
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2007

Vol. 6, No. 1, January-February 2007

Cite this article as follows: Philippe Massicotte, Linda Badri, Mourad Badri: “Towards a Tool
Supporting Integration Testing of Aspect-Oriented Programs”, in Journal of Object Technology,
vol. 6, no. 1, January-February 2007, pp. 67-89 http://www.jot.fm/issues/issue_2007_01/article1

Towards a Tool Supporting Integration
Testing of Aspect-Oriented Programs

Philippe Massicotte, University of Quebec at Trois-Rivières
Linda Badri, University of Quebec at Trois-Rivières
Mourad Badri, University of Quebec at Trois-Rivières

Abstract
Aspect-Oriented Programming is an emerging software engineering paradigm. It offers
new constructs and tools improving separation of crosscutting concerns into single units
called aspects. AspectJ, the most used aspect-oriented programming language,
represents an extension of Java. In fact, existing object-oriented programming
languages suffer from a serious limitation in modularizing adequately crosscutting
concerns in a program. Many concerns crosscut several classes in an object-oriented
system. However, new dependencies between aspects and classes result in new
testing challenges. Interactions between aspects and classes are new sources for
program faults. Moreover, existing object-oriented testing methods (unit and integration
testing) are not well adapted to the aspect technology. As a consequence, new testing
techniques must be developed for aspect-oriented programs. We present, in this paper,
a new aspects-classes integration testing strategy and the associated tool. The adopted
approach consists of two main phases: (1) static analysis: generating testing sequences
based on dynamic interactions between aspects and classes, (2) dynamic analysis:
verifying the execution of the selected sequences. We focus, in particular, on the
integration of one or more aspects in the control of collaborating classes.

1 INTRODUCTION

Existing object-oriented programming languages suffer from a serious limitation in
modularizing adequately crosscutting concerns in a program. Aspect-Oriented Software
Development (AOSD) [Aosd05] introduces new abstractions to software engineering
dealing with separation of concerns in software development. There have been many
approaches to Aspect-Oriented Design (AOD). Each approach attempts to capture and
address a significant issue relating to crosscutting in design [Jack05]. Aspect-Oriented
Programming (AOP) does for crosscutting concerns what Object-Oriented Programming
(OOP) has done for object encapsulation and inheritance: it provides language
mechanisms that explicitly capture crosscutting structure and achieve the usual benefits
of improved modularity [Kicz01]. The code corresponding to crosscutting concerns is
separated into modular units called aspects [Ajpg02]. This reduces the dispersion of the

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

code and tends to improve programs modularity [Mort04, Walk99, Xiet05] making
programs easy to maintain, reuse and evolve [Zhao04]. In spite of the many claimed
benefits that the aspect paradigm seams offering, it remains that it is not yet mature. AOP
introduces, in fact, new dimensions in terms of control and complexity to software
engineering and generates new types of faults [Alex04]. Moreover, aspects' features are
not covered by existing testing techniques as mentioned by several authors [Alex04,
Zhao02, Zhou04]. Consequently, testing aspect-oriented programs is a huge challenge.

The testing process is a crucial issue in software development. It represents an
essential task to ensure software quality [Beiz90]. Existing object-oriented testing
methods (unit and integration testing) are not well adapted to the aspect technology. The
code related to aspects as well as the introduced abstractions and constructs are prone to
cause new faults as stated in [Alex04, Mort04]. Moreover, aspects are not complete code
units and their behavior often depends on the woven context. In aspect-oriented
programs, integration is more fine grained and occurs, as stated in [Alex04], with respect
to the intra-method control and data flow. As a consequence, new integration testing
techniques must be developed to deal with the new dimensions introduced by aspects.
The main difficulty comes from the relationship between aspects and classes. A link
between an aspect and a class is not identifiable when analyzing classes [Alex04, Mort04,
Xiet05, Zhou04]. One of the major forms of dependencies between aspects and classes
comes from the specific relationship “caller/called”. Most of object-oriented testing
techniques are based on this type of relationship between classes [Ball98]. In an aspect-
oriented system, something different occurs since integration rules are defined in aspects.
An aspect describes, using various constructs, how this integration will be done. This
additional level of abstraction, and its consequences in terms of control and complexity,
must be taken in consideration in order to make sure that dependencies between aspects
and classes are tested adequately [Zhou04].

We present, in this paper, a new aspects-classes integration testing strategy and the
associated tool. The adopted approach consists of two main phases: (1) static analysis:
generating testing sequences based on the dynamic interactions between aspects and
classes, (2) dynamic analysis: verifying the execution of the selected sequences. We
focus, in particular, on the integration of one or more aspects in the control (interactions)
of collaborating classes. The proposed approach follows an iterative process. The first
main phase of the strategy consists in the generation of the testing sequences
corresponding to the various scenarios of the collaboration between the objects including
weaved aspects. The interactions between collaborating classes are specified using UML
collaboration diagrams. Aspects are integrated to the original sequences (collaboration
diagram) in an incremental way. The second main phase of the strategy supports the
verification process of the executed sequences. We focused on AspectJ programs. The
proposed technique is, however, general and may be adapted to others aspect
implementations. The present work represents an extension of a previous work that
focused on a general presentation of the testing sequences generation technique [Mass05-
1] and the associated verification process [Mass05-2].

