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Matching Objects Without Language Exten-
sion

Joost Visser, Departamento de Informatica, Universidade do Minho, Portugal

Pattern matching is a powerful programming concept which has proven its merits in
declarative programming. The absence of pattern-matching in object-oriented pro-
gramming languages is felt especially when tackling source code processing problems.
But existing proposals for pattern matching in such languages rely on language exten-
sion, which makes their adoption overly intrusive.

We propose an approach to support pattern matching in mainstream object-oriented
languages without language extension. In this approach, a pattern is a first-class
entity, which can be created, be passed as argument, and receive method invocations,
just like any other object.

We demonstrate how our approach can be used in conjunction with existing parser
generators to perform pattern matching on various kinds of abstract syntax represen-
tation. We elaborate our approach to include concrete syntax patterns, and mixing of
patterns and visitors for the construction of sophisticated syntax tree traversals.
Keywords: Pattern matching, object-oriented programming, syntax, parsing, tree
traversal, term rewriting, strategic programming.

1 INTRODUCTION

Pattern matching is a programming concept that plays a central role in declarative
paradigms, such as term rewriting and functional programming. Given a term and
a pattern, i.e. a term in which variables may occur, the pattern matching problem
consists in finding a substitution for the variables in the pattern such that the pattern
and the term become equal. For instance, given the following pattern and term:

pattern F(z,G(z,y))
term F(H(A),G(H(A),B))

where x and y are variables, pattern matching yields the following substitutions:
x = H(A) y:=DB

Note that variable x occurs twice. When variables are allowed to occur more than
once in a pattern, the pattern-matching problem is called non-linear.

Mainstream object-oriented programming languages, such as Java, C#, and C*+,
do not count pattern matching among their features. This makes these general pur-
pose languages less suitable for the specific purpose of building source code proces-
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pattern term

Figure 1: The basic idea of matching object graphs. The pattern is an object graph
that contains variable objects, indicated by empty dashed circles. After matching,
these variables are bound to corresponding objects in the term, indicated by the
dotted arrows.

sors. Switching to a declarative language is often not desirable for compelling prac-
tical reasons, such as the availability of programmers, tools, and libraries. Several
proposals for extending object-oriented languages with pattern matching features
exist, but adoption of such language extensions is likewise intrusive, since they in-
terfere with the use of existing tools, development environments, libraries, modeling
methods, refactoring aids, etc.

As we will see below, pattern-matching can be realized within the boundaries
of existing mainstream object-oriented programming languages. Rather than pro-
viding pattern matching as a language construct, we will model patterns as objects
that implement a particular behavioral interface. Thus, in this approach, pattern
matching is not a syntactic construct that the compiler transforms into a matching
engine. Rather, patterns are first-class entities that are created, can be passed as
arguments, and respond to method invocations, just like any other object.

In Section 2 we provide an abstract specification of object matching in the form
of a pattern interface and associated implementation obligations. Subsequently, in
Section 3, we provide several concrete implementations of that interface for various
kinds of compound objects. In Section 4, we elaborate the implementations for
objects that represent abstract syntax trees by showing how patterns can be created
via concrete syntax expressions. In Section 5 we show how object matching can
be combined with object graph traversal based on visitor combinators. Section 6
briefly relates lessons learned from commercial application of our approach. Section 7
discusses related work, and Section 8 concludes.

2 OBJECT MATCHING, ABSTRACTLY

The basic idea of matching object graphs is illustrated in Figure 1. A pattern is
an object graph that contains designated wvariable objects (indicated with dashed
circles). These variables have no name and are not syntactically distinguished; they
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public interface Pattern {
public void addVariable(Object variable);
public boolean match(Object term, Map bindings);
public Object substitute(Map bindings);

}

public abstract class AbstractPattern implements Pattern {
protected List variables = new ArrayList();
public void addVariable(Object variable) { variables.add(variable); }
protected boolean matchVariable(Object p, Object t, Map bindings) {
if (variables.contains(p)) {
if (bindings.containsKey(p)) { return bindings.get(p).equals(t); }
else { bindings.put(p,t); return true; }
} else { return false; }

)

Figure 2: The Pattern interface and an abstract class that implements its
addVariable method. The reusable matchVariable method creates variable bind-
ings. In case of non-linear patterns, the value of a previously bound variable is
retrieved from the bindings for comparison.

are identified by reference, as are all objects. The pattern is matched against an
object graph that does not contain variable objects. Matching involves a comparison
between the structure of both object graphs as well as between the types and states
of the objects that appear in them. During matching, bindings are created from
variables to corresponding objects (dotted arrows in the figure). To prevent pollution
of class hierarchies with artificial variable objects, and to enable reuse of the same
pattern for several matches, the variables and their bindings can be modeled with
external collections (lists and maps, respectively).

