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Abstract 
The paper introduces modeling spaces in order to help software practitioner to 
understand modeling. Usually software engineers often think of a specific kind of 
models – UML models, but there are many open questions such as: Should we assume 
that the code we write is a model or not; What are models and metamodels, and why do 
we need them; What does it mean to transform a model into a programming language. 
Unlike current research efforts that answer to those questions in rather partial ways, we 
define a formal encompassing framework (i.e. Modeling spaces) for studying many 
modeling problems in a more comprehensive way. We illustrate the benefits of that 
framework for explaining present dilemmas practitioners have regarding models, 
metamodels, and model transformations. 

1 INTRODUCTION 

Recent software engineering trends like UML modeling and Model Driven Architecture 
rely heavily on models, metamodels, and model transformations. Most of such efforts 
focus on specific benefits, but largely ignore the way software practitioners usually 
understand modeling. In fact, when talking about models, software engineers often think 
of a specific kind of models – UML models. However, there are many open questions 
such as: 

• Should we assume that the code we write is a model or not? 
• What are models and metamodels, and why do we need them? 
• What does it mean to transform a model into a programming language? 

So far, researchers answered most of such questions focusing on individual aspects of 
modeling [Seidwitz03]. However, it is also possible to define a formal encompassing 
framework for studying many modeling problems in a more comprehensive way. We call 
that framework modeling spaces. It has direct implications to software engineering 
processes and activities. Our work is directly inspired by the idea of technical spaces 
[Kurtev02] defined as a working context with a set of associated concepts, body of 
knowledge, tools, required skills, and possibilities. Although technical spaces are rather 
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useful approach, they have been loosely defined and have not given clear answers to the 
previous questions. We do not argue against technical spaces, but we try to define borders 
between technical spaces and modeling spaces. We complement the work on technical 
spaces in that way. 

In the next section we discuss about some current modeling technologies (Model 
Driven Architecture and ontologies) as well as technical spaces. In section 3 we try to 
give a wider context of modeling in terms of some non-technical fields (e.g. painting and 
music), while section 4 introduces the basic terms that define modeling spaces. Section 5 
further clarifies modeling spaces, whereas section 6 discusses some practical issues 
related to modeling spaces. In section 7 we depict transformations between modeling 
spaces. In section 8 we define relations between modeling spaces and technical spaces, 
while section 9 gives a full definition of modeling spaces using UML.  Finally, section 10 
shows an example of the use of modeling spaces for explaining relations between Meta-
Object Facility (a part of MDA) and XML Metadata Interchange (also a part of MDA). 

2 RELATED WORK 

Two competing, but also complementary, modeling paradigms have been in the focus of 
Software Engineering lately: Model-Driven Architecture (UML, MOF, object-oriented) 
and the Semantic Web (OWL, RDF, ontologies). There is a benefit in mixing these 
approaches to increase the benefits of using them separately. For example, ontologies 
have a greater expressiveness and are closer to non-technical people while object-oriented 
approaches are better implemented and technically better supported. Mixing these in the 
various phases of a system life cycle could help the system to better respond to user’s 
needs. MDA is also a very user-friendly example of structuring meta-levels, so we will 
mostly base our explanations on these two well-known approaches. 

Model Driven Architecture 

Model Driven Architecture (MDA) is an ongoing software engineering effort under the 
auspices of OMG. It defines three viewpoints (levels of abstraction) from which a certain 
system can be analyzed. Starting from a specific viewpoint, we can define the system 
representation (viewpoint model). The representations/models/viewpoints are 
Computation Independent Model (CIM), Platform Independent Model (PIM) and 
Platform Specific Model (PSM) [Miller03]. MDA is based on a four-layer metamodeling 
architecture and several complementary OMG standards, Figure 1. These standards are 
Meta-Object Facility (MOF) [OMGMOF203], Unified Modeling Language (UML) 
[OMGUML203] and XML Metadata Interchange (XMI) [OMGXMI02], and the layers 
are: meta-metamodel layer (M3), metamodel layer (M2), model layer (M1), and the real 
world layer (M0). 
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Figure 1 - MDA four-layer MOF-based metadata architecture 

 

The topmost layer in this architecture (meta-metamodel, MOF) defines an abstract 
language and framework for specifying, constructing and managing metamodels. It is the 
foundation for defining any modeling language, such as UML or even MOF itself. MOF 
also defines a framework for implementing repositories that store metadata (e.g. models) 
described by metamodels [OMGMOF203]. The purpose of the four layers with a 
common meta-metamodel is to support multiple metamodels and models and their scaling 
– to enable their extensibility, integration and generic model and metamodel 
management. 