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 69

The rest of the paper is organized as follows: in section 2, we present a survey of
related works. Section 3 gives the basic concepts of AspectJ. The main steps of the
proposed strategy are discussed in section 4. Section 5 presents briefly collaboration
diagrams. The proposed testing criteria are discussed in section 6. Section 7 presents the
testing sequences generation technique and its illustration on a real case study taken on
AspectJ web site [Ajws05]. Section 8 presents the verification process that we
implemented and the used fault model. Section 9 illustrates the main functionalities of the
developed tool. Finally, section 10 gives a general conclusion and some future work
directions.

2 RELATED WORK

Alexander et al. discuss in [Alex04] various types of faults that could occur in aspect-
oriented programs. They consider the new dimensions introduced by the integration of
aspects into an object code. They propose a fault model including six types of potential
sources of errors in an aspect-oriented program. This model constitutes, in our believe, an
interesting first basis for developing testing strategies and tools for aspect-oriented
programs. Ubayashi and Tamai [Ubay02] have proposed a model checking method for
verifying whether or not an aspect-oriented program satisfies expected properties.
Mortensen et al. present in [Mort04] an approach combining two traditional testing
techniques: structural approach (white box coverage) and mutation testing. Aspects are
classified according to whether they modify or not the state of a system. This technique
mainly consists in discovering faults that are related to the code introduced by advice.
The mutation operators are applied to the process that weaves advice to the object code.

Zhou et al. [Zhou04] suggest a unit testing strategy for aspects. Their approach is
presented in four phases. The first step consists in testing classes to eliminate errors that
are not related to aspects. Each aspect is integrated and tested individually in a second
step. All aspects are integrated and tested in an incremental way. Finally, the system is
entirety re-tested. This approach is based on the source code of the program under test.
Moreover, Xie et al. [Xiet05] proposed a framework to generate automatically a set of
unit tests by using the compiled AspectJ bytecode. In the same context, Zhao [Zhao02]
proposes an approach based on control flow graphs. Three testing levels are applied to
aspects and classes. The intra-module test is used to test an individual module such as an
advice, an introduction, or one aspect/class method. The inter-module test consists in
testing one public module in relation to the other modules, which it calls (directly or
indirectly). The third testing level aims at testing a whole public module of an aspect or a
class when it is randomly called. The strategy proposed by Zhao focuses on unit testing
of aspect-oriented programs.

Moreover, other approaches focused on generating testing sequences using state
diagrams [Badr05, Xud04, Xud05-1]. Such approaches focus on the behavior of a class
where an aspect is weaved. Our research is related to the integration of one or more
aspects to the behavior of a group of collaborating objects. The collaboration between

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

several objects specifies how the objects interact dynamically in order to realize a
particular task. The problem in this context comes from the aspects integration while they
can affect the behavior of the collaboration. We must thus ensure that aspects are
integrated correctly into the collaboration. When integrated to the control, aspects have
the possibility to change the state of a system as stated in [Mort04]. Concerns
implemented in aspects have the potential to extend the original behavior of a given
collaboration. Xu [Xud05-2] uses a model-based approach to generate test cases based on
interactions between aspects and classes. Their models include class diagrams, aspect
diagrams and sequence diagrams. Sereni [Sere03] proposed a method for static analysis
of aspects based on a syntactic model of pointcut designators using regular expressions.

3 ASPECTJ: BASIC CONCEPTS

AspectJ represents a seamless aspect-oriented extension of Java [Ajws05, Zhao04].
Eclipse (with AJDT) [Ajpg02] is a compiler as well as a platform supporting the
development of AspectJ programs. AspectJ achieves modularity with aspect abstraction
mechanisms, which encapsulate behavior and state of a crosscutting concern. It
introduces several new language constructs such as introductions, jointpoints, pointcuts
and advice. Aspects typically contain new code fragments that are introduced to the
system. Aspects make it explicit where and how a concern is addressed, in the form of
jointpoints and advice. Aspects execution depends upon context (control and data flow)
provided by the core concerns represented by classes signature [Redd06]. Moreover,
aspects have the possibility to make significant changes to the semantics of a core
concern, especially with foreign aspects [Mcea05]. An aspect gathers pointcuts and
advice to form a regrouping unit [Ajws05, Balt01, Xiet05]. An aspect is similar to a Java
or C++ class in the way that it contains attributes and methods [Zhao04]. The essential
mechanism provided for composing an aspect with other classes is called joint point
[Zhao04]. Even more, join points are well-defined points in the execution in a program
[Kicz01]. AspectJ makes it possible to define joint points in relationship to a method call
or a class constructor [Balt01]. A pointcut is a set of joint points and aims of referring
certain values at those joint points [Kicz01]. A pointcut can be built out of other pointcuts
with logical operators (and, or, and not) [Masu03]. AspectJ includes a variety of primitive
pointcut designators that identify join points in different ways. An advice is a method like
abstraction used to specify the code to execute when a jointpoint is reached. It can also
expose some of the values in the execution of a jointpoint. Pointcuts and advice define
integration rules. For more details see [Ajpg02. Ajws05].