The pattern interface

Given this basic idea, we can give an abstract specification of object matching in
terms of a Java class interface, called Pattern in Figure 2, and its implementation
obligations. The interface consist of three methods, one of which can be imple-
mented once and for all, as shown by the abstract class AbstractPattern. Concrete
implementations of the Pattern interface should have a constructor that initializes
a field referencing the root of the pattern object graph. After pattern creation, the
addVariable method is used for pattern initialization. It can be implemented by
adding the variables to a list of variables in the pattern’s state, as demonstrated
in AbstractPattern. Typically, several invocations of the addVariable method will
follow the construction of the pattern.

The match method is intended to supply the actual pattern matching behavior.
It takes the root of the term object graph, as well as a map into which to store the
resulting variable bindings. The boolean result indicates whether the match was
successful or not. This method should be implemented by simultaneously traversing
the two object graphs. At each step, the pattern node should be checked for being
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a variable, as exemplified by the method matchVariable. If the pattern node is a
variable that has been bound before, its value should be compared for equivalence
with the corresponding node in the term graph. If the pattern node is a free vari-
able, a new binding to the corresponding term node is created. Traversal should
not descend into variables. In case of pattern nodes that are not variables, the
corresponding nodes in the term graph should be checked for type equivalence and
state equivalence; when equivalent, traversal proceeds deeper; when different, the
traversal can be broken off and false should be returned.

The substitute method takes a map holding variable bindings as argument, and
substitutes variables in the pattern by their corresponding values. As a result, an
object graph of the type of the root of the pattern is returned. If the map does not
contain mappings for all variables in the pattern, the substitution is unsuccessful,
and returns null.

Note that the method implementations in AbstractPattern implicitly rely on
the behaviour of the equals methods of objects that act as variables and their
values. For example, the contains and containsKey tests will result in equality
tests on the elements of the variable list and the keys of the map of bindings.
In addition, there is an explicit call to the equals method involving the value of a
previously bound variable. In cases where it is not appropriate to rely on the equals
methods of the objects in question, one may provide alternative implementations
of the addVariable and matchVariable methods, or resort to wrapper objects with
alternative implementations of equals.

Using the interface

Returning to the example of Figure 1, a typical usage scenario starts with creating
a pattern, as follows:

Hx= ... ;By=...5;\\ Any objects of type H and B can serve as variables.
Pattern p = new FPattern(new F(x,new G(x,y)));
p.addVariable(x); p.addVariable(y);

Here we assume that FPattern is a concrete implementation of the pattern interface
for objects of type F (specific implementations follow below). Subsequently, the
created pattern can be used to perform a match:

Map bindings = new HashMap() ;

H h = new H(new AQ));

F f = new F(h,new G(h,new B()));
boolean success = pattern.match(f,bindings);

The match being successful, the bindings will hold entries for x and y, and the
value of success will be true. The bindings can be queried for the values of these
variables, or, optionally, to perform a substitution on a second pattern:

84 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 8



3 IMPLEMENTATIONS GVL_‘

public class ListPattern extends AbstractPattern {
private List pattern;
public ListPattern(List pattern) { this.pattern = pattern; } S
public boolean match(Object term, Map bindings){
return (term instanceof List) && matchList((List) term,bindings);
}
private boolean matchList(List term, Map bs) {
if (pattern.size()==term.size()) {
Iterator patlter = pattern.iterator(); Iterator trmIter = term.iterator();
boolean success = true;
while (success && patIter.hasNext()) {
Object p = patIter.next(); Object t = trmIter.next();
success = matchVariable(p,t,bs) || p.equals(t);

}
return success;
} else { return false; 7}
}
public Object substitute(Map bindings) {
if (bindings.keySet().containsAll(variables)) {
List result = new ArraylList(pattern.size());
for (int i = 0; i < pattern.size(); i++) {
if (variables.contains(pattern.get(i))) {
result.add(bindings.get (pattern.get(i)));
} else { result.add(pattern.get(i)); }
}
return result;
} else { return null; }

T}

Figure 3: Pattern implementation for Lists. The worker method matchList performs
simultaneous iteration over the pattern list and the term list. The substitute
method creates a new list while iterating over the pattern list.

