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Abstract 
The increasing importance of software measurement has led to development of new 
software measures. Many metrics have been proposed related to various constructs like 
class, coupling, cohesion, inheritance, information hiding and polymorphism. But there 
is a little understanding of the empirical hypotheses and application of many of these 
measures. It is often difficult to determine which metric is more useful in which area. As 
a consequence, it is very difficult for project managers and practitioners to select 
measures for object-oriented systems. In this paper we investigate 22 metrics proposed 
by various researchers. The metrics are first defined and then explained using practical 
applications. They are applied on standard projects on the basis of which descriptive 
statistics, principal component analysis and correlation analysis is presented. Finally, a 
review of the empirical study concerning chosen metrics and subset of these measures 
that provide sufficient information is given and metrics providing overlapping information 
are excluded from the set. 
Key Words: Software Measurement, Object-Oriented Software, Coupling, Cohesion, 
Inheritance, Information-Hiding, Polymorphism 

1 INTRODUCTION 

A key element of any engineering process is measurement. Measures are used to better 
understand the attributes of the model that we create. But, most important, we use 
measurements to assess the quality of the engineered product or the process used to build 
it. Unlike other engineering disciplines, software engineering is not grounded in the basic 
quantitative laws of physics. Absolute measurements, such as voltage, mass, velocity or 
temperature, are uncommon in the software world. Instead, we attempt to derive a set of 
indirect measures that lead to metrics that provide an indication of the quality of some 
representation of software. Realizing the importance of software metrics, number of 
metrics have been defined for software. These metrics try to capture different aspects of 
software product and its process. Some of the metrics also try to capture the same aspect 
of software e.g., there are number of metrics to measure the coupling between different 
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classes. Software developers need to explicitly state the relation between the different 
metrics measuring the same aspect of software. As an example, we might be interested to 
know the size of a table. There can be number of metrics related to size of a table e.g., 
length of the table, breadth of the table, area of the table, diagonal of the table etc. But 
length and breadth measures are sufficient and others measures can be derived from them 
if required. Similarly in software, we need to identify the necessary metrics that provide 
useful information, otherwise the managers will be lost into so many numbers and the 
purpose of metrics would be lost. Since metrics are crucial source of information for 
decision making , a large number of OO metrics have also been proposed over the last 
decade to capture the structural quality of OO code and design and are related to external 
quality measures [Fenton96]. As the number of metrics available in literature is large, it 
becomes a tedious process to understand the computation of these metrics and draw 
inferences from their values. Secondly, as number of metrics proposed in literature are 
quite large as compared to number of features (e.g., coupling, cohesion, polymorphism, 
size and inheritance) captured by these metrics, our aim is to find whether each measure 
is independent or we can choose a subset of these metrics having equal utility as the 
original metric set. 

To meet the above objectives, the following steps are taken: 
1. Set of 22 metrics is first defined and then explained using examples. Their values 

are computed for three standard projects and interpretations are drawn regarding 
their inter-relationships from the metric values. The fault prone classes are also 
identified based on earlier empirical investigations.  

2. To find whether all these metrics are independent or are capturing same 
underlying property of the object being measured, distribution of the metric values 
is computed and principal component analysis on these metric values is done. 

3. The relationship between design measures and size of the class is analyzed to 
determine empirically whether the measure, even though it is declared as a 
coupling, cohesion, or inheritance measure, is essentially measuring size. 

The paper is organized as follows: Section 2 describes the set of metrics and the data 
chosen for the analysis of these metrics. The explanation of the metrics and their 
computation on sample data is presented in section 3. Data analysis methodology is 
explained in section 4 and results of the analysis are presented in section 5. The 
discussion of work carried is presented in section 6. 

2 METRICS SET AND EMPIRICAL DATA COLLECTION 

The list of metrics chosen for this study is given in Table 1. To analyze metrics chosen 
for this work, their values are computed for three different projects. Design of these 
projects is presented in books “Introduction to Object-Oriented Analysis and Design” and 
“Object-Oriented and Classical Software Engineering”, authored by S.R Schach. Their 
respective codes are available on Internet [Schach04][Schach02] . The projects are 
developed in Java language and are referred here as Project 1, Project 2, and Project 3. 
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Project 1 is a software that assist a company named Martha Stockton Greengage 
Foundation (MSG) in making decisions whether to give loan to a couple by keeping 
property on mortgage. It also manages repayment of loan. Project 2 is software that helps 
an art dealer in making decision whether to buy a painting at the price quoted on the basis 
of certain criteria. Project 3 is software that assists Air Gourmet in deciding whether to 
continue supplying special meals (child, diabetic, low calorie, sea food etc.) to passengers 
who request them. The product will allow the client to enter a reservation, and generate 
the information needed to administer the special meal program. 
 