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

4 INTEGRATION STRATEGY: AN ITERATIVE APPROACH

The proposed strategy consists in two main phases (figure 1). The first one is related to
the generation of the basic testing sequences corresponding to the collaboration between
classes. Each generated sequence corresponds to a particular scenario of the collaboration
diagram. Those sequences represent the main scenario (happy path) [Larm03] and its
various extensions. We use XML to describe collaboration diagrams and aspects. The
proposed strategy consists, in a first step, to generate testing sequences corresponding to
all scenarios without aspects integration. This will support the testing process of the
collaboration. This step represents an adaptation and extension of some testing sequences
generation techniques developed for object-oriented systems [Offu99, Badr03]. The main
goal of this step is to verify the collaboration (without aspects) for the realization of a
given task and to eliminate faults that are not related to aspects. Aspects are integrated in
a second step, in an iterative way. This process is based on the testing criteria presented
in section 6. We assume that this will reduce the complexity of the testing process. We
focus on the impact of aspects integration on the original scenarios of the collaboration.
We formally identify the sequences (scenarios) that are affected by aspects integration.
Aspects are introduced automatically, in an incremental way, to the original sequences
and tested during the verification process.

Figure 1. Methodology of the strategy.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

The second main phase of the strategy consists in a dynamic analysis which verifies the
execution of the implementation of each scenario of the collaboration (including aspects).
This process is supported by a source code instrumentation of the program under test. The
following algorithm represents the important steps of the strategy.

1. Generating control flow graphs corresponding to the methods implied in the
collaboration.

2. Generating messages tree of the collaboration.
3. Generating basic sequences (based on the collaboration between objects).
4. Testing the collaboration between classes based on the various scenarios.
5. Integrating aspects: While there is non integrated aspects

a. Integrating one aspect.
b. Identifying sequences that are affected by this integration (following the

aspect’s control).
c. Re-testing the affected sequences.
d. If there are no problems, return to step 5.

6. Testing entirely the collaboration including aspects.
7. End

To instrument the software under test we do use an aspect (generated automatically by
our tool) for every sequence under test to capture dynamically all invoked methods in the
collaboration (aspects and classes). The instrumented code contains the original source
code and an aspect to capture the executed methods. This particular aspect verifies
dynamically, among others, if the executed sequence is conform to the selected one
(sequence of executed methods, conditions).

5 COLLABORATION DIAGRAMS

In object-oriented systems, objects interact in order to implement behavior. Object-
oriented development describes objects and their collaborations [Larm03, Rrsc98].
Behavior can be described at two levels. The first one focuses on the individual behavior
of objects while the second one is related to the behavior of a group of collaborating
objects [Abdu00]. The collective behavior of a group of collaborating objects, for the
realization of a specific task, can be specified using UML collaboration diagrams. UML
collaboration diagrams [Wuye02] illustrate the interactions between objects in the form
of graphs. Each scenario of the collaboration is represented by a specific sequence. We
are interested to the impact of the integration of one or more aspects to a group of
collaborating classes. According to the faults model presented by Alexander et al. in
[Alex04], two situations could be at the origin of faults. The first one is related to the link
that weaves an aspect with its primary abstractions while it introduces new dependencies.
The second level is related to the fact that several aspects are integrated to a single class.
In that case, it becomes difficult to localize the source of a fault when failures occur. The
various control permutation between aspects may complicate the localization of the origin

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

of an error. To reduce this complexity, we adopted an iterative approach for aspects
integration. The following criteria aim to cover the new dimensions introduced by the
integration of aspects to a group of collaborating classes.

6 TESTING CRITERIA

A testing criterion is a rule or a set of rules that impose conditions on testing strategies
[Mort04, Offi99, Xiet05]. It also specifies the required tests in terms of identifiable
coverage of the software specification used to evaluate a set of test cases (also known as
test suite) [Mort04]. Testing criteria are used to determine what should be tested without
telling how to test it. Testing engineers use those criteria to measure the coverage of a test
suite in terms of percentage [Offu96]. They are also used to measure the quality of a test
suite. The first two criteria are based on collaboration diagrams [Abdu00, Badr04, Offi99,
Wuye02]. We extend these criteria to take into account the new dimensions related to the
integration of aspects in a collaboration diagram.

Transition coverage criterion

A transition represents an interaction between two objects in a collaboration diagram.
Each interaction must be tested at least once [Offu99]. According to Offutt et al. [Offi99],
a tester should also test every pre-condition in the specification at least once to ensure
that it will always be possible to execute a given scenario (some scenarios might never be
executed if a pre-condition is not well-formed). A test will be executed only when the
pre-condition related to the transition is true.

C1: Every transition in a collaboration diagram must be tested at least once.