Pattern p2 = new GPattern(new G(y,x)));
p2.addVariable(x); p2.addVariable(y);
G g = p2.substitute(bindings);

In this particular case, the resulting object assigned to g would be equal to new
G(new B(Q) ,new H(new AQ))).

3 IMPLEMENTATIONS

The abstract specification of matching behaviour given above can be implemented
differently for different types of objects, or even differently for the same type. We
will discuss implementations for specific collection types and abstract syntax tree
types. Finally, we will show a reflection-based implementation that handles a variety
of different types by dispatching to type-specific implementations.
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Containers

Starting simple, we will explain how a pattern implementation can be provided for
any ordered container, such as an array or a list. A code example, provided in
Figure 3, shows the implementation for the List class. The state of ListPattern
holds a root object of type List, which is initialized with the constructor. The match
method first checks the type of the term object, and then calls a worker method
matchList. If the two lists are of the same size, this worker performs simultaneous
iteration over both. During iteration, the matchVariable method is called to deal
with elements of the first list that are registered as variables. Other elements are
compared with the equals method®.

The substitute method creates a new list while iterating over the pattern list.
At each step, either an element of the pattern list is added to the new list, or, in
case of a variable element, the value element to which it is bound.

For other ordered containers, such as arrays, implementations are similar. Match-
ing on containers without order is also imaginable, but would be more involved and
computationally more demanding due to a larger search space of possible bindings.

Trees

Tree representations come in different flavors. For instance, the Antlr parser gener-
ator [14] comes with an abstract syntax tree interface, called AST, where tree nodes
hold references to their first child and to their first sibling. Figure 4 shows this
interface, together with a corresponding implementation of Pattern. To avoid repe-
tition, we show only fragments of the worker method matchAST; the remainder of the
code is similar to the code for ListPattern, modulo the type of the pattern root?.
As can be gleaned from the code, the matching algorithm performs a simultaneous
pre-order traversal of two ASTs. At each step, pattern nodes that are free variables
give rise to new bindings. Pattern nodes that are previously bound variables, lead
to equality checks. Pattern nodes that are constants lead to equality checks on the
states of the nodes, and to further traversal into the respective first children and
their siblings. The substituteAST method (not shown) likewise performs a pre-order
traversal, where each encountered variable node is replaced by its value, and all other
nodes are cloned.

For other tree representations where all nodes share a common node interface,
similar implementations of the Pattern interface can be given. For instance, the JJ-
Traveler visitor combinator framework [19, 4] offers a common tree interface, called
Visitable, where subtrees are accessed by index. The ATerm interface of the An-
notated Term Library [1] provides similar access to a maximally shared tree repre-

LAt the end of this section, this equivalence check becomes a recursive invocation of our more
generic, reflection-based implementation.

2For simplicity, we ignore that Antlr ASTs do not necessarily implement deep equality (traversing
into children) in their equals method. The actual implementation uses a wrapper class to fix that.
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public interface AST {

public int getType(); public String getText();
public AST getFirstChild(); public void setFirstChild(AST ast);
public AST getNextSibling(); public void setNextSibling(AST ast);

}

public class ASTPattern extends AbstractPattern {

private boolean matchAST(AST p, AST t, Map bs) {
if (matchVariable(p,t,bs) { return true; }
else if (p.getType(==t.getType() && p.getText().equals(t.getText())) {
AST pNxt = p.getFirstChild(); AST tNxt = t.getFirstChild();
boolean success = true;
while (success && pNxt'!=null) {
if (tNxt==null) { success = false; }
else {
success = match(pNxt,tNxt,bs);
pNxt = pNxt.getNextSibling(); tNxt = tNxt.getNextSibling();
3
return success;
} else { return false; }

}

}

Figure 4: Pattern implementation for ASTs. The pattern AST and term AST are
traversed simultaneously.

sentation. The Node interface of the Document Object Model (DOM) [21] provides
access to child nodes both by index, and by child and sibling references.

In cases where the tree (or graph) is represented with objects with disjunct
node interfaces, one must provide equally many implementations of the pattern
interface which call each other on pairs of sub-nodes with matching types. In the
event that some references between nodes are not typed (for instance when they
are held in an untyped collection like List), one can resort to reflection to select an
appropriate pattern implementation when available. In the next section, we show
how such reflection-based matching can be harnessed in a generic implementation
of the pattern interface.