S.No Metric Object-Oriented 

Attribute 
Sources 

1 Response for a Class (RFC) Class [Chidamber94]  
2 Number of Attributes per Class (NOA) Class [Henderson96] 
3 Number of Methods per Class (NOM) Class [Henderson96] 
4 Weighted Methods per Class (WMC) Class [Chidamber94]  
5 Coupling between Objects (CBO) Coupling [Chidamber94]  
6 Data Abstraction Coupling (DAC) Coupling [Henderson96] 
7 Message Passing Coupling (MPC) Coupling [Henderson96] 
8 Coupling Factor (CF) Coupling [Harrison98] 
9 Lack of Cohesion (LCOM) Cohesion [Chidamber94]  
10 Tight Class Cohesion (TCC) Cohesion [Braind99] 
11 Loose Class Cohesion (LCC) Cohesion [Braind99] 
12 Information based Cohesion (ICH) Cohesion [Lee95] 
13 Method Hiding Factor (MHF) Information 

Hiding 
[Harrison98] 

14 Attribute Hiding Factor (AHF) Information 
Hiding 

[Harrison98] 

15 Number of Children (NOC) Inheritance [Chidamber94]  
16 Depth of Inheritance (DIT) Inheritance [Chidamber94]  
17 Method Inheritance Factor (MIF) Inheritance [Harrison98] 
18 Attribute Inheritance Factor (AIF) Inheritance [Harrison98] 
19 Number of Methods Overridden by a 

subclass (NMO) 
Polymorphism [Henderson96] 

20 Polymorphism Factor (PF) Polymorphism [Harrison98] 
21 Reuse ratio Reuse [Henderson96] 
22 Specialization ratio Reuse [Henderson96] 

 
Table 1: Metrics for Object-Oriented Software 
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3 METRICS DEFINITIONS AND APPLICATIONS 

In this section OO metrics chosen in this work are defined and their application on 
example systems is shown. The metrics chosen for analysis can be divided into 7 
categories viz. size, coupling, cohesion, inheritance, information hiding, polymorphism 
and reuse metrics. 

Size metrics 

In this section four size metrics are discussed. These measure size of the system in terms 
of attributes and methods included in the class and capture the complexity of the class.  
Number of Attributes per Class (NOA) 
It counts the total number of attributes defined in a class. Figure 1 shows the class 
diagram of Book Information System. In this system, Number of Attributes (NOA) for 
Publication class is 2. So NOA = 2 for Publication class. 
Number Of Methods per Class (NOM) 
It counts number of methods defined in a class. In Figure 1, class Publication has two 
methods getdata( ) and display( ). Hence NOM = 2 for Publication class.  
Weighted Methods per Class (WMC) 
The WMC is a count of sum of complexities of all methods in a class. To calculate the 
complexity of a class, the specific complexity metric that is chosen (e.g., cyclomatic 
complexity) should be normalized so that nominal complexity for a method takes on 
value 1.0. Consider a class K1, with methods M1,…….. Mn that are defined in the class. 
Let C1,……….Cn be the complexity of the methods [Chidamber94]. 

∑
=

=
n

1i

iCWMC  (1) 
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Figure 1: Class Diagram of Book Information system 

 
If all method complexities are considered to be unity, then WMC = n, the number of 
methods in the class. In Figure 1, WMC for Book is 3 (considering each method 
complexity to be unity). 
Response For a Class (RFC) 
The response set of a class (RFC) is defined as set of methods that can be potentially 
executed in response to a message received by an object of that class. It is given by 
RFC=|RS|, where RS, the response set of the class, is given by 

}{R  M ijjalli  ∪=RS  (2) 
where Mi = set of all methods in a class (total n) and Ri = {Rij} = set of methods called by 
Mi. 