Sequence coverage criterion

The previous criterion relates to testing transitions taken individually. It does not cover
transitions sequences [Offu99]. A sequence is a logical suite of several interactions. It
represents, in fact, a well-defined scenario in the collaboration that has the possibility to
be executed at least once during the program execution. By testing sequences with their
control (pre and post condition), we verify all possibilities based on the collaboration
diagram (main scenario and its various extensions). In some cases, the number of
sequences is unlimited (presence of iterations). The testing engineer has to select the most
relevant sequences.

C2: Every valid sequence in a collaboration diagram must be tested at least once.

The first two criteria are related to collaboration diagrams. They do not cover aspects
dependencies. Thus, we need to develop new criteria. The following criteria cover the

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

new dimensions introduced by aspects. They are based on the faults model presented by
Alexander et al. in [Alex04].

Modified sequences coverage criterion

The collaboration between objects is first tested without the aspects in order to make sure
that the various scenarios (interactions between objects) are implemented correctly. An
aspect, from its nature, should not modify the semantic of a class [Zhou04]. Aspects
depend, in fact, on related classes’ context concerning their identity as mentioned by
Alexander et al [Alex04]. Therefore, aspects are bounded to classes and they cannot exist
by themselves. However, aspects introduce new methods (pieces of code) that must be
integrated to the collaboration. Those methods (aspects’ methods) can modify the state of
the system as stated in [Mort04] and alter, as a consequence, the behavior of a group of
collaborating classes. In other terms, aspects will introduce concerns (that must be tested
thought) into a group of collaborating classes. It is imperative to adequately test
sequences affected by aspects.

C3: Every sequence in the collaboration diagram that is affected by aspects must be re-
tested.

Simple integration coverage criterion

Simple integration, as illustrated in figure 2, occurs when only one aspect is integrated to
a given class. We need, in this case, to determine formally the affected sequences and test
them again.

Figure 2. Simple integration.

C4: If a method of a given class is affected by an advice and if that method is used in the
collaboration diagram, all sequences that include the execution of that method must be
re-tested.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

Multi-aspects integration coverage criterion

It is possible that several aspects come to be weaved to a method of a given class (figure
3). In this situation, several conflicts may arise. In spite of certain mechanisms making it
possible to specify the execution order, it is always possible to be confronted to a random
sequencing. The context is important since executing an aspect before another can change
the state of a system. Especially, when the aspects are stateful or altering [Mort04].

Figure 3. Multi-aspects integration.

C5: If a method of a given class is affected by several advice and if that method is used in
the collaboration diagram, all sequences that include the execution of that method must
be re-tested. This test will have to be executed with all possible advice permutation after
aspects integration.

7 AUTOMATED TESTING SEQUENCES GENERATION

Approach

Testing sequences generation process takes into consideration the control described in the
collaboration diagram. Each valid sequence in the collaboration diagram corresponds to a
possible scenario that may be executed. The generated sequences also integrate the
various interactions between aspects and collaborating classes. The strategy takes into
consideration the two levels of integration: classes-classes and aspects-classes
integration. It follows an iterative process. The following example (figure 4) has been
modeled from a real AspectJ application. This example illustrates some ways that
dependent concerns can be encoded with aspects. It uses an example of system
comprising a simple model of phone connections to which timing and billing features are
added using aspects, where the billing feature depends upon the timing feature. It
constitutes, in our opinion, an interesting concrete example to present our approach. We
have generated the corresponding collaboration diagram (figure 4) by analyzing the

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

classes implied in the example. For more details about the example see AspectJ web site
[Ajws05].

Figure 4. Collaboration diagram.

We start by creating the messages tree corresponding to the collaboration diagram. By
analyzing the messages tree, we generate the original sequences. These sequences will
allow testing, in a first step, the collaboration between classes (various scenarios). This
will allow thereafter, according to the introduced criteria, to determine and visualize the
scenarios affected by aspects. Aspects integration is done incrementally. When all aspects
are successfully integrated, we test the whole collaboration diagram (including aspects) to
ensure that aspects and collaborating classes are working together correctly. This step is
also used to determine the possible conflicts, which can be generated by aspects. By
integrating incrementally aspects, we expect that the faults related to the interactions
between aspects and classes will be relatively easy to identify. The sequences are
generated by considering all the possible combinations, for a multi-aspects integration, in
order to detect the errors related to the possible random behavior in this case.

Control graphs

Control graphs are used in order to model the control of the methods involved in the
collaboration. They are at the basis of the complete control flow graph of the
collaboration. It presents a global overview of the control present in the collaboration
diagram. Figure 5 shows the control flow graph of the collaboration described in Figure
4.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

Figure 5. Messages control flow graph.

Messages tree

The control graph related to each method implied in the collaboration is, in fact,
translated into a principal sequence (regular expression). The objective at this stage
consists in generating the principal sequence of each method. To this end, we use the
following notations: The notation {sequence}, expresses zero or several executions of the
sequence. The notation (sequence 1 / sequence 2) expresses a mutual exclusion during the
execution between sequence 1 and sequence 2. The notation [sequence] expresses that the
sequence can be executed or not. Once sequences are created, we use those as a basis for
the construction of the main sequence (corresponding to the collaboration) and to
generate the corresponding messages tree. Each message is replaced by its own sequence.
The substitution process stops when messages are at the leaf levels of the tree. At this
step, we do not consider aspects. Figure 6 illustrates the principal sequence of the
considered collaboration.

