
For example, if we have a predicate Bonus(x) then it would return the fact
Bonus(x=CustA), where x is bound to CustA instance of Customer class. Since in
our mechanism we include both class instances and association instances, this would
work for both classes and associations.

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Backtracking rules

When the variable arguments of predicates in a rule are bound to some facts, these
bindings are carried forward to other unbound arguments of the rule. At times the new
bindings may not retrieve any fact or may not lead to a solution. When this occurs, the
bindings need to be undone and the next possible fact is considered. This process is called
backtracking. Implementing backtracking would also facilitate the search for multiple
solutions. For example, in the PredicateRule Bonus above, say that we have two
facts Customer_Ram and Customer_Shyam and at the first instance, let CustA bind to
Customer_Ram. If the Status attribute of Customer_Ram is not ‘Privileged’ then
we need to backtrack to the previous predicate, unbind CustA and bind CustA to
Customer_Shyam. Then the rule proceeds with evaluation of Customer_Shyam.

Searching for single and multiple solutions

The pseudo rule language allows Universal(∀) and Existential (∃) operators representing
operations such as “For All” and “There Exists”. When combined with backtracking this
can allow the search for single or multiple solutions (much in the same lines as an SQL
statement). For example, PredicateRule Bonus could be defined as “multiple
solutions” with the Universal (∀) operator preceding the definition. This would allow
every Customer with Status as ‘Privileged’ to be given a bonus.

Mixing procedural and declarative rules

Using declarative rules inside procedural rules allows a mechanism wherein users can
specify both procedural actions as well as the declarative rules. To do this, we treat every
predicate rule as a function call that evaluates on its factbase (which can comprise of its
internal factbase as well as the objects and association instances). The predicate rule
returns either True or False value that may be used by the procedural rule. Similarly in
a declarative rule, a procedural rule can be invoked by considering the rule reference as a
predicate evaluation that returns either a True or False value.

Using such a mechanism, rules can be used to specify semantic checks based on
object properties and associations, create objects at runtime, instantiate associations based
upon some conditions, define rules on classes and their attributes. This can also be used
for modeling integrity constraints on the model, derive new attribute values and specify
rules to instantiate an association based on the evaluation of a rule, thus providing a
mechanism for declarative modeling for object behavior.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 101

5 EXAMPLES

Rules on association

Let us assume that we want to model the rule that “Two customers are partners if and
only if they hold the same bank account”. In the present modeling mechanisms what can
be modeled is shown in Figure 2.

Figure 2: Object model of an association ArePartner

The fact that two Customers are Partners if and only if they hold the same account is
not modeled; it would most probably coded in the application. The information is lost
from the model. Instead, if the following rule could be added to the model on the
association ‘ArePartner’ then it makes the modeling more complete.

IF (THERE_EXISTS (Customer (custA)) AND

THERE_EXISTS (Customer (custB)) AND
THERE_EXISTS (HasAccount (custA, acc)) AND
THERE_EXISTS (HasAccount (custB, acc)) AND
custA not_the_same_as custB)

THEN assert_fact (ArePartner (custA, custB))

Figure 3: Rule on the association ArePartner

The rule in Figure 3 states that the association ‘ArePartner’ is instantiated only if there
exists two unique customers who have the same account. With a FOR_ALL at the rule
property level, this rule can automatically detect and assert the association
‘ArePartner’ for all customers who have the same account in the bank. Further, when
one of the Customer withdraws, this fact can be retracted.

Customer

Property
accNo
Name
Status
Age
Profession

ArePartner

PartnerOf

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

Rules on attributes

Let us assume that we have a rule that states “For a customer, whose account balance is
less than minimum balance, assert the fact that he cannot withdraw”. We can define a
backtracking multiple-solution rule as follows (Figure 4):

RULE MinBalanceCheck
BACKTRACK MULTIPLE_SOLUTION
IF (THERE_EXISTS (Customer(custA)) AND
 THERE_EXISTS (HasAccount(custA, acc)) AND
 acc.Balance < MinimumBalance)
THEN CanNotWithdraw (custA);

Figure 4: Rule on attributes

This rule will get all the customers from the model, check if the Customer has an
Account using the association HasAccount and check if the Balance in the Account
is less than MinimumBalance. If such a Customer exists, then method
CanNotWithdraw is called with Customer object as a parameter.