In Figure 1, class Book has two functions getdata1 and display1 which call methods 
Publication::getdata(), Sales::getdata(), Publication::display(), Sales::display().  
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display}::Sales getdata,::{Salesdisplay}::nPublicatio
getdata,::on {Publicati  delete}::Bookdisplay1,::Book getdata1,::{BookRS

∪
∪=

 

7=RFC  

Coupling metrics 

Coupling relations increase complexity, reduce encapsulation, potential reuse, and limit 
understanding and maintainability.  
Coupling Between Objects (CBO) 
CBO for a class is count of the number of other classes to which it is coupled. Two 
classes are coupled when methods declared in one class use methods or instance variables 
defined by the other class. In Figure 2, Book class contains declarations of instances of 
the classes Publication and Sales. The Book class delegates its publication and sales 
issues to instances of the Publication and Sales classes. The value of metric CBO for 
class Book is 2 and for class Publication and Sales is zero. 
 

 
 

Figure 2: Class Diagram of Sales Information System 
 
Data Abstraction Coupling (DAC) 
Data Abstraction is a technique of creating new data types suited for an application to be 
programmed. It provides the ability to create user-defined data types called Abstract Data 
Types (ADTs). 

Li and Henry defined Data Abstraction Coupling (DAC) as: 
DAC = number of ADTs defined in a class 
In Figure 2 there are two ADTs in class Book, pub and Market. DAC for Book class 

is 2. 
Message passing Coupling (MPC) 
Li and Henry defined Message Passing Coupling (MPC) metric as “number of send 
statements defined in a class”. So if two different methods in class A access the same 
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method in class B, then MPC = 2. In Figure 2, MPC value for class Book is 4 as methods 
in class Book calls Sales::getdata(), Sales::display(), Publication::getdata(), 
Publication::display(). 
Coupling Factor (CF) 
Coupling can be due to message passing (dynamic coupling) or due to semantic 
association links (static coupling) among class instances. It has been known that it is 
desirable that classes communicate with as few other classes and even when they 
communicate, they exchange as little information as possible. It is formally defined as: 

[ ]
TCTC

CCclientisTC

i

TC

j ji

−
=
∑ ∑= =

2
1 1CF

),(_
 (3) 

where TC is total number of classes 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ≠∧⇒

=
oherwise

sCcCsCcCiff
sCcCclientis

 0

  1
),(_  

Couplings due to the use of the inheritance are not included in CF, because a class is 
heavily coupled to its ancestors via inheritance. If no classes are coupled, CF %0= . If all 
classes are coupled with all other classes, CF %100= . 

Cohesion Metrics 

Cohesion is a measure of the degree to which the elements of a module are functionally 
related. A strongly cohesive module implements functionality that is related to one 
feature of the software and requires little or no interaction with other modules. Thus we 
want to maximize the interactions within a module. Four cohesion metrics are discussed 
here.  
Lack of Cohesion in Methods (LCOM) 
Lack of Cohesion (LCOM) measures the dissimilarity of methods in a class by looking at 
the instance variable or attributes used by methods [Chidamber94] . Consider a class C1 
with n methods M1, M2…., Mn. Let (Ij) = set of all instance variables used by method Mi. 
There are n such sets {I1},…….{In}. Let 
P }0II | )II({(Q and }0II |)II{( ji j,ji j, ≠∩==∩= ii . If all n sets )}.(I},........I{( n1 are 0 
then P=0 

otherwise 0            
|Q|  |P| if |,Q|-|P| LCOM

=
>=  (4) 

In Figure 3, there are four methods M1, M2, M3 and M4 in class Book. 
I1={book_id, pub_id, book_name, author_name, price} 
I2={book_id} 
I3={book_name} 
I4={author_name} 
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sets.

 null are II and II , IIbut   null-non are II and II , II 434232413121 ∩∩∩∩∩∩
 

LCOM is 0 if numbers of null intersections are not greater than number of non-null 
intersections. Hence LCOM in this case is 0 [|P|=|Q|=3]. Thus a positive high value of 
LCOM implies that classes are less cohesive. So a low value of LCOM is desirable. 
Tight Class Cohesion (TCC) 
The measure TCC is defined as the percentage of pairs of public methods of the class 
with common attribute usage. In Figure 3, methods defined access the following 
attributes: 
add_book = {book_id, pub_id, book_name, author_name, price} 
delete = {book_id} 
search_name = {book_name} 
search_author = {author_name} 
All methods in class Book are public. Number of pairs of methods = 6. 
Methods pairs with common attribute usage = {add_book, delete}, {add_book, 
search_name} and {add_book, search_author} 