AbstractSimulation.Run(), Customer.Call(),Call.New(),
(Local.New() / LongDistance.New()),
Customer.addCall(), Customer.pickUp(),
Call.pickUp(), Connection.Complete(),
Customer.addCall(), Customer.hangUp(),
Call.hangUp(),Conneciton.Drop(),
Customer.removeCall()

Figure 6. Main sequence.

Main testing sequences

The technique consists of generating, using the messages tree, the control paths starting
from the root and taking into account the control (while eliminating the infeasible ones).

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

Each path will correspond to a particular testing sequence. Every generated sequence
represents, in fact, a specific scenario of the collaboration. In order to simplify the
notation, we assign a node number to each message in the collaboration. Table 1 shows
messages with their assigned node. Table 2 illustrates the generated sequences based on
the main sequence presented in figure 6. The initial tests use those sequences to ensure
that the collaboration is working correctly.

Node Classes’ Messages
1 AbstractSimulation.Run()
2 Customer.Call()
3 Call.New()
4 Local.New()
5 LongDistance.New()
6 Customer.addCall()
7 Customer.pickUp()
8 Call.pickUp()
9 Connection.Complete()

10 Customer.hangUp()
11 Call.hangUp()
12 Conneciton.Drop()
13 Customer.removeCall()

Table 1. Messages number.

Scenario Test Sequences

1 #1 1 2 3 4 6 7 8 9 6 10 11 12 13
2 #2 1 2 3 5 6 7 8 9 6 10 11 12 13

Table 2. Generated base sequences.

Aspects integration

When all basic sequences related to the collaboration between classes are generated and
tested, we proceed to aspects integration. Aspects are integrated in an incremental way, as
mentioned previously, to facilitate errors detection. We adopted an iterative strategy by
starting with the most complex aspect. According to the criteria established in section 6,
we determine the sequences to which the aspects are weaved. These sequences will be re-
tested including the fragments of code introduced by aspects. The code introduced by
aspects will be executed when the corresponding join point will be reached. When all
aspects are entirely integrated, we re-test all sequences one more time to ensure that the
collaboration, including the aspects, works correctly. According to the collaboration
diagram given by figure 4, the aspect Timing introduces two methods to the main
sequences. Consequently, advice integration starts with this aspect. The proceeding order
to introduce advice does not have importance. We begin with StartTimer and EndTimer.
Table 3 shows the methods introduced by the Timing aspect with their associated node
number. The obtained sequences are presented in table 4.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

Node Aspect’s Methods
14 StartTimer ()
15 EndTimer()

Table 3. Methods introduced by the Timing aspect.

New

method Scenario Test New sequences

1 #3 1 2 3 4 6 7 8 9 14 6 10 11 12 13 14 2 #4 1 2 3 5 6 7 8 9 14 6 10 11 12 13
1 #5 1 2 3 4 6 7 8 9 6 10 11 12 15 13 15 2 #6 1 2 3 5 6 7 8 9 6 10 11 12 15 13
1 #7 1 2 3 4 6 7 8 9 14 6 10 11 12 15 13 14 + 15 2 #8 1 2 3 5 6 7 8 9 14 6 10 11 12 15 13

Table 4. Integration for the Timing aspect.

After that we integrate the aspect Billing. This aspect is particular because its pointcut
points on a class constructor. The main problem comes from the fact that this class is an
abstract class. The advice related to that pointcut will be triggered when one of the sub-
classes will be instantiated. The implementation for the connection class is done in two
sub-classes: Local and Longdistance. Thus, every instance of those two classes will
trigger the pointcut defined in the aspect Billing. Table 5 presents the method introduced
by the Billing aspect. The new sequences are shown in the table 6.

Node Aspect’s Method
16 PayBilling()

Table 5. Methods introduced by the Billing aspect.

New

method Scenario Test New sequences

1 #9 1 2 3 4 16 6 7 8 9 6 10 11 12 13 16 2 #10 1 2 3 5 16 6 7 8 9 6 10 11 12 13

Table 6. Integration for the Billing aspect.

Once the integration of all aspects is done, we test the system entirely by integrating all
aspects to the collaboration diagram. Knowing that we have two scenarios, the last two
tests need be applied (table 7).