Generic Object Matching

Each of the implementations of the pattern interface discussed so far provides match-
ing functionality for objects of a single type. In each case, the matching process
starts with checking (using instanceof) whether the term object type is equal to
the designated type of the pattern graph. The GenericPattern implementation in
Figure 5 takes a different approach: the pattern graph can be of any type, and a
choice is made between different matching algorithms, based on the types of both
pattern and term. As can be seen in the figure, the choice is modeled with the logical
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public class GenericPattern extends AbstractPattern {
protected Object pattern;

public boolean match(Object term, Map bindings) {
return matchVariable(pattern,term,bindings)
matchList (pattern,term,bindings)
matchArray(pattern,term,bindings)
matchAST (pattern,term,bindings)
matchVisitable(pattern,term,bindings)
matchDomNode (pattern,term,bindings)
pattern.equals(term);

}
private boolean matchList(Object term, Map bs) {
return (pattern instanceof List) && (term instanceof List)
&& matchList((List)pattern, (List)term,bs);

)

Figure 5: Generic pattern matching. Various matching policies are tried in turn.
Run-time type inspection and type casts guard the dispatch to appropriate methods.

or operator (cf. | |) where each disjunct represents a different matching attempt.

The first attempt takes care of the case where the pattern graph is a variable,
using again the matchVariable method. Subsequently, a series of attempts is made
using the match policies for various types of objects, exactly as discussed in the
previous implementations except for an additional check on the type of the pattern
type. For instance, the matchList method tests both pattern and term for being of
type List before calling a list matching worker method. To ensure that this worker
method descends into container elements, the equivalence check on elements (cf.
Figure 3) is replaced by a recursive call to the generic matching algorithm. Finally,
as default policy when all other matching attempts fail, an equality test is performed.

4 CONCRETE SYNTAX PATTERNS

The first-class status of patterns in our approach opens opportunities. For instance,
pattern creation can be done not only by direct calls to constructor methods, but
also by computation from concrete syntax expressions. We explain how this is done
with two different parser generators: JJForester and Antlr.

Parsing patterns with JJForester

The input to JJForester are grammars in the purely declarative grammar formalism
SDF [8]. From such a grammar, a Java class hierarchy is generated to represent
parse trees: non-terminals become abstract classes, and production rules become
their concrete subclasses. The benefit of such a many-typed representation of parse
trees is that Java’s type system can be leveraged to guard well-formedness of tree
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construction and access with respect to the abstract syntax.

Each generated abstract class has a static parse method that allows files or
strings to be parsed by invocation of an external parser using the corresponding
non-terminal as start symbol. The parsing technology employed is Generalized LR
parsing [15, 2]. All generated classes implement the aforementioned Visitable inter-
face of the JJTraveler framework, which allows subtree access by index. We supplied
an SDF grammar of the Java language to JJForester and obtained a class hierarchy
of 104 abstract classes and 276 concrete classes.

Now, patterns can be created from concrete syntax expressions, for instance as
follows:
Pattern p = new VisitablePattern(Statement.parse("x = e;"));

p.addVariable(Identifier.parse("x"));
p.addVariable (Expression.parse("e"));

Thus, invocations of three different parse methods result in the construction of the
pattern itself and its two variables. This style of pattern creation from concrete
syntax expressions is not only more convenient than constructor invocations, it
also provides some isolation against grammar refactorings by abstracting over the
underlying abstract syntax tree shapes.

Of course, these parser invocations are performed at run-time, rather than during
compilation, leading to performance loss and potential run-time parse errors. These
risks can be attenuated by taking care that each pattern is constructed only once,
and by proper (unit) testing of all pattern construction code.

Note that the availability of concrete pattern matching reduces the utility of the
generated class hierarchies. Without concrete patterns, the generated classes are
used to guard well-formedness. With concrete syntax patterns, the parser performs
this task, albeit at run-time only. As a consequence, one may opt to dispense
with JJForester’s conversion of generic ASTs to strongly typed ASTs, processing the
former directly. We have followed this approach in a case study involving Transact-
SQL, on which we comment in Section 6.

Parsing patterns with Antlr

When using Antlr, the situation is slightly more complex. This parser generator
consumes Yacc-like grammars, containing semantic actions. Depending on the de-
cision of the programmer, these semantic actions may build abstract syntax trees of
the AST type. The structure of the syntax trees does not necessarily strictly follow
the structure of the grammar. The tool generates a parser class that provides one
method per non-terminal. These parse methods take no arguments; the string or file
to be parsed is passed to the parser via its constructor method. We have supplied
a C¥ grammar to Antlr leading to a parser class with 219 parse methods and AST
building capability.
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To abstract over details of parser creation, we have defined a class CSharpParser-
Factory with a method parse that takes as argument a string to be parsed and the
name of a non-terminal to use as start symbol. This class allows us to conveniently
create patterns from concrete syntax expressions. For instance:

CSharpParserFactory f = new CSharpParserFactoryQ) ;

Pattern p = new ASTPattern(f.parse("statement","if(!b) s1; else s2;"));
p-addVariable(f.parse("expression","b"));
p-addVariable(f.parse("statement","s1;"));
p.-addVariable(f.parse("statement","s2;"));

This pattern can subsequently be used to match abstract syntax trees of conditional
statements with negative conditions.