TCC 50100
6
3

=×=  

 

 
Figure 3: Class Diagram of class Book in Library Management System 

 

Loose Class Cohesion (LCC) 
In addition to direct attributes, this measure considers attributes indirectly used by a 
method. Method m directly or indirectly invokes a method m′ , which uses attribute a. 
LCC is same as TCC except that this metric also consider indirectly connected methods. 
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The measure LCC is defined as the percentage of pairs of public methods of the class, 
which are directly or indirectly connected. In Figure 3, LCC for class Book is same as 
TCC i.e.50% as there are no indirect invocations by the methods of class Book. 
Information flow based Cohesion (ICH) 
 ICH for a class is defined as the number of invocations of other methods of the same 
class, weighted by the number of parameters of the invoked method. 

In Figure 3, method delete calls function search_name, which is also function of the 
same class. Hence value for ICH is 1. 

Inheritance Metrics 

In this section, four different inheritance methods are considered for analysis. 
Depth of Inheritance Tree (DIT) 
The depth of a class within the inheritance hierarchy is the maximum number of steps 
from the class node to the root of the tree and is measured by the number of ancestor 
classes. In cases involving multiple inheritances, the DIT will be the maximum length 
from the node to the root of the tree. In Figure 4, DIT for Result class is 2 as it has 2 
ancestor classes InternalExam/ External Exam and Student. 

DIT for InternalExam and ExternalExam is 1 as it has one ancestor class Student. 
Number of Children (NOC) 
The NOC is the number of immediate subclasses of a class in a hierarchy. In Figure 4, 
NOC value for class Student is 2. 
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Figure 4: Class Diagram of Result Management System 

 
Method Inheritance Factor (MIF) 
It is system level metrics and is defined as follows: 

∑
∑
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== TC
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where, )(CM)(CM)(CM idiiia +=  
TC= total number of classes 
Md(Ci)= the number of methods declared in a class 
Mi(Ci)= the number of methods inherited in a class 
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In Figure 4, in Student class, roll_no and branch are private attributes whereas mark1 and 
mark2 are protected attributes. 
TC = 4 in Figure 4. 
Let C1 =  Student class, C2 = InternalExam class, C3 = ExternalExam class and C4 = 
Result class. 

)()()())()()()(
)()()()(MIF

43214321

4321

CMCMCMCMCMCMCMCM
CMCMCMCM

ddddiiii

iiii

+++++++
+++

=  

0Student Class in  MethodsInherited ofNumber )( 1 ==CM i  
Thus, .2 amInternalEx Class in  MethodsInherited ofNumber )( 2 ==CM  

11
6

11
2220MIF =

+++
=  

Attribute Inheritance Factor (AIF) 
 It is defined as follows: 

∑
∑

=

== TC

i ia

TC

i d 

)(CA

)  (CA

1

1AIF  (6) 

where, )(CA)(CA)(CA idiiia +=  
TC= total number of classes 
Ad (Ci) = number of attribute declared in a class 
Ai (Ci) = number of attribute inherited in a class 
AIF is 0 % for class lacking inheritance 
For the system in Figure 4, AIF can be calculated as follows: 
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In Figure 4, 
13
6AIF =  
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Information Hiding Metrics 

Information hiding allows a modification to be made to the internal operations of an 
object by hiding the implementation details behind a public interface. 
Method Hiding Factor (MHF) 
It is a measure of encapsulation defined as: 

( )

∑
∑ ∑

=

= =
−

= TC

i id

TC

i

(Ci)M

m mi

)(CM

)V(Md

1

1
1

MHF  (7) 

Where Md(Ci) is the number of methods declared in a class, and 

)(TC-

),C(Mis_visible
)V(M

TC

j jim

im 1

)
1∑ ==  

where TC is the total number of classes, and  

⎩
⎨
⎧ ∧≠

=
 otherwise

M may call Ci iff j
),Cvisible(Mis mij

jim 0

1
_  

Thus, for all classes, C1, C2…Cn, a method counts as 0 if another class, can use it and 1 if 
it cannot be used by another class. The total for the system is divided by the total number 
of methods defined in the system. 