All metamodels (both standard and custom) defined by MOF are positioned at the 
M2 layer. One of these is UML, a graphical modeling language for specifying, 
visualizing and documenting software systems. With UML profiles, we can extend basic 
UML concepts (Class, Association, etc.) with new concepts (by the use of stereotypes) 
and adapt them to specific modeling needs. The models of the real world, represented by 
concepts defined in the corresponding metamodel at the M2 layer (e.g. UML metamodel) 
are at the M1 layer. Finally, at the M0 layer are things from the real world. Although the 
“traditional” approach in MDA is to consider real-world things as instances of model 
elements, this was changed in newer approaches to a more natural approach, where model 
is a “snapshot” of reality [Atkinson03]. 

Another foundation standard of this architecture is XMI, which defines mapping 
from MOF-defined metamodels to XML documents and Schemas. XML, which has good 
software tools support, enables meta-metamodel, metamodel and model sharing through 
XMI. 

Semantic Web and Ontologies 

Ontologies have been around for quite some time now. Since early 1990s researchers in 
the domain of artificial intelligence and knowledge representation have studied 
ontologies as a means for knowledge sharing and reuse among knowledge-based systems. 
One of the central roles of ontologies is to establish further levels of interoperability, i.e. 
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semantic interoperability, between agents and applications on the emerging Semantic 
Web [Berners-Lee01], as well as to add a further representation and inference layer on 
top of the Web’s current layers [Decker00] [Hendler01]. When used on the Web, 
ontologies specify standard terms and machine-readable definitions. 

Semantic Web architecture is a functional, non-fixed architecture. Berners-Lee 
defined three distinct levels that incrementally introduce expressive primitives: metadata 
layer, schema layer and logical layer. In Figure 2 we can see how languages are arranged 
on these layers. The Resource Description Framework (RDF) and the RDF Schema as 
general languages for the description of metadata on the Web [Corcho01] are positioned 
in the Metadata layer and the Schema layer. The Web Ontology Language (OWL) (in the 
Logical layer) is a current semantic markup language for publishing and sharing 
ontologies on the WWW adopted by W3C [Bechhofer et al, 2004]. OWL is developed as 
a vocabulary extension of RDF and is derived from the DAML+OIL Web Ontology 
Language. OWL has three variants: OWL Lite, OWL DL, and OWL Full. OWL is 
designed for use by applications that need to process the content of information instead of 
just presenting information to humans. OWL facilitates greater machine interpretability 
of Web content than that supported by XML, RDF and RDFS by providing additional 
vocabulary along with a formal semantics. 

 

 
Figure 2 – Ontology languages in the Semantic Web Architecture 

 

Compared to the MDA 4-layer architecture, the Semantic Web language architecture 
could be a little confusing, since it promotes non-fixed layer architecture. However, we 
show later in this paper that these non-fixed layers can be put in MDA-like layers 
depending on the context in which they are used, making them more understandable. 

Currently, there is an OMG initiative aimed at defining a suitable language for 
modeling Semantic Web ontology languages in the context of MDA [OMGODM03] 
[Djurić05]. The initiative is titled Ontology Definition Metamodel (ODM). It should 
consist of: 1. ODM – a MOF-based metamodel for ontologies; 2. Ontology UML Profile; 
3. Two-way mappings between OWL and ODM, ODM and OUP, and from OUP to other 
UML profiles. In order to achieve all those mappings between different ontology 
languages we should take into account differences caused by the fact that those languages 
are based on different platforms (i.e. Semantic Web and MDA). Accordingly, we need 
many tools to provide those mappings. One approach to this issue is to apply the concept 
of technical spaces. 
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Technical Spaces 

Technical spaces have been recently introduced as a means to figure out how to work 
more efficiently by using the best possibilities of different technologies [Kurtev02]. A 
technical space is a working context with a set of associated concepts, body of 
knowledge, tools, required skills, and possibilities. Although some technical spaces are 
difficult to define, they can be easily recognized (e.g. XML, MDA, and ontology 
technical spaces in the case of approaching MDA and OWL). In order to get a synergy of 
different technical spaces we should create bridges between them, and some of these 
bridges are bi-directional. The bridges can be created in a number of ways. Note that 
technical spaces can be classified according to their layers of abstraction (e.g. MDA and 
ontological engineering are high-level spaces, whereas XML and databases are low-level 
spaces). The Semantic Web integrates XML and ontological engineering technical 
spaces.  