Note that this approach works only with Antlr grammars that are in some
sense well-behaved with respect to tree construction. If the grammar contains non-
terminals that do not return trees, or that return collections of subtrees that are
joined only at higher levels of the grammar, then such non-terminals can not appear
as pattern roots or in variable positions.

5 MATCHING AND TRAVERSAL

To take further advantage of the first-class status of our patterns, this section inves-
tigates some possibilities of combining generic pattern matching with generic visitor
combinators. Generic visitor combinators are small, reusable classes that capture
basic functionality, and can be combined in different constellations to construct more
complex behavior [19].

We will generalize our pattern matching approach by combining patterns with
visitors in two complementary ways:

patterns in visitors What if we want to match a pattern, not at the root of an
object graph, but at a deeper node? If we capture the pattern inside a visi-
tor combinator, it can be combined with a visitor combinator that performs
traversal to realize pattern matching at arbitrary depths.

visitors in patterns What if we want to apply a visitor to a subgraph that matches
with a variable in our pattern? We can eliminate the intermediate steps of
binding to the variable and retrieving its value to be visited, simply by asso-
ciating visitors directly to the pattern’s variables. Since visitors encapsulate
behavior, this makes our patterns active.

Before explaining these two generalizations in detail, we provide a brief exposition of
the concept of visitor combinators. For a more elaborate account, the reader should
look elsewhere [19, 8, 4, 20].
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Figure 6: Overview of JJTraveler, which offers a simple framework and a library of
reusable visitor combinators.

Generic visitor combinators

Visitor combinator programming was introduced in [19], and can be understood as
an improvement over the classic visitor design pattern [5] where three well-known
short-comings are removed. Classic visitors resist combination, allow little traversal
control, and are tied to a given class hierarchy. In contrast, visitor combinators cap-
ture pieces of functionality that can easily be combined, they allow the construction
of sophisticated traversal strategies, and they are reusable across class hierarchies.

Visitor combinator programming in Java is supported by JJTraveler, which of-
fers a simple framework and a library of reusable visitor combinators, as depicted
schematically in Figure 6.

The JJTraveler framework offers two class-hierarchy independent interfaces,
Visitor and Visitable. The latter, as mentioned before, provides a minimal in-
terface for nodes that can be visited. The visitor interface provides a single visit
method that takes any visitable node as argument. Each visit can succeed or
fail, which can be used to control traversal behavior. Failure is indicated by a
VisitFailure exception®.

The library of JJTraveler contains a number of predefined visitor combinators.
These rely only on the generic visitor and visitable interfaces, not on any specific
underlying class hierarchy. An excerpt from the library is shown in Table 1. There
are basic combinators for sequencing, biased choice, and one-step traversal. From
these, defined combinators can be composed. An example of a recursively defined
visitor is the traversal strategy combinator TopDown(v), specified as follows:

TopDown(v) = Sequence(v, All(TopDown(v)))

Thus, TopDown first applies v to the current node, and then recursively applies

3A variation of this design uses boolean return values to indicate success and failure, at the
expense of supporting node replacement via Visitable return values.
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Name Description

Identity Do nothing.

Faal Raise VisitFailure exception.

Not(v) Fail if v succeeds, and wvice versa.

Sequence(vy,va) Do w1, then vs.

Choice(vy, v2) Do vy, if it fails, do vo.

All(v) Apply v sequentially to all immediate children until it fails.
One(v) Apply v sequentially to all immediate children until it succeeds.
IfThenElse(c,t, f) | If ¢ succeeds, do t, otherwise do f

Try(v) Choice(v,Identity)

TopDown(v) Sequence(v,All(TopDown(v)))

TopDown While(v) | Try(Sequence(v,All( TopDown While(v))))

Innermost(v) Sequence(All(Innermost(v)), Try(Sequence(v,Innermost(v))))

Table 1: JJTraveler’s library (excerpt). Basic combinators are shown in the upper
part. Defined combinators appear in the lower part together with their specifications
in terms of the basic ones.

the top down strategy to each of the children of the current node, yielding a pre-
order traversal of a tree. Similar specifications are provided in Figure 1 for other
defined combinators. In fact, visitor combinators can be used to program all kinds
of sophisticated generic traversal strategies. Details about the actual encodings of
such defined combinators can be found elsewhere [19, 4].