The classes shown in Figure 5 are declared as follows: 
class Person { 

public char name[25]; public int age; 
public void readperson(); public void displayperson(); 

}; 
class Student extends Person{  

public int roll_no[10];public float average; 
public void readstudent(); public void displaystudent(); public float getaverage();  

}; 
class GradStudent extends Student{  

private char subject[25]; private char working[25]; 
public void readit(); public void displaysubject(); public void workstatus();  

}; 
n Figure 5, TC=Total number of classes=3 
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1 
2

 110
=

++
=  

.calculated is classesother over  class in methods  theall of  visibilty theSimilarly,  
Hence, MHF = 0 as there are no private methods declared in all the classes in the system 
shown in Figure 5. 

 
Figure 5: Class Diagram of University Management System 
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Attribute Hiding Factor (AHF) 
It is a measure of encapsulation defined formally as: 
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where )(CA id  is the number of methods declared in a class, and 
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Thus, for all classes, C1, C2…Cn, an attribute counts as 0 if it can be used by another 
class, and 1 if it cannot. In Figure 5, 
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As attributes 1 and 2 i.e., subject, working are private (not visible) to other classes Person 
and Student. 

3
1

6
2AHF Hence, ==  

Polymorphism Metrics 

Polymorphism allows the implementation of a given operation to be dependent on the 
object that “contains” the operation. 
Polymorphism Factor (PF) 
The PF, metric is proposed as a measure of polymorphism. It measures the degree of 
method overriding in the class inheritance tree. 
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in(CM ) = Number of New Methods 
)(CM io = Number of Overriding Methods 
)DC(Ci = Descendants Count  

In Figure 5, readstudent() and displaystudent() in class Student and readit() and 
displaysubject() in class GradStudent are renamed as readperson() and displayperson() . 
The classes are declared as follows: 
class Person { 

public char name[25]; public int age; 
public void readperson(); public void displayperson(); 

}; 
class Student extends Person{  

public int roll_no[10];public float average; 
public void readperson (); public void displayperson (); public float getaverage();  

}; 
class GradStudent extends Student{  

private char subject[25]; private char working[25]; 
public void readperson (); public void displayperson (); public void workstatus();  

}; 
tGradStudenC andStudent C Person, class,Let 321 ===C  

1321 === )(CM)(CM)(CM nnn  

∑=
=++=

TC

i io )(CM
1

4220  

2)( 1 =CDC , as class Person has two descendants Student and GradStudent 
0 and1 Similarly, 32 == )DC(C )DC(C  

5
4

011122
4PF =

×+×+×
=  

[As readperson() and displayperson() are overridden in classes Student and GradStudent] 
Number of Methods Overridden by a subclass (NMO) 
When a method in a subclass has the same name and type signature as in its superclass, 
then the method in the superclass is said to be overridden by the method in the subclass. 
The value of metric is 2 for class Student declared for calculating PF metric.  

Reuse Metrics 

An object-oriented development environment supports design and code reuse, the most 
straightforward type of reuse being the use of a library class (of code), which perfectly 
suits the requirements. Yap and Henderson-sellers discuss two measures designed to 
evaluate the level of reuse possible within classes [Henderson96]. 



 
EMPIRICAL STUDY OF OBJECT-ORIENTED METRICS 

 
 
 
 

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

Reuse Ratio (U) 
The reuse ratio, U, is given by 

classesofNumber Total
essuperclass ofNumber U =  (10) 

In Figure 5, the value of U is 
3
2  

Specialization Ratio (S) 
Specialization ratio, S, is given as 

essuperclass ofNumber 
subclasses ofNumber S =  (11) 

In Figure 5, Number of subclasses = {Student, GradStudent} and Number of 
superclasses= {Person, Student}. Thus, S=1 
 

4 DATA ANALYSIS METHODOLOGY 

 
In this section we describe the methodology used to analyze the metrics data computed 
for the projects. The procedure used to analyze the data collected for each measure is 
described in three stages: (i) data statistics, (ii) principal component analysis, and (iii) 
correlation to size.  

I. Descriptive Statistics  
Within each case study, the distribution (mean, median) and variance (standard 
deviation) of each measure is examined. Low variance measures do not differentiate 
classes very well and therefore are not likely to be useful. Analyzing and presenting 
the distribution of measures is important for the comparison of different case 
studies.  