This approach can be a good starting point for the future research on defining more 
abstract transformations between different technical spaces. One possible direction is to 
define all transformations in terms of MDA as well as by employing transformation 
techniques like Meta Object Facility Query/Views/Transformations (MOF QVT) 
[OMGMOF2-QVT02]. MOF OVT is a platform-neutral part of MDA aiming to define a 
language for querying and transforming models as well as viewing metamodels. 
Furthermore, we can use other technologies for bridging different technical spaces such 
as: programming languages, XSLT, RDF Query Languages (RDQL) etc. Examples of 
approaching different languages using technical spaces can be found in [Kurtev03] 
[Bézivin03] [Gašević05]. 

3 NON-TECHNICAL MODELS IN A LAYERED MODELING 
ARCHITECTURE 

If we search a dictionary for the word “model”, we get several definitions – most of them 
just referring to most often used special cases of models; for instance: a replica of an 
item, a person wearing clothes at a fashion show, a drawing of a building, etc. Few of 
these definitions are generally applicable. Fortunately, there is a simple and general 
definition – a model is a simplified abstraction of reality [Hagget67]. Using that 
definition, we can explain why these special cases are models. A person wearing clothes 
at a fashion show does not represent herself/himself, but the appearance of any person 
wearing that clothes; thus it is a model. A drawing of a building is not just a sheet of 
paper with lines, but also a simplified abstraction of a building containing only data that 
is important in a given context. 

Figure 3 shows some common examples of models put in a layered architecture 
conceptually inspired by MDA– a famous painting (Mona Lisa, also known as La 
Gioconda, painted by Leonardo da Vinci in the 16th century), and a part of a written 
music score (of the song “Smoke on the Water”). A noble Renaissance woman and a rock 
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song are things from the real-world, at the M0 layer. A painting and a music sheet are 
obviously abstractions of real world things. Therefore, they are models and can be put at 
the M1 (model) layer. Metamodels are used to define these models. In the case of a music 
score, which is a written interpretation of a song, the metamodel (M2) is a set of concepts 
– stave, note, etc. – and rules that define what each note means and how we can arrange 
them on five staves. In this context, the meta-metamodel (M3) includes self-defined 
concepts that also define stave, note etc. Although this architecture is imprecise and 
definitely not perfect from the perspective of music theory, at least it captures a formal 
interpretation of music. 

 

 
Figure 3 – A few common models put in a MDA-inspired layered architecture 

 

Things get harder in the case of the painting. Is it possible to specify a metamodel that 
can define such a complex and ambiguous model as a masterpiece painting? A simplistic 
view based on physical appearance only may lead to the definition of this metamodel in 
terms of concepts like line, circle, color, etc. The meta-metamodel would then be a set of 
concepts used to define line, circle, color and their meanings. However, this painting, like 
any other artwork, is much more than just lines and colors. It has much to do with human 
psychology and experience and can be interpreted in many ways. It is much more 
difficult, if not impossible, to define a formal metamodel or meta-metamodel in this case. 
We may anticipate that they exist, but they are extremely complex and implicit. 

Another important issue is that, although Mona Lisa or written notes are models, 
they are also things from the real world. We can hold them in our hands (if the guards let 
us do this, in the case of Mona Lisa) and they can be items entered in the information 
system that stores information about art. 
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4 MODELING SPACES ESSENTIALS 

The previous analysis leads to two important conclusions. First, something can be taken 
as a model if it is an abstraction of things from the real world, but it is simultaneously a 
thing from the real world. Whether we take it as a model or as a real/world thing depends 
on the context, i.e. on the point of view. Second, models can be defined using 
metamodeling concepts formally or implicitly. Since implicit metamodels cannot be 
precisely defined using formalisms, as in the case of art, in the rest of this discussion we 
analyze only formal models. Nevertheless, much of the conclusions can also be applied to 
implicit metamodels. 

Figure 4 shows a general modeling architecture that was inspired by MDA and is in 
fact its generalization. In such a modeling architecture, the M0 layer is the real world as 
in [Bézivin04] and [Atkinson03]. It includes all possible things that we try to represent 
using the models residing at the M1 layer. That representation is more or less abstract and 
simplified, depending on how rich our models are. Models are defined using concepts 
defined in metamodels, so each metamodel determines how expressive its models can be. 
M2 is the layer where the metamodels are located. The metamodels are also defined using 
some concepts. The set of concepts used to define metamodels resides at the separate M3 
layer at the top of this architecture and is called meta-metamodel. Meta-metamodel is 
nothing more than a metamodel that is used by convention to define other metamodels; it 
also defines itself. The architecture is generalized to comprise not only models and 
metamodels based on an object-oriented meta-metamodel like MOF (see sidebar 1), but 
also other systems (for instance: ontologies, Semantic Web technologies or non-technical 
representations as shown in Figure 3). 