As a summary, the figure below (Figure 5) shows how the rules can be written on the
model.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 103

Figure 5. Writing rules on the objects, attributes and associations

6 ADVANTAGES OF THE FRAMEWORK

There are a number of advantages of the proposed framework. The first is the ability to
specify business rules on associations in an object model, during modeling. Such business
rules may specify the conditions when an association should be instantiated between

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

runtime objects in the domain. Previously such rules have normally not been explicitly
stated in the object model, and were either hidden in the code or stated separately in a
rule language. The framework facilitates the definition and thus enables an object model
to be more representative of the real application world. The framework also permits the
definition of logical rules on objects and their attributes during modeling. While all rules
are not expected to be defined in the modeling stage, this mechanism permits the
“modeling” of those rules that are known or apparent during modeling. Thus a model can
be considered more complete than one without such definitions. Another advantage could
be in the area of model validation. A model can have both constraints and rules. These
rules and constraints would be checked to determine if there is any violation. While OCL
permits the definition of constraints, our framework permits logical rules in addition to
constraints. Run-time instantiations of associations based on conditions specified in the
rules is possible. This is a major advantage over existing methods. Associations can be
instantiated dynamically based on some conditions. Operations can then be performed on
them. Derivations can be made on the model by defining rules on the objects. This means
that based on a set of conditions, logical inferences can be derived on the objects. These
are major advantages over a constraint language like OCL wherein logical reasoning
which is available in logic programming cannot be carried out.

We have implemented these concepts in experimental extensions of commercial
products of our company, viz. the MasterCraft Component Modeler (an object modeling
and code generation tool) and the Infrex Rule Engine (a business rules engine), and have
observed the advantages.

7 CONCLUSIONS

We have proposed a framework for specifying declarative rules on objects, attributes and
associations. The framework permits definition of some of the business rules during
modeling that need not be buried in the code or specified separately, especially rules on
associations. Using a declarative rule language and rule engine it is possible to apply
these concepts. Further extensions can be envisaged in terms of incorporating more
powerful pattern matching in the rule formats, generating XML compatible / BRML
compatible output format from the rules.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 105

REFERENCES

[Ait-Kaci91] Hassan Ait-Kaci, Warren's Abstract Machine: A Tutorial Reconstruction,
MIT Press, 1991.

[Date2000] C. J. Date, What Not How: The Business Rules Approach to Application
Development, Addition Wesley Longman Inc., 2000.

[Dayal88] U. Dayal, A.P. Buchmann, and D.R. McCarthy, “Rules Are Objects Too: A
knowledge Model for an Active, Object-Oriented Database Management
System”, in: K.R. Dittrich (ed.) Advances in Object–Oriented Database
Systems, Springer, Berlin, (1988), pp. 129-143.

[Forgy82] C.L. Forgy, “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”, Artificial Intelligence, 19,(1982) 17-37.

[Knolmayer94] G. Knolmayer, H. Herbst, M. Schlesinger, “Enforcing Business Rules
by the Application of Trigger Concepts”, Proceedings of Program
Informatics Research, Information Conference Module 1, Berne, 1994.

[MOF03] Meta Object Facility (MOF) 2.0 Core Specification version 2.0, ptc/04-10-15,
October 2003.

[Nilsson82] N. J. Nilsson, Principles of Artificial Intelligence, Springer Verlag, Berlin,
1982.

[OCL03] OCL 2.0, OMG Final Adopted Specification, ptc/03-10-14, October 2003.

[PRRP05] Production Rule Representation Proposal, OMG Draft 1, 2005.

[RuleMachines05] Business Rules and the Component Object Model, Whitepaper,
RuleMachines Corporation, 2005.

[SBVR05] Semantics of Business Vocabulary and Business Rules (SBVR), bei/2005-
03-0, Version 7.0, OMG.

[Streng94] .J. Streng, “BPR needs BIR and BTR: The PIT framework for Business
Reengineering”, T.J. Proceedings of Second SISnet Conference, Barcelona,
1994.

[Tsalgatidou90] .Tsalgatidou, V. Karakostas, P. Loucopoulos, “Rule-Based
Requirements Specification, and Validation”, in: B. Steinholtz, A. Solvberg,
L. Bergman (Eds.), Proceedings of the Fourth International Conference on
Dynamic Modelling and Information Systems Engineering, Berlin et al:
Springer, (1990), pp. 251-263.

[Winston92] .H. Winston, Artificial Intelligence, Third Edition, Addison-Wesley, 1992,
Pages 119-161.

A FRAMEWORK TO SPECIFY DECLARATIVE RULES ON OBJECTS, ATTRIBUTES AND

ASSOCIATIONS IN THE OBJECT MODEL

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO. 1

[Yoder02] Joseph Yoder, and Ralph Johnson, “The Adaptive Object-Models
Architectural Style”, in Working IEEE/IFIP Conference on Software
Architecture, 2002.

About the author
C. Anantaram is a Senior Consultant in Tata Consultancy Services
Limited, New Delhi. He received his M.Sc.(Tech.) from BITS, Pilani
and Ph.D. degree in Computer Science from IIT Bombay, India. His
areas of interest are knowledge engineering, object oriented
technology, natural language interfaces, and integrating AI in
business applications. He is a member of Government of India’s

Working Group on Metadata and Data standards for e-Governance applications. His
email is c.anantaram@tcs.com.