II. Principal Component Analysis  
If a group of variables in a data set are strongly correlated, these variables are likely 
to measure the same underlying dimension (i.e., class property) of the object to be 
measured. Principal Component Analysis (PCA) is a standard technique to identify 
the underlying, orthogonal dimensions that explain relations between the variables 
in a data set. Principal components (PCs) are linear combinations of the 
standardized independent variables. PCs are calculated as follows. The first PC is 
the linear combination of all standardized variables which explain a maximum 
amount of variance in the data set. The second and subsequent PCs are linear 
combinations of all standardized variables, where each new PC is orthogonal to all 
previously calculated PCs and captures a maximum variance under these 
conditions.  
In order to identify variables with high coefficients, and interpret the PCs, we 
consider the rotated components. This is a technique where the PCs are subjected to 
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an orthogonal rotation. There exist several strategies to perform such a rotation. We 
used the varimax rotation, which is the most frequently used strategy in the 
literature. Associated with each PC is its eigenvalue, which is a measure of the 
variance of the PC. Usually, only a subset of the PCs is selected for further analysis 
(interpretation, rotated components, etc.). Only PCs whose eigenvalue is larger than 
1.0 are selected in this study.  
The study must be replicated across different data sets to generalize the results. 

III. Correlation to size   
For each design measure, we analyze its relationship to the size of the class. This is 
mostly justified by the fact that size determines, to some extent, many of its external 
properties such as fault-proneness or effort [Braind00]. This is to determine 
empirically whether the measure, even though it is declared as a coupling, cohesion, 
or inheritance measure, is essentially measuring size. If a measure is strongly 
related to size, then there is no need to calculate this metric as size metrics are 
comparatively easy to find out. For the purpose of analyzing correlations with size, 
we calculated the Spearman’s rho coefficient between each coupling, cohesion, and 
inheritance measure and the actual size measure in lines of code. A non-parametric 
measure of correlation was preferred, given the skewed distributions of the design 
measures that are usually observed. 

5 ANALYSIS RESULTS 

This section presents the analysis results, following the procedure described in 
descriptive statistics (Section 5.1), principal component analysis (Section 5.2) and 
correlation to size (Section 5.3). The principal component analysis and correlation to size 
is not done with system level measures. We have too few systems, thus a valid statistical 
analysis could not be performed for such measures. 

Descriptive statistics 

Descriptive statistics (min, max, mean, std. dev.) calculated are presented in this section. 
Table 2 represents descriptive statistics for class level metrics. Table 3 shows system 
level metric values for all three projects. 
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Project 1 Project 2 Project 3 Metric 
Min Max μ  Medn σ  Min Max μ  Medn σ  Min Max μ  Medn σ  

NOA 0 9 4.5 4.5 3.6 0 11 4.5 4 4.1 0 11 4.8 4 4 
NOM 1 12 6 5 4.6 1 30 10 5 10 1 24 8.8 8 7 
WMC 1 12 6 5 4.6 1 30 10 5 10 1 24 8.8 8 7 
RFC 1 31 20 25 13 1 54 14 10 16 2 48 14 11 15 
CBO 0 2 1 1 1 0 5 2.2 2 2.2 0 6 2.2 1.5 2.6 
DAC 0 1 0.5 0.5 0.7 0 0 0 0 0 0 2 1 1 1 
MPC 0 4 1.7 1.5 1.7 0 13 4.7 3 5.9 0 24 8 5 9 
LCOM 0 1 0.5 0.5 0.7 0 1 0.5 0.5 0.7 0 2 1 1 1 
TCC 0 1 0.9 1 0.3 0 0.8 0.4 0.36 0.35 0 0.4 0.2 0.2 0.4 
LCC 0 1 0.9 1 0.3 0 0.8 0.4 0.36 0.35 0 0.4 0.2 0.2 0.4 
ICH 0 1 0.11 0 0.3 0 7 4 5 3.6 0 17 7.3 5 8.7 
DIT 0 1 0.5 0.5 0.7 0 1 0.5 0.5 0.7 0 3 1.5 1.5 1.2 
NOC 0 6 3 3 4.2 0 2 1 1 1.4 0 2 1 1 1 
NMO 1 2 1.5 1.5 0.7 8 8 8 8 0 0 3 1.5 1.5 1.2 