 

 
Figure 4 – General four-layer modeling architecture 
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A modeling space is a modeling architecture defined by a particular meta-metamodel. 
Metamodels defined by the meta-metamodel and models defined by those metamodels 
represent the real world from one point of view, i.e. from the point of view of that 
modeling space. As the meta-metamodel defines the core concepts used in defining all 
other metamodeling concepts, it is defined by itself. If it was defined by some other 
concepts, it would not be a meta-metamodel; it would be an ordinary metamodel in some 
other modeling space.  

Figure 5 shows a few examples of well-known modeling spaces. The most 
straightforward example from this picture is the MOF modeling space. It is defined by the 
MOF meta-metamodel, which in turn is defined by itself. It defines various metamodels, 
for instance Unified Modeling Language [OMGUML203] or Ontology Definition 
Metamodel [Djurić05], that are used to describe models that represent things from the 
real world. The same reality is described in the context of other modeling spaces, like 
RDF(S) or EBNF spaces. Many software engineers would associate the terms like model 
and modeling exclusively with UML aristocracy, taking EBNF-based models (Java, C#, 
C++ code) as more technical, flattened artifacts and ignoble citizens. However, Java (or 
C++, or some other) code is a model, since it represents some simplified abstraction of 
reality. The same is with XML code, databases, books, etc – they are all models, but 
modeled in terms of different modeling spaces, defined by different meta-metamodels. 

 

 
Figure 5 – RDFS, MOF and EBNF modeling spaces 

 

If we model the real world in a certain modeling space, we will use some models. If we 
model the same reality in another modeling space, we will describe it with different kinds 
of models, highlighting other characteristics when abstracting from reality. The models 
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from the first modeling space will be a part of reality that we can model using the models 
from the second modeling space. 

Figure 6 clarifies this duality by an example of the same thing being simultaneously 
a model and a real-world thing. Along the vertical axis, the world is modeled in the MOF 
modeling space. Along the horizontal axis is the EBNF space hierarchy, which is a real-
world thing in the MOF space. An interesting observation here is that any modeling 
space, like the EBNF space or even the MOF space itself, is a part of the real world from 
the MOF-space point of view. In general, the way we model some business system or 
another “real” domain is pretty much the same as the way we model meta-metamodels, 
metamodels or models from another modeling space. Of course, these models involve a 
certain level of abstraction, so there is a possibility of losing some information. 

For many software engineers, this duality is complicated to understand at first. Try 
with a couple analogies. Ghosts do not really exist (well, we hope so!), but they are things 
from the real world. Some people believe there is life outside of the Solar system, some 
claim it is a pure fiction, but life outside of the Solar system is a thing from the real 
world. Otherwise, we would not be able to model it using movies, literature, video games, 
etc. The fact that M1-M3 layers are fiction and above the M0 layer does not mean that 
meta-metamodels, metamodels and models are things outside of reality. Everything is in 
the real world; we just use a convention to put some things in layers, depending on the 
context. 

 
Figure 6 – MOF MS sees EBNF MS as a set of things from the real world 
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5 MODELING SPACES ILLUMINATED 

Modeling spaces can be defined in more or less abstract manner. Some modeling spaces 
are focused on conceptual (abstract or semantic) things, like models, ontologies, 
mathematical logics, etc. They are not interested in techniques for representation or 
sharing their abstractions. We call them conceptual modeling spaces. However, we must 
have some techniques to materialize (or serialize) those modeling spaces. We can do this 
using concrete modeling spaces, which are equipped with notation. Examples of those 
materializations are some syntax or databases. 

Take the MOF space as an example of a conceptual modeling space. The basic 
concepts of the MOF meta-metamodel – like Class, Association, Attribute, Package and 
the relations among them – are expressed using those concepts themselves. We can draw 
them using UML diagrams, but a group of boxes and lines is not a MOF model – it is a 
drawing of a MOF model. We can serialize them into XMI, enabling computers to 
process them and programs to share them – but then we leave the MOF modeling space 
and enter the EBNF modeling space. One can argue that these drawings, i.e. UML 
diagrams, or models serialized into XMI, are inside the MOF modeling space because 
they represent MOF concepts. Indeed, they do represent concepts from the MOF space. 
Simultaneously, they represent other things from the real world. It means that the MOF 
concepts are modeled in another modeling space. 

EBNF is an excellent example of a concrete modeling space. Theoretically well 
founded, it arguably has some “semantics” primarily for type checking, and has a syntax 
that is formally specified using a grammar. However, it lacks semantics; when we parse 
the expression name = “Mona Lisa”, we get a syntax tree that does not know that it 
deals with the name of a painting. We always need some external interpretation of what 
its abstract syntax means. Actually, this interpretation is given in the corresponding 
models from other technical spaces that were serialized into the BNF form. 