Scenario Test New sequences
1 #11 1 2 3 4 16 6 7 8 9 14 6 10 11 12 15 13
2 #12 1 2 3 5 16 6 7 8 9 14 6 10 11 12 15 13

Table 7. Global integration.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

8 TESTING PROCESS

The testing process aims essentially to verify if the executed sequences are in accordance
with the selected ones in one hand, and if the obtained results are conform to the expected
ones in the other hand. We present in what follows the main phases of the testing process.
For each generated sequence Si:

1. Instrumenting the program under test
2. Executing the program under test
3. Analyzing the results

Instrumenting the program under test

When all sequences are generated, we can start the testing process. In opposition to
traditional instrumentation techniques, we do use aspects to capture dynamically a trace
of the executed methods in a given sequence. The advantage of our approach is that we
don’t modify in any way the original source code of the program we are testing.
Traditional instrumentation techniques consist generally in introducing many lines of
source code in the program under test. Those fragments of code may introduce
involuntary faults [Beiz90]. We generate an aspect for each sequence under test. When
we want to test a specific sequence, we compile the program with the corresponding
aspect. The tracking aspects are automatically generated by our tool and are functional
with any AspectJ [Ajws05] program. In fact, our strategy is general and would be easily
adaptable to another aspect implementation. When a method involved in a sequence is
executed, the tracking aspect will keep information about that execution. This
information will be used in the following steps (verification process, testing coverage).

Executing the program under test

When the instrumentation phase is completed, we can execute the program. It mainly
consists to run the program and test a specific sequence. It remains to the tester to provide
testing data to ensure the execution of the selected sequence.

Analyzing results

When a sequence has been successfully executed, an analyzer compares the executed
methods with the expected ones. Our strategy essentially consists to discover three types
of faults.

1. Specifications based faults.
2. Pre-condition based faults.
3. Source code based faults (java exceptions).

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 81

Specification based faults

This kind of fault occurs when a part of the specification is not well transposed to the
implementation. A missing method, an invalid method signature could be source of this
type of fault. This level mainly consists to verify if an executed sequence is in accordance
with the expected one.

Pre-condition based faults

It is possible to insert pre-conditions in a collaboration diagram. In fact, a pre-condition
may be attached to a method or an advice. We must test all pre-conditions in the
collaboration diagram in order to verify if all scenarios can be executed. If a pre-
condition is always false some sequences might be never executed. This fault level aims
essentially to test all pre-conditions in the collaboration diagram.

Source code based faults (java exceptions)

One of the best features about java is its capacity to handle errors when they occur.
Furthermore, it is possible with AspectJ [Ajws05] to collect those errors. While we
automatically create aspects to track the executed methods we also generate pointcuts that
will catch all exceptions thrown by java. The source code fault level is capable to capture
every kind of exception thrown by Java (SAXException, InterruptedException,
IOException, InterruptedException …) since they are based on the Exception class.

9 A TOOL SUPPORTING OUR STRATEGY

We developed a tool supporting our strategy. It supports the testing sequences generation
as well as the verification process. We used the AspectJ technology. Specially, the
Eclipse framework [Ajws05] was the main architecture we used. Figure 7 presents the
architecture of the tool and figure 8 its main interface. The tool will be illustrated, in what
follows, using the case study presented in section 7.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

Figure 7. Architecture of the tool.

Figure 8. Main interface of our tool.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 83

Generating testing sequences

The generating process is based on the criteria presented in section 6. It is based on
collaboration diagrams and related aspects. As mentioned in section 4, collaboration
diagrams and related aspects are described using XML. When we select a sequence, all
involved methods appear in the Expected messages frame 4 (figure 8) with their pre-
condition. In our example, as illustrated in section 7, we will have twelve sequences.
Those sequences will be used in the dynamic testing process.

Dynamic testing process

To test the generated sequences, we execute the program under test and capture the
executed methods. For the three levels of faults represented in our fault model, we
introduced an error in the program. It was mainly to illustrate how our tool identifies the
source and the type of each error. We show, in what follows, the introduced errors in the
Java source code of the program under test and how the errors was detected by our tool.

Specification based faults

To produce a specification-based fault, we intentionally omitted to execute a method. In
figure 9, the line 60 has been placed as a comment. In that case, the method complete
defined in the class Connection won’t be called. If we examine the generated sequences,
we can see that the complete method is involved in all sequences (see section 7). Thus,
every tested sequence should throw an error.

Figure 9. A specification based fault.

Let us consider the first sequence. When we execute the program under test the following
message (figure 10) appears to the tester in window 6 of the main interface of our tool.

Figure 10. Error related to a specification based fault.

The tool informs the tester that there’s a problem with the complete method and the
executed sequence do not conform to the expected one.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

Pre-condition based faults

As illustrated in section 7, we have two base sequences which represent the two scenarios
described in the collaboration diagram. The pre-condition related to the New method in
Local and LongDistance classes determine the executed sequence. To verify if our tool
could handle a pre-condition fault, we provided input data that will execute the second
scenario (long distance call). The program under test will simulate a long distance call
while our analyzer expects a local call. A pre-condition fault will be thrown by our
analyzer (figure 11) and appears in window 6 (figure 8).

Figure 11. Error about a pre-condition based fault.

The error shows that there’s a problem with the corresponding pre-condition. Moreover,
the precondition AreaCodeA = AreaCodeB was false while we were expecting it true at
the execution.

Exception based faults

In our example (Telecom), we inserted some code that will produce an IOException in the
Timing aspect.