 
Table 2: Descriptive Statistics for Class-level Metrics 

 
Where  μ = Sample Mean  ;  σ =Std. Dev 
 

Metric Project 1 Project 2 Project3 

CF 0.02 0.05 0.03 
MIF 0 0.4 0.13 
AIF 0.3 0.5 0.4 
MHF 0 0 0 
AHF 0.16 0.94 0.86 
PF 0 0.8 0.4 
U 0.1 0.3 0.2 
S 0.5 5 2 

 
Table 3: Metric values for System-level Metrics 

 
Following are the observations made from applying these metrics on projects. 

• There are only 12.5% of the total classes that have high coupling metric values. 
There are 4.1% of classes with deep hierarchy. Since earlier empirical studies 
[Braind00] suggests that classes with more coupling and deep hierarchy are fault 
prone, the identified classes (16.6 %) must be thoroughly checked during testing. 

• The maximum value of RFC is high for all the projects as it also counts the 
method invocations. 

• The values for NOM and WMC are same as method complexities are generally 
considered to be unity.  

• NOM is a subset of RFC and is easy to measure. 
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• RFC measures the complexity of the software by counting the number of methods 
in the class and also captures the information about the coupling of the class to 
other classes. Number of methods are measured by NOM and there are number of 
metrics that measure the coupling information. So NOA and NOM can be used 
together by project managers to provide count of number of attributes and 
methods in a class. These two metrics are sufficient to be used by project 
managers.  

• CBO value is generally less in sample data, hence classes are easy to understand, 
reuse and maintain. 

• In all the three projects DAC has less values indicating that the developers has 
less tendency to use data abstractions. DAC metric is of little use to developers as 
it only gives count of ADTs in a class, without considering number of messages 
passed between the classes. 

• MPC is a dynamic measure. It provides more information than rest of the class 
coupling measures.  

• TCC and LCC have exactly same values because there is no indirect connection 
between methods. 

• LCOM values are zero because the number of pairs of methods having access to 
common attributes is more than the number of pairs of methods having no 
common attributes. It implies that the classes are cohesive. 

• LCOM and TCC are providing same information. Only interpretation of values 
obtained is different. So project managers can use anyone of these two metrics. 

• The DIT and NOC values are medium in all the projects; this shows that 
inheritance is used in most of the classes to optimum level. 

• The value of AIF is high suggesting high use of attribute inheritance. 
• The MIF value is nil for Project 1 and Project 2. It is observed that there are very 

less methods in superclasses; they contain only abstract methods, which are 
overridden in subclasses.  

• MIF and AIF measures can provide overall system view about amount of 
information hiding incorporated by software designers. 

• AHF values are high in Project1 and Project 2 as compared to project 3, which 
shows that attributes are declared as private in most of the classes, so information 
is kept hidden. 

• MHF has nil values indicating that methods are declared public by developers. 
• AHF metric can also be alternatively calculated as number of attributes declared 

private in the system divided by total number of attributes in the system.  
• Similarly, MHF metric can be easily calculated as number of methods declared 

private in the system divided by total number of methods in the system. 
• PF value is nil for Project 3, high for Project 2 and moderate for Project 1. This 

shows that more overloading is used in Project 3 as compared to other two 
projects. The relationship between various class metrics is shown in Figure 6. 
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Figure 6: Relationship between Class Metrics 

Principal Component (PC) Analysis 

In this section the results of PC analysis are presented. The PC analysis extraction method 
and varimax rotation method is applied on 14 class level metrics. The data is not 
sufficient to apply on system level metrics. The rotated component matrix is given in 
Table 4. The values above 0.7 (shown in bold in Table 4) are the measures that are used 
to interpret the PCs. For each PC, we also provide its eigenvalue, variance percent and 
cumulative percent. The interpretations of PCs are given as follows: 

• PC1: ICH, NOA, RFC, NOM and WMC. We have all size measures and one 
cohesion measure in this dimension. This shows there are classes with high 
attributes, internal methods (methods defined in the class) and external methods 
(methods called be the class). This means cohesion is related to number of 
methods and attributes in the class. 