Being able to represent bare syntax, concrete modeling spaces need some means to 
express the semantics, i.e. the meaning of the data they carry. Conceptual modeling 
spaces, on the other hand, are able to represent semantics, but need a means to represent 
their information physically. It is obvious that they should complement each other’s 
representation abilities to create models that have both a semantics and a syntax. One of 
the most interesting examples of this symbiosis of various modeling spaces can be found 
in OMG Model Driven Architecture. 

We can find similar “modeling patterns” in spoken languages, where people of 
different nationalities use different languages to express the same meaning. Regardless of 
the fact that they have the same things in mind (i.e. the same semantics), they need some 
regulations to share the meanings. Spoken languages have their own syntax for sharing 
semantics. Just like we can model the same semantics by different modeling spaces, we 
can talk about the same thing using different spoken languages. Similarly, definitions of 
mathematical languages (i.e. logics) include two parts: syntax and semantics. 
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There are two types of usage scenarios for different modeling spaces, both shown in 
Figure 7: 

• Parallel spaces – one modeling space models the same set of real-world things as 
another modeling space, but in another way. In this case, the relation between 
these modeling spaces is oriented towards pure transformation, bridging from one 
space to another. Examples of such parallel modeling spaces are MOF and ECore 
(ECore is a meta-metamodel very similar to but also different from MOF; 
although ECore is a little simpler than MOF, they are both based on similar 
object-oriented concepts). 

• Orthogonal spaces – some modeling space models concepts from another 
modeling space, taking them as real-world things, i.e. one MS is represented in 
another MS. This relation is often used in round-trip engineering to facilitate 
different stages of modeling some system. For example, in order to make a Java 
program we could first use Java UML profile to create classes and method bodies, 
then transform this UML model into Java code, and complete the Java program 
using a Java IDE. Orthogonal modeling spaces are also used when a conceptual 
modeling space is implemented using a certain concrete modeling space – for 
example, when one develops a MOF-based repository to run in a Java virtual 
machine. 

Figure 7 shows some of the modeling spaces included in the MDA standards, as well as 
their relations. It also shows another similar conceptual modeling space, the ECore 
modeling space (a part of the Eclipse Modeling Framework, EMF) and its relation to the 
MDA modeling space. 
 

 
Figure 7 – Two conceptual modeling spaces model the real world in parallel, while a more concrete 

modeling space represents them 
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The MOF modeling space is the shining star of MDA. Its meta-metamodel, MOF, defines 
the core concepts used to specify all the metamodels that MDA is based on (UML, 
CWM, MOF itself) and many other domain-specific metamodels. Software engineers are 
often confused about how these concepts are represented. MDA includes a standard for 
representation (or serialization) of MOF-based models using XMI (which is an XML-
based representation of objects), so when software engineers see XMI they often think it 
is UML (or MOF). The truth is a little different. The XMI document they are looking at is 
an XML document that models concepts from the MOF modeling space in the XML 
modeling space using XML concepts like element, node, etc. XML is then modeled with 
concrete XML syntax in the EBNF space. The same is with Java Metadata Interface 
(JMI) standard [Dirckze02]; it models MOF concepts using Java constructs enabling the 
implementation of MOF-based repositories. Both MOF XMI and JMI standards are in 
fact standards for modeling the MOF space models in other, concrete modeling spaces. 

 

 
Figure 8 – Orthogonal and parallel modeling spaces 
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In Figure 8A we can see several modeling spaces included in MDA and their orthogonal, 
representation-oriented relations that, depending on the context, form a “modeling circle” 
that can often be confusing. Mona Lisa, the painting, is modeled in the MOF space using 
the concept of Object. This concept exists only as an idea – the MOF space is a 
conceptual modeling space, hence it needs some kind of syntax for representation. 
Concrete modeling spaces like those based on EBNF (Java, XML) can be used to 
represent the MOF concepts. That is the second stage of representation in Figure 8 – the 
object monaLisa from the MOF space is modeled in the EBNF space as the RefObject 
monaLisa (RefObject is a part of JMI specification). These concrete concepts from XMI 
and JMI can be (and often are) also modeled using their corresponding MOF-based 
metamodels or UML profiles, bringing them back to the MOF modeling space. In Figure 
8, the monaLisaRefObject is an instance of the corresponding concept from the MOF-
based Java metamodel in the MOF modeling space. The MOF space is involved two 
times in this “chain” of representations. First the model from the MOF space 
(monaLisa:modeldomain.Object) is at the M1 layer, but later it descends to the M0 layer 
in the hierarchy although the other MOF model is used at the M1 layer. 