To use JJTraveler on the class hierarchy of an application, one needs to instan-
tiate the framework appropriately. This is a simple job for tree representations
with a single node interface, such as those of Antlr, DOM, or the ATerm Library
(c¢f. Section 3). For more elaborate hierarchies, generative support may be used.
For example, JJForester generates classes that implement JJTraveler’s visitor and
visitable interfaces. Whether manually coded or generated, an important element
in instantiations of the JJTraveler framework is a classical hierarchy-specific visitor
which additionally implements the generic visitor interface by dispatching when pos-
sible to classical hierarchy-specific visit methods (¢f. ClassicVisitor in Figure 6).
By virtue of this additional implements relation, hierarchy-specific visitors can be
passed as arguments to generic visitor combinators, and their hierarchy-specific be-
haviour will be triggered whenever appropriate.

Patterns inside visitors

The encapsulation of a pattern inside a visitor is shown in Figure 7. The class Match
holds a reference to a pattern of type VisitablePattern that is initialized with its
constructor. It implements the Visitor interface of JJTraveler. When visiting a
visitable term, it tries to match it with the pattern. The success or failure of the
visitor is determined by the success or failure of the match.

An example of using the Match combinator is to find all targets of null assign-
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public class Match implements Visitor {
private VisitablePattern pattern;
private List maps = new ArrayList();
public List getMaps() { return maps; }
public Match(Visitable visitable) {
this.pattern = new VisitablePattern(visitable);
}
public addVariable(Object variable) { pattern.addVariable(variable); }
public Visitable visit(Visitable term) throws VisitFailure {
Map bindings = new HashMap();
if (pattern.match(term,bindings)) {
maps.add (bindings) ;
return term;
} else {
throw new VisitFailure("No match");

}r}

Figure 7: Patterns in visitors. The visitor combinator Match implements the visit
method by matching the pattern to which it holds a reference against the visitable
that it visits. Each successful visit leads to a new entry in a list of maps.

ments inside a Java file:

Match m = new Match(Statement.parse("x = null;"));
m.addVariable(Identifier.parse("x"));

Visitor v = new TopDown(new Try(m));

Visitable cu = CompilationUnit.parse(file);
v.visit(cu);

After the traversal, the getMaps method applied to m will return a list of maps that
each represents a singleton set of bindings. Each singleton contains a binding of an
Identifier to the pattern’s variable x.

Patterns can also be used inside visitors to implement rewriting. Consider the
following rewrite rule:

if not(x) if x
then ¢ — then e
else ¢ else t

This law of programming [6] states that an if statement with a negative condition
can be replaced by an if statement with a positive condition with swapped branches.

This rewrite rule can be implemented with the visitor combinator defined in
Figure 8. The Rewrite visitor holds two patterns that represent the left-hand and
right-hand sides of a rewrite rule. It implements the visit method by attempting
to match the left-hand side pattern against the term being visited. If this match
succeeds, the resulting bindings are substituted into the right-hand side pattern to
obtain the rewrite result. Match failure makes the visitor fail.

Negative condition elimination can now be implemented as follows:
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public class Rewrite implements Visitor {
private VisitablePattern lhs, rhs;
public Rewrite(Visitable 1lhs, Visitable rhs) {
this.lhs = new VisitablePattern(lhs); this.rhs = new VisitablePattern(rhs);
}
public addVariable(Object variable) {
lhs.addVariable(variable); rhs.addVariable(variable);
}
public Visitable visit(Visitable term) throws VisitFailure {
Map bs = new HashMap();
if (lhs.match(term,bs)) { return (Visitable) rhs.substitute(bs); }
else { throw new VisitFailure("No rewrite"); }

T3

Figure 8: Rewriting. The visitor Rewrite combines two patterns into a rewrite rule.
When the first pattern matches on a visitable, the resulting bindings are used to
create a new visitable from the second pattern.

Rewrite r = new Rewrite(
Expression.parse("if (!c) then s1; else s2;"),
Expression.parse("if (c) then s2; else s1;"));
r.addVariable (Expression.parse("c"));
r.addVariable(Statement.parse("s1;"));
r.addVariable(Statement.parse("s2;"));
Visitor v = new Innermost(r);
CompilatonUnit cu = CompilationUnit.parse(file);
v.visit(cu);

In this case, we selected the Innermost combinator, which captures the leftmost
innermost rewriting strategy. This combinator is part of the JJTraveler library.