Figure 12. An exception based fault.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 85

The introduced code (lines 49 to 64) in figure 12 aims to open a non existing file
(NonExistantFile.txt). Since the file does not exist, java will throw an IO exception. The
tracking aspect will find the error and a message will inform the tester where exactly the
fault has been detected.

Figure 13. Error about an exception based fault.

The message (figure 13) informs that the fault has been located in the StartTimer method
in the aspect Timing. In that case, it remains to the tester to check the method and find
exactly the source of the error.

Testing coverage

The implemented approach allows computing the testing coverage according to the tested
sequences. This information (in percentage) is given in frame 1 (figure 8). We have
defined, in fact, two types of testing coverage. The first one is in relation with the simple
integration criterion while the second is in relation with the multi-aspects integration
criterion. In each case, we compute the testing coverage as:

(NGS)Sequences Generated Number of

NES)equences (Executed SNumber of
SC =

10 CONCLUSION AND FUTURE WORK

We presented, in this paper, a new integration testing strategy for aspect-oriented
programs and the associated tool. We focused on the integration of one or more aspects to
the control of collaborating classes. Our methodology is based on UML collaboration
diagrams. It offers, compared to the code based approaches, the advantage of preparing
the testing process early in the software development.

The adopted approach consists of two main phases: (1) static analysis: generating
testing sequences based on dynamic interactions between aspects and classes. (2)
dynamic analysis: verifying the execution of the selected sequences. We use XML
schemas to describe collaboration diagrams and related aspects. The strategy follows an
iterative process. It is supported by a tool. We focused on AspectJ programs. The
proposed technique is, however, general and may be adapted to other aspect
implementations. As future work, we plan to integrate our tool to the eclipse platform
(plug-in) and to experiment it on real AspectJ programs.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

ACKNOWLEDGMENTS

This research was supported by NSERC (Natural Sciences and Engineering Research
Council of Canada) grants.

REFERENCES

[Abdu00] A. Abdurazik and J. Offutt, Using UML Collaboration Diagrams for Static
Checking and Test Generation, In Third Internationl Conference on The
Unified Modeling Language (UML ’00), York, UK, October 2000.

[Alex04] R. Alexander, J. Bieman and A. Andrews, Towards the Systematic Testing of
Aspect-Oriented Programs, Technical Report CS-4-105, Colorado State
University, Fort Collins, Colorado, USA, March 2004.

[Aosd05] Aspect-Oriented Software Development Web Site (AOSD), http://.aosd.net/
[Ajpg02] T. AspectJ, The AspectJ™ Programming Guide, 2002.
[Ajws05] AspectJ Web Site, http://eclipse.org/aspectj/
[Badr05] M. Badri, L. Badri and M. Bourque-Fortin, Generating Unit Test Sequences

for Aspect-Oriented Programs, 3rd International Conference on Information
and Communication Technology (ICICT’2005), IEEE Computer Society
Press, Cairo, Egypt, December 2005.

[Badr04] M. Badri, L. Badri, and M. Naha, A use Case Driven Testing Process:
Toward a Formal Approach Based on UML Collaboration Diagrams, Post-
Proceedings of FATES (Formal Approaches to Testing of Software) 2003, in
LNCS 2931, Springer-Verlag, January 2004.

[Ball98] T. Ball, On the Limit of Control Flow Analysis for Regression Test Selection,
In Proceedings of ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA-98), volume 23,2 of ACM Software
Engineering Notes, New York, March 1998.

[Balt01] J. Baltus, La Programmation Orientée Aspect et AspectJ : Présentation et
Application dans un Système Distribué, Mini-Workshop: Systèmes
Coopératifs. Matière Approfondie, Institut d’informatique, Namur, 2001.

[Beiz90] B. Beizer, Software Testing Techniques, International Thomson Comuter
Press, 1990.

[Jack05] A. Jackson and S. Clarke, Towards a Generic Aspect Oriented Design
Process, 7th International Workshop on Aspect-Oriented Modeling, (AOM
2005) Models 2005, Jamaica.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 87

[Kicz01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold,
An Overview of AspectJ, In Lecture Notes in Computer Science, Volume
2072, p. 327-355, 2001.

[Larm03] C. Larman, UML et les Design Patterns,2e édition, CampusPress 2003.
[Mass05-1] P. Massicotte, M. Badri and L. Badri, Generating Aspects-Classes Integration

Testing Sequences: A Collaboration Diagram Based Strategy. 3rd ACIS
International Conference on Software Engineering Research, Management &
Applications (SERA2005), IEEE Computer Society Press, Central Michigan
University, Mt. Pleasant, Michigan, USA, August 2005.

[Mass05-2] P. Massicotte, M. Badri and L. Badri, Aspects-Classes Integration Testing
Strategy: An incremental approach. 2nd International Workshop on Rapid
Integration of Software Engineering techniques (RISE 2005), Lectures Notes
in Computer Science, Heraklion, Crete, GREECE, September 2005.

[Masu03] H. Masuhara and G. Kiczales, Modeling Crosscutting in Aspect-Oriented
Mechanisms, In Proceedings of ECOOP 2003, LNCS #2743, pp.2-28, 2003.