However, MDA is not the only standard for model-driven architecture – there is also 
EMF. Figure 8B shows the same real-world concept, the Mona Lisa painting modeled in 
two different modeling spaces in parallel. It is often necessary to completely shift from 
one modeling space to another by means of bridges; there is less space for confusion 
because one modeling space is translated into another without changing the modeling 
layers. In this case, metamodels from the MOF modeling space (UML, ODM, etc.) 
translated into the corresponding ECore-based metamodels will still be at the M1 layer. 

6 PRACTICAL ISSUES 

Why should we care about all these things? 
Engineers can benefit from modeling spaces by getting a better understanding of the vast 
diversity of things that can be modeled. Moreover, this framework provides a sound 
modeling foundation for software developers because it explains the roles of different 
software modeling technologies and how to combine them. 

In practice, developers commonly use one or more integrated and complex tools that 
involve multiple modeling approaches. Remember your last round trip with UML, 
Java/C# code, specialized technologies like J2EE, database schemas, XML files etc.? 
You do not always need to think about the relationships between these; sometimes it is a 
matter of choosing the right option from the menu of your favorite integrated 
development environment. However, you might find that, even when the tool you use 
supports changes from one modeling aspect to another, getting the big picture is a pretty 
complex task. Things get even more complex in situations when the support provided by 
tools is not straightforward and you need a lot of effort to figure out how to transform one 
model to another. Sometimes you must do it by hand or you must develop a 
transformation tool for your specialized case. 



 
THE TAO OF MODELING SPACES 

 
 
 
 

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 8 

Using a number of modeling approaches greatly increases the developers' ability to 
better describe the problem using the right approach, but is also more complex to 
comprehend in the whole. Moreover, it can be difficult for software developers to adopt 
the practice of using a wide spectrum of modeling approaches because they may seem too 
different and too unrelated to each other. In order to save time and effort working under 
tight development schedules, practitioners tend to focus on individual aspects of 
modeling. For all these reasons, a common view of different modeling approaches is 
highly desirable. 

7 TRANSFORMATIONS 

Usage scenarios for parallel spaces most often pertain to conceptual modeling spaces that 
model the same reality using different concepts. Each of these modeling spaces is 
implemented in some other, more concrete modeling space, as a represented reality. In 
order to exchange models between conceptual modeling spaces, it is necessary to provide 
transformations from one space to another. These transformations are also models 
[Bézivin03], and should be developed in a modeling space that can represent both the 
source and the target modeling spaces. Moreover, the transformation also has to be 
represented in some concrete modeling space orthogonal to the source and the target 
modeling spaces. That concrete modeling space leads the conceptual model of 
transformation to its implementation. 

Figure 9 shows an example of the previous discussion – parallel conceptual 
modeling spaces MOF and ECore, and the space orthogonal to them, EBNF, which 
represents MOF and ECore using XMI. MOF and ECore model the real world in parallel, 
using some modeling languages (UML, ODM, or other) that are defined using different 
meta-meta concepts. At the conceptual level, we could establish a transformation from 
one language to another, e.g. UML to ODM and vice versa, in the same modeling space. 
An example of a transformation modeling language for such purposes in MOF is Query-
View-Transformation (QVT) [OMGMOF2-QVT02]. We can also establish a 
transformation between modeling spaces, a bridge that transforms concepts from one 
modeling space into the corresponding concepts belonging to another modeling space. 
For example, UML concepts defined using MOF can be transformed into the equivalent 
UML concepts defined using ECore. The UML Class defined using the MOF Class 
becomes the UML Class defined using the ECore’s EClass, and so on. 

Both MOF and ECore spaces are represented in other, more concrete modeling 
spaces. They can be implemented using repositories, serialized into XMI etc., which 
involves many modeling spaces. For the sake of simplicity, we have skipped a few steps 
and have shown them as Java program codes and XML documents in the EBNF space. 
Models from the MOF space are modeled in Java code according to JMI standard 
[Dirckze02], and in XML according to the MOF XMI. ECore models are modeled in Java 
in compliance with the EMF framework, and in XML according to the EMF XMI, which 
is similar but not the same as the MOF XMI. A bridge is also a model; it can be also 
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represented in a concrete modeling space representing meta-metamodels that should be 
bridged. Examples include an XSLT that transforms a MOF XMI document into an EMF 
XMI document, a set of Java classes that adapt JMI interfaces to EMF interfaces, and a 
Java program that does a batch transformation from a JMI-based code to an EMF-based 
one. 