Visitors inside patterns

Active patterns, or patterns with visitors inside, can be implemented by refining a
concrete pattern class, as shown in Figure 9. The class ActiveATermPattern extends
the pattern interface with a putVisitor method for associating visitors with pattern
graph nodes. These associations are stored in a map. The method visit applies a
visitor associated to a pattern node, if such an association exists, to a corresponding
term node. Success of the visit determines success of the match. ActiveATermPattern
overrides the match method to attempt such a visitor-based match before the regular
match attempt defined in ATermPattern (cf. super).

An example of using active patterns is to find if statements that contain null
tests in their condition. First we create a visitor that searches for such tests, using
the Match visitor:

VisitablePattern vp = Expression.parse("x==null;");

vp.addVariable (Expression.parse("x"));
Match match = new Match(vp);
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public class ActiveATermPattern extends ATermPattern {
private Map visitors = new HashMap();

public void putVisitor(ATerm variable, Visitor visitor) {
addVariable(variable);
visitors.put(variable,visitor);
}
protected boolean matchATerm(ATerm pattern, ATerm term, Map bindings) {
return visit(pattern,term,bindings)
|| super.matchATerm(pattern,term,bindings);
}
private boolean visit(ATerm pattern, ATerm term, Map bindings) {
if (visitors.containsKey(pattern)) {
try {
((Visitor) visitors.get(root)).visit(term);
bindings.put (pattern,term);
return true;
} catch (VisitFailure e) { return false; }
} else { return false; }

T}

Figure 9: Visitors in patterns.  The specialization ActiveATermPattern of
ATermPattern extends the pattern interface with putVisitor for associating visi-
tors with pattern graph nodes. Also it extends the matchATerm method with an
additional match attempt, which calls visit.

Then we embed this visitor in an active pattern, this one for Visitables:

ActiveVisitablePattern ap

= new ActiveVisitablePattern(Expression.parse("if (c) then si; else s2;"));
ap.putVisitor (Expression.parse("c") ,match);
ap.addVariable(Statement.parse("s1;"));
ap.addVariable(Statement.parse("s2;"));

Finally, we embed the active pattern in another Match visitor, and apply it to a file
via a traversal combinator:
Visitor v = new TopDown(new Try(new Match(ap)));

Visitable cu = CompilationUnit.parse(file);
v.visit(cu);

After traversal, the bindings stored in the state of match hold expressions tested
for nullity in conditions of if statements. As we will explain in the related work
section, this style of mixing traversal strategies with first-class matching patterns
was inspired by the capabilities of the strategic term rewriting language Stratego.

6 APPLICATION AND ITS LESSONS

Our techniques have been applied in the construction of source code analysis com-
ponents for the Software Analysis Toolkit (SAT) of the Software Improvement
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Group [16]. The SAT is used for software risk assessment [3] and software port-
folio monitoring [9]. The SAT has an open architecture including frameworks for
source code analysis and for storing, processing, and visualizing analysis results.
The main implementation language is Java. Both Antlr and JJForester are used in
its source code analysis components.

Our pattern-matching techniques have been applied for processing Java, PL/SQL,
Transact-SQL, and C#. JJForester was used for the first three languages and Antlr
for the last. In case of Java, generated AST classes were employed while generic
ASTs were used for the SQL dialects and for C#. For each language, patterns
have been developed for the construction of several metrics collectors and depen-
dency extractors. In all cases, concrete patterns were employed in combination
with implementations of the Pattern interface for common node interfaces, such as
antlr.AST, aterm.ATerm, and jjtraveler.Visitable.

Based on lessons learned from using our techniques in a commercial software
construction context, some preliminary practical guidelines can be formulated:

e To prevent repeated parsing of concrete patterns and their variables, caching
techniques such as the singleton design pattern can be employed.

e At least one unit test should be developed for each concrete syntax pattern,
to check the syntactic well-formedness of the pattern.

e Concrete syntax patterns can be decoupled from particular grammars to make
them reusable across dialects or families of languages. For examples, in spite
of many deviations, the PL/SQL and Transact-SQL dialects are sufficiently
similar to allow many patterns to be developed once and used for both.

The application experiences have also led to the development of additional library
functionality, for instance for combining multiple patterns, for more convenient vari-
able insertion, and for recurring test tactics.