[Mcea05] N. McEachen and R. Alexander, Distributing Classes with Woven Concerns.
An Exploration of Potential Fault Scenarios. Proceedings of the 4th
International Conference on Aspect-oriented software development, pp 192-
200, Chicago, Illnois, USA, March 14-18, 2005.

[Mort04] M. Mortensen and R. Alexander, Adequate Testing of Aspect-Oriented
Programs, Technical report CS 04-110, Colorado State University, Fort
Collins, Colorado, USA, December 2004.

[Offu99] J. Offutt and A. Abdurazik, Generating Tests from UML Specications, In
Second International Conference on the Unified Modeling Language (UML
’99), Fort Collins, CO, October 1999.

[Offu96] J. Offutt and J. Voas, Subsumption of Condition Coverage Techniques by
Mutation Testing, ISSE-TR-96-01, January 1996.

[Offi99] J. Offutt, Y. Xiong and S. Liu, Criteria for Generating Specification-based
Tests, In Engineering of Complex Computer Systems, ICECCS '99, 1999.

[Redd06] Y.R. Reddy, S. Ghosh, R. France, G. Straw, J. Bieman, N. McEachen, E.
Song, G. Georg. Directives for composing aspect-oriented design class
models. Trans. Aspect-Oriented Software Development, 2006.

[Rrsc98] Rational Software Corporation. Rational Rose 98: Using Rational Rose,
Rational Rose Corporation, Cupertino CA, 1998.

[Sere03] D. Sereni and O. de Moor. Static analysis of aspects. In Proceedings of the
2nd International Conference on Aspect-Oriented Software Development,
March 2003.

[Ubay02] N. Ubayashi and T. Tamai. Aspect-oriented programming with model
checking. In Proceedings of the 1st International Conference on Aspect-
oriented software development, April 2002.

TOWARDS A TOOL SUPPORTING INTEGRATION TESTING OF ASPECT ORIENTED

PROGRAMS

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 6, NO1

[Walk99] R. Walker, E. Baniassad and G. Murphy, An initial assessment of aspect-
oriented programming, In Proceedings of the 21st International Conference
on Software Engineering, Los Angeles, CA, May 1999.

[Wuye02] Y. Wu, Mei-Hwa Chen and Jeff Offutt, UML-based Integration Testing for
Component-based Software, In Proceedings of the Second International
Conference on COTS-Based Software Systems, September 2002.

[Xiet05] T. Xie, J. Zhao, D. Notkin, Automated Test Generation for AspectJ Programs,
In Proceedings of the AOSD ‘05 Workshop on Testing Aspect-Oriented
Programs (WTAOP 05), Chicago, March 2005.

[Xud04] D. Xu, W. Xu and K. Nygard, A State-Based Approach to Testing Aspect-
Oriented Programs, Technical report, North Dakota University, Department
of Computer Science, USA, 2004.

[Xud05-1] D. Xu, Test Generation from Aspect-Oriented State Models. Technical
Report, NDSU-CS-TR-05-XU02, Sept 2005.

[Xud05-2] D. Xu and W. Xu, A Model-Based Approach to Test Generation for Aspect-
Oriented Programs, AOSD'05 Workshop on Testing Aspect-Oriented
Programs. Chicago, March 2005.

[Zhao02] J. Zhao, Tool support for unit testing of aspect-oriented software, In
Proceedings OOPSLA’ 2002 Workshop on Tools for Aspect-Oriented
Software Development, November 2002.

[Zhao04] J. Zhao and B. Xu, Measuring Coupling in Aspect-Oriented Systems. In 10th
International Software Metrics Symposium (METRICS'2004), (Late Breaking
Paper), Chicago, USA, September 14-16, 2004.

[Zhou04] Y. Zhou, D. Richardson, and H. Ziv, Towards a Practical Approach to test
aspect-oriented software, In Proc. 2004 Workshop on Testing Component-
based Systems (TECOS 2004), Net.ObjectiveDays, September 2004.

VOL. 6, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 89

About the authors
Philippe Massicotte (philippe.massicotte@uqtr.ca) has recently
received his master in computer science from the University of Quebec
at Trois-Rivières and will start a PhD in computer science in January
2007. His main areas of interest include aspect-oriented programming,
software quality, formal methods as well as various topics of software
engineering.
Linda Badri (Linda.Badri@uqtr.ca) is professor of computer science at
the Department of Mathematics and Computer Science of the University
of Quebec at Trois-Rivières. She holds a PhD in computer science
(software engineering) from the National Institute of Applied Sciences
in Lyon, France. Her main areas of interest include object and aspect-
oriented software engineering, software quality attributes, maintenance,

and web engineering.
Mourad Badri (Mourad.Badri@uqtr.ca) is professor of computer
science at the Department of Mathematics and Computer Science of the
University of Quebec at Trois-Rivières. He holds a PhD in computer
science (software engineering) from the National Institute of Applied
Sciences in Lyon, France. His main areas of interest include object and
aspect-oriented software engineering, software quality attributes, and

formal methods.