 

 
Figure 9 – A bridge between two conceptual spaces and its implementation in a concrete space 

 

As Figure 9 shows explicitly, a single bridge models transformation between two 
modeling spaces at layer M3, between meta-metamodels. Transformations between 
metamodels situated in a single modeling space at M2 layer are internal to that modeling 
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space. However, they can be implemented through some concrete modeling spaces (e.g. 
EBNF for XSLT). 

8 MODELING SPACES AND TECHNICAL SPACES 

Modeling space is a concept inspired by the concept of technical space. Technical space 
was defined as a working context with a set of additional concepts, body of knowledge, 
tools, required skills, and possibilities [Kurtev02]. This fuzzy definition fails in defining 
technical spaces precisely, although it is often possible to identify them: MDA TS, 
Ontology Engineering TS, XML TS, Java TS, etc. We can define technical spaces using 
modeling spaces. In this discussion, we stick to technical spaces in the field of software 
engineering. 

Let us firstly consider a well-known technical space – MDA. We have already noted 
that MDA includes a set of modeling spaces (MOF, XML, EBNF) and various relations 
among them that are indeed models. The MDA TS also includes various know-how, 
literature, etc., which also belong to some modeling spaces (though these modeling 
spaces are implicit). Do tools belong to a modeling space? In our opinion, software tools 
can be considered as models, although they are intended to implement some models 
belonging to some modeling space. 

A technical space is a working context that includes various related modeling spaces. 
Most often a technical space is built around some modeling space, whereas the role of 
other modeling spaces is supportive (e.g., implementation), or implicit (literature, know-
how). For example, the MOF modeling space is at the center of the MDA TS. However, 
the MDA TS also partially includes other modeling spaces: XML and EBNF in the area 
of XMI representation, EBNF in the area of repository implementation (JMI), an implicit 
modeling space that includes literature, etc. Transformations, for example to plain Java, 
C++ or VB code, are also models belonging to one or several modeling spaces that are 
partially included in the MDA TS. 

Figure 10 shows overlapping between the MDA TS and the Java TS in some 
modeling spaces. The MDA TS and the Java TS are simplified in the figure for the sake 
of simplicity; many other modeling spaces can be fully or partially included in these two 
technical spaces. The MDA TS is built around the MOF modeling space, which resides 
completely in the MDA TS. The MDA TS also includes JMI based programs, which are 
parts of the EBNF modeling space, because JMI is intended for implementation of MOF-
based repositories in Java. On the other hand, Java TS includes, among others, a part of 
the EBNF modeling space related to Java grammar and Java programs, including those 
that are JMI-based. Additionally, Java TS includes parts of the MOF modeling space 
related to Java metamodel and Java UML Profile, and two-way transformations from 
these MOF-based models to Java code. These transformations are also a part of the MDA 
TS. Recall that those transformations are also modeled, so they belong to some modeling 
spaces as well. Some researches are trying to identify a way to enable transformations 
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between different modeling spaces at the M3 layer using just one two-way transformation 
for all three layers [Bézivin05]. 

 

 
Figure 10 – Technical space comprises one or more modeling spaces 

 

It follows from the above discussion that one technical space includes one or more 
modeling spaces and that each modeling space is a part of one or more technical spaces, 
whereas a technical space is a means for grouping modeling spaces that have something 
in common or simply need to interact. The bridge connecting two modeling spaces is also 
a means for connecting surrounding technical spaces. 

9 A UML MODEL OF MODELING SPACES 

In order to have a more formal definition of modeling spaces we decided to define them 
using UML, since UML is a well-known modeling language in the software community. 
The description of the modeling spaces discussion from this article is shown in Figure 11 
using UML Class diagrams. 
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Figure 11 – Modeling spaces modeled in UML. A) domain model, B) hierarchy, C) simplified domain 

model 
 

Diagram A in Figure 11 shows the initial domain model resulted from this survey. 
Diagram B shows the inheritance tree of the most important concepts. We can observe 
some similar relations, for example multiple consistsOf or conformsTo, so we can apply a 
few common object-oriented techniques to get a simplified “design” of the Modeling 
Spaces domain model shown in diagram C. Note that diagram C does not show all the 
inheritance relationships, for example that ModelingSpace inherits from Thing, nor OCL 
constraints, for the sake of simplicity. 