• PC2: LCC and TCC. These are cohesion measures. 
• PC3: DAC and LCOM. The LCOM cohesion measure counts pairs of methods of 

classes within a class that use attributes in common. This PC cannot be easily 
interpreted as contain one coupling and one cohesion measure. 

• PC4: DIT and NOC measure depth of inheritance and number of children. 
• PC5: CBO measures coupling between objects 

We can draw following observations: 
• One dimension is entirely determined by cohesion measures (PC2). 
• One dimension is entirely determined by inheritance measures (PC4). 
• One dimension is entirely determined by coupling measures (PC5). 
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• CBO and MPC cannot be assigned to any of the PCs at all.  
• There is one dimension that may be interpreted as size PC1. 
• Numbers of dimensions captured are quite less than the total number of metrics, 

implying that many metrics are highly related. 
 

Commulative % 33.79 49.44 62.8 72.97 80.34 
% Variance 33.7 15.6 13.4 10.08 7.37 
eigenvalues 4.731 2.1916 1.881 1.412 1.032 
Component PC1 PC2 PC3 PC4 PC5 
CBO 0.051175 -0.06101 0.047826 0.164243 0.864058 
DAC 0.003159 0.225027 0.864869 0.105878 0.180981 
DIT -0.25296 0.080662 -0.18067 -0.7641 -0.30287 
ICH 0.833226 0.006964 -0.07167 0.106661 0.064353 
LCC -0.08988 0.981588 0.029169 -0.01219 -0.0163 
LCOM -0.05453 -0.13486 0.842833 0.041382 -0.12783 
MPC 0.643017 0.132814 -0.15363 0.199787 0.487224 
NMO 0.082303 0.177845 -0.14835 -0.66096 -0.21268 
NOA 0.773894 -0.11178 0.130222 0.142889 -0.36484 
NOC 0.110619 0.342395 -0.1606 0.745171 -0.21276 
NOM 0.984645 -0.06097 -0.01496 -0.02356 0.051122 
RFC 0.88602 -0.10624 -0.01313 0.044426 0.116636 
TCC -0.08988 0.981588 0.029169 -0.01219 -0.0163 
WMC 0.984645 -0.06097 -0.01496 -0.02356 0.051122 

 
Table 4: Results of Principal component Analysis 

 

Correlation with size 

In this section we analyze the correlation of coupling, cohesion, and inheritance measures 
with size measure as size measure is highly related to fault proneness [Braind00]. In 
Table 5, we indicate for each measure the correlation coefficient with size. The 
correlation coefficient is well below 0.5 for all measures indicating that none of the 
measures is strongly related to size. However RFC, ICH and NOM have high values as 
compared to other measures. NOM is a measure of number of methods in a class so the 
result is as expected.  
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Metric Spearman's rho 
CBO 0 
DAC 0.122703 
DIT -0.37221 
ICH 0.312448 
LCC 0.067275 
LCOM -0.10095 
MPC 0.266573 
NMO -0.41379 
NOA 0.209879 
NOC 0.208223 
NOM 0.400092 
RFC 0.487952 
TCC 0.067275 
WMC 0.400092 

 
Table 5: Correlation of Class-level metrics with size 

6 CONCLUSION AND FUTURE WORK 

There are only 12.5 % of the total classes that have high coupling metric values. There 
are 4.1% classes with deep hierarchy. Since earlier empirical studies suggests that classes 
with more coupling and deep hierarchy are fault prone, the identified classes (12.5%) 
must be thoroughly checked during testing. 

Theoretical analysis of these metrics suggest that out of 14 class level metrics, 6 
metrics (NOA, NOM, MPC, DAC, LCOM and LCC) provide sufficient information for 
usage and other metrics are either subset of these metrics or are providing same 
information in different format. The number of dimensions captured in PC analysis is 
only 5 which are much lower than the number of measures. This simply supports the 
conclusions drawn from theoretical analysis i.e. many of the metrics proposed are based 
on comparable ideas and therefore provide somewhat redundant information. The 
correlation analysis between different metrics and size shows that hardly any of the 
metric is strongly correlated to size. 

The measures could not be evaluated over a large data set but this is a problem that 
has plagued much of empirical software engineering research. More similar type of 
studies must be carried out with different data sets to give generalized results across 
different organizations. We plan to replicate our study on large data set and industrial 
object-oriented software system.  
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