7 RELATED WORK

Java language extensions The Pizza language [13] is an extension of the Java
language with three concepts taken from functional programming: higher-order
functions, parametric polymorphism (type parameters), and algebraic data types
with pattern-matching. JMatch [10] is also an extension of the Java language
with pattern-matching. In this case, matching is not based on algebraic datatypes,
but through a generalization of constructor methods, called pattern constructors.
Tom [11] also provides support for algebraic data types with pattern-matching. Tom
is not a full fledged language extension, but rather a pre-compiler.

In comparison to our approach, which stays completely within Java, language
extensions provide several advantages. They allow optimizing compilation of match-
ing expressions. They allow static checking beyond the capabilities of the Java type
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system. They may provide more concise syntax. On the flip side, the introduction of
a new language is more intrusive on the existing programming practices of potential
users. Also, modeling pattern matching within Java provides more flexibility, allow-
ing, as we have demonstrated, to introduce variations or to combine the approach
with other techniques.

Scala The novel Scala programming language [12] provides a fusion of functional
and object-oriented programming and counts pattern matching among its features.
This is realized by allowing the user to tag classes with a case modifier, with two
effects regarding its primary* constructor method. Firstly, the constructor can be
called without using the new keyword. Secondly, the constructor can be used in the
pattern positions of case branches in switch-like pattern-match expressions.

Though Scala programs resemble Java programs and are interoperable with
them, Scala is a distinct language with distinct semantics, documentation, libraries,
tool support, and user community. Our pattern-matching approach is viable within
the confines of any main-stream object-oriented language such as Java, C#, or C*+.

Nevertheless, a comparison between Scala and our approach is interesting. Pat-
terns in Scala are syntactically nicer than ours, due to the possibility of dropping the
new keyword. Scala’s patterns can be nested, just as ours, but non-linear matches
are not supported. Also, there is no notion of active patterns. Scala’s patterns are
not first class, but the blocks of case branches in which they occur are anonymous
functions, which are first class.

Strategic pattern matching The Stratego language [18, 17] is a term rewrit-
ing language that does not offer a single fixed rewriting strategy, but allows the
programmer to compose different rewriting strategies from basic strategy combina-
tors. The notion of visitor combinator can be seen as an object-oriented counterpart
of Stratego’s strategies. Stratego’s pattern matching features include congruences,
which are term patterns that appear in strategy positions, and that can contain
strategies in subterm positions. The semantics of a congruence is to match against
an incoming term, and apply the strategies in subterm positions to the subterms
of the incoming term. Thus, congruences allow mixing of traversal and pattern
matching, in a similar vein as our Match and ActivePattern combinators.

8 CONCLUDING REMARKS

We have demonstrated that sophisticated pattern matching support can be obtained
within mainstream object-oriented languages without resorting to a language exten-
sion. Fundamental to the approach is the observation that object graphs themselves

4In Scala, a class definition can have parameters, which at once define instance variables and a
so-called primary constructor with those parameters, that initializes these instance variables.
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can serve as patterns and their variables. We have provided an abstract specification
of object graph matching in terms of a behavioral interface and its implementation
obligations. We have shown that these obligations can be met for specific types
of objects as well as in a generic, but customizable manner. Taking advantage of
the first-class status of patterns, we have elaborated support for concrete syntax
patterns, match and rewrite visitors, and active patterns.

Since we do not rely on extending an existing language, the adoption of our
approach does not interfere with the use of existing tools, development environments,
libraries, modeling methods, refactoring aids, etc.

Still, our pattern matching approach is not intended to disavow the merits of
language extensions. In fact, a number of caveats of our approach are worth pointing
out. For example, since pattern matches are not compiled, there is no opportunity for
static optimizations. Also, the concrete syntax expressions used to create patterns
are only syntactically checked at run-time and require testing to dispel errors.

A final trade-off between using a language extension or the programmatic match-
ing technique presented in this paper can only be made in the context of particular
development projects and processes.

Future work

The work presented in this paper can be generalized in several ways. We list some.

Unification When the pattern is not matched against a closed term, but against
another pattern, a more general problem, called unification, must be solved. Unifi-
cation plays a central role in logic programming, type inference in functional pro-
gramming, and in some artificial intelligence approaches. A comprehensive survey
of unification can be found in [7]. We would like to investigate a generalization of
object matching to object unification.

Further host languages We implemented our ideas in Java, but other host lan-
guages are equally viable. A C# implementation is high on the wish list.

Availability

The code presented in this paper is part of a library distribution, named MatchQO,
which is available from the author’s web pages.
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