10 MOF IN THE EYES OF EBNF IS XMI 

In this section, we try to exemplify the usefulness of modeling spaces for understanding 
some more practical problems software engineering have to face in their everyday 
practices. Let us consider XML Metadata Interchange (XMI), an XML based standard for 
sharing MDA metadata [OMG XMI, 2004]. Although this standard sounds very well-
known, most practitioners are confused with this term. We try to explain XMI using 
Figure 12. The confusion comes from the presence of different XML Schemas, and all of 
them are called XMI. We usually encounter two kinds of XMI documents, more precisely 
two XML Schemas defining XMI: 

• XML schema for MOF metamodels 
• XML schema for UML models 

The first one defines the syntax for sharing both MOF-based metamodels and the MOF 
definition itself. So, we use one schema at two different MDA layers, M3 and M2, thus 
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for sharing both metametamodels and metamodels. For instance, MOF is defined by 
itself, so we use MOF XML Schema for describing the XMI document comprising the 
MOF specification, and this documents is also a part of the MOF standard. Similarly, 
there is the standard XMI document containing the UML metamodel. However, UML is a 
modeling language that developers use for describing different models. It is obvious there 
is a need for an XML Schema for exchanging UML models, and indeed there is the 
standard one. The name for that XML Schema is the UML XMI Schema. The UML tools 
such as IBM/Rational Rose, Poseidon for UML, Together, etc. support it, but some 
researchers report that we always lose some information when sharing UML models 
between two UML tools [Ambler03].Are the things we mentioned so far complex 
enough? Yes, we have two different XML Schemas, and use the name XMI for both of 
them. But, is it the end of XML/XMI Schemas? No, it is not, and some questions raise 
naturally: What about regular UML models; and is there any relations between UML 
models and XML documents real-world applications use. Developers know that we never 
employ UML XML Schema as an XML language in domain applications. We always 
define domain XML languages, i.e. domain XML Schema. Accordingly, there is a set of 
rules for mapping UML models into XML Schemas [Grose02]. Thus, one can generate an 
XML Schema for each UML models, while model instances (i.e. objects) can be shared 
in accordance with those schemas. Considering the presumption that both UML objects 
and UML classes are at the same MDA layer (the M1 layer), we regard the generated 
XML schemas as well as their instance XML documents that are placed at the M1 layer. 
 

 
Figure 12 – Mapping MDA metametamodel, metamodels, and models to XMI 

 

Since we have a set of rules for generating XML Schemas from UML models, we can 
apply the same principle to the upper MDA layers (M2 and M3), so we can produce an 
XML Schema for each MOF-based metamodel. Using that principles, we generated XML 
Schema for ODM [Djurić05], while Protégé developers produced XML Schema for the 
MOF-compatible metamodel of the Protégé ontology editor (http://protege.stanford.edu). 
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Summarizing the story about XMI, we can say XMI is a set of rules for schema 
generation as well as object serialization. 

Although the aforementioned facts about XMI exemplify the relations between some 
MDA layers and their XML documents or schemas, it is not clear enough how those two 
modeling spaces see one another. The fist modeling space is MOF – a conceptual one, 
and the second one is EBNF – a concrete modeling space. In terms of modeling spaces 
we have a case of orthogonal modeling spaces, since the EBNF modeling space models 
the MOF modeling space. In Figure 13 we illustrate this case where MOF artifacts are 
regarded as real-world things modeled using XML. Note that all the previously 
mentioned XML Schemas and documents are places at the M1 layer of the EBNF 
modeling space. One could expect this since all of them are models of the MOF meta-
layers. It is also important to note that we do not have any equivalencies between the 
XML meta-schema (i.e. XML grammar) since the M1 layer is intended to be used for 
representing thing from the reality. In this case MOF conjecture is the modeled reality. 
Finally, we can say that Figure 13 is equivalent to the content of Figure 12, but it clarifies 
the way how the EBMF modeling space sees the MOF modeling space. 

 

 
Figure 13 – How EBNF sees MOF – the same as Figure 12 

11 CONCLUSIONS 

Modeling spaces abstract and generalize a vast amount of diverse modeling approaches, 
and can help engineers get the big picture of what underlies the software they make or 
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use. Modeling spaces also clarify structures of different modeling approaches, their 
similarities and dissimilarities, mutual relations, how they work together. By making a 
clear difference between conceptual and concrete modeling spaces developers can 
successfully select mechanisms to automate transfer and sharing of information, 
knowledge, and even other modeling spaces between different projects and applications. 
Likewise, understanding specific modeling spaces helps select suitable modeling and 
development tools in a specific project. 

In the future we are planning to employ the approach of modeling spaces to identify 
a way to enable transformations between different modeling spaces at the M3 layer using 
just one two-way transformation for all three layers [Bézivin05]. The idea is to avoid 
building metamodel-based model transformations for each pair of domain languages 
defined in different modeling, but just to have a bi-directional transformation between 
modeling spaces at the M3 layer. 
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