
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 7, September-October 2006

Cite this column as follows: Dave Thomas, “Agile Evolution -Towards The Continuous Improvement of
Legacy Software”, in Journal of Object Technology, vol. 5, no. 7, September-October 2006, pp. 19-26
http://www.jot.fm/issues/issue_2006_09/column2

Agile Evolution
Towards The Continuous Improvement
of Legacy Software

Dave Thomas, Bedarra Research Labs

1 AGILE EVOLUTION - A FRESH APPROACH TO SOFTWARE
MAINTENANCE

The vast majority of improvements in software development tools and techniques focus
on the development of new applications or components for greenfield projects.
Unfortunately, this often means that organizations with substantial assets developed using
older, once popular and accepted technologies and methods cannot easily migrate to new
applications or components. Much has been written about using Agile development in the
context of greenfield development; however, software experts increasingly see that Agile
practices are well suited to software evolution. This isn’t completely surprising since
Agile methods stress the importance of people, incremental development, risk reduction,
and continuous testing – factors which all contribute to effective software evolution.

2 SUCCESSFUL SOFTWARE ALWAYS LEAVES A LEGACY!

It is important to note that so-called Legacy software is at the heart of almost every major
product and commercial enterprise. Each successful product produces a major legacy!
Each successful technology produces a major legacy!

Even major software vendors have difficulty hiring developers to work on their
massive C++ code bases which were state of the art only a decade before. Java, now past
the age of 10, already has a legacy of applications and products. Furthermore, frequent
changes in Java/C# frameworks and languages create legacy code in shorter periods of
time as what was hot becomes orphaned legacy code.

Yet most of our industry is focused on the creation of new software, often using new
technologies, with little regard for the critical need to improve and enhance existing
software, which accounts for 70% of software development.

AGILE EVOLUTION – TOWARDS THE CONTINUOUS IMPROVEMENT OF LEGACY SOFTWARE

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

3 WE CAN’T JUST REWRITE IT ALL AND THROW THE LEGACY
CODE AWAY!

Every new generation argues that the only solution is to rewrite the legacy software using
their new technology. However, there is simply too much software in use to rewrite it all,
for both economic as well as technical reasons. Many older systems provide best-of-
breed, strong, specific solutions with lower total cost of ownership, which as yet have not
been demonstrated using newer technology. Unfortunately, we often don’t understand the
design choices for the original system and/or we underestimate the maturity of the new
technology; hence the industry track record for major rewrites is dismal. Most such
efforts have been way over budget and late, with many being cancelled outright.

This is why experienced CIO/CTOs seek to apply a new technology where it brings
business value and evolve the legacy code base only where appropriate. This is a difficult
challenge when vendors, consultants and new hires promise the benefits of switching
technology. Even where the new-technology-based applications do succeed, they too
become a legacy. Have you tried hiring top developers to work on your legacy C++ code
base lately?

4 SOFTWARE EVOLUTION IS CHALLENGING!

The entropy of a software asset increases substantially after its 3rd to 5th version. This is a
function of both code bulk and interacting changes made by concurrent teams which
often erodes the architecture. Many major applications and products were developed 10,
20 or even 30 years ago and contain hundreds of thousands to millions of lines of code. In
all cases the platform, methodology, programming languages and tools will be different,
often containing mixes from 2 or 3 generations of technology. The loss of key people
over time also contributes greatly to the complexity of code maintenance. Despite the
best documentation practices, typically only a few key people truly understand the inner
workings of most systems. In extreme cases there may be few or no human experts who
know the code base, and there may not even be complete binary or source code.

Unfortunately it seems that graduates only learn about software technology and
practices that exist four years plus or minus their graduation. This leaves corporations
with incredible problems spanning isolated techno cultures e.g. COBOL/PLI to C;
4GL/VB/Smalltalk/C++ to Java/C#; Java/C# to LAMP etc. Each techno culture uses
different methods, languages and tools.

Test coverage will also vary considerably. Most client server applications will
require testing through the GUI with fragile platform UI dependent scripts. Many
products will have multiple code bases to support mainframe, client server and web
technology, often supported by geographically distributed development teams. Finally the
applications and products often contain unique creative solutions to domain-specific
problems such as rule engines and application specific code generators supported by
special purpose tools and runtimes.

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 21

Given these substantial challenges, it is natural for businesses to consider a fresh
approach.

5 RETHINKING PROFESSIONAL SKILLS FOR SOFTWARE
EVOLUTION

In many companies, there is still an attitude that new development is difficult and needs
the top developers, perhaps even outside developers. The less experienced or less skillful
developers are then assigned to perform the system evolution. Oftentimes, there is also
little training or mentoring allocated to the evolution effort. Most companies assume that
on-the-job training will suffice. The standard practice is to promise that a developer
assigned to an evolution project can only move to a new project once they have trained a
usually less experienced replacement.

In his Dahl-Nygaard Prize ECOOP 2006 keynote (http://www.emn.fr/x-
info/ecoop2006/keynote3.html), Ralph Johnson clearly and effectively articulated the
need to change the emphasis in education, research and professional practice to focus on
working with existing software rather than working on creating new software from
scratch. The skills and practices required to successfully enhance such legacy software
differ significantly from those used to design and develop new applications. Ralph argues
that the emphasis should be on Discovery and Transformation [1] rather than classical
Design and Development. Further, software needs to be written in a literate style that
exposes the key artifacts, including requirements and associated acceptance tests, as well
as architecture, design and implementation. Literate programming emphasizes code
reading over code writing, a practice which has long been argued as best practice for
educating software developers.

Discovery

The older the code base and the more mission critical the application, the more difficult it
is to maintain or enhance it. The software takes on the qualities of a dangerous, dark,
unexplored cave, complete with cryptic symbols in design notation and scrolls in older
dialects of programming languages. The rumor mill warns of dangerous caverns in the
software where few developers have succeeded in making changes that work. In order to
reduce the risk of failure, the bug fixes and change requests for these modules are slowed
to a crawl and only the bravest developers dare to make major changes. While some of
the original development team and their expertise may remain, their own knowledge will
be incomplete. Unfortunately, sometimes the resident expert, perhaps fearing a loss of
employment or stature, also chooses to become a less than cooperative guide.

Working with large legacy software always involves risks of the unknown for new
developers. This makes it essential that development begin with an in-depth discovery
activity to increase their understanding of the code base. Discovery combines the stories
obtained from experienced developers and customers with knowledge gained by
analyzing the code and associated documentation and test cases. Efforts in reverse

AGILE EVOLUTION – TOWARDS THE CONTINUOUS IMPROVEMENT OF LEGACY SOFTWARE

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

engineering (http://www.iam.unibe.ch/~scg/cgi-bin/scgbib.cgi?query=famoos) have
adapted language technologies such as static (http://www.klocwork.com/products/
klocworkk7.asp) and dynamic control and data flow analysis to mine code for
information seeking to identify the hidden dependencies which impact the ability improve
code.

Transformation

Evolving a large code base is best viewed as a careful and systematic transformation in
which each change is carefully tested before moving to the next. Such transformations go
well beyond refactoring, which technically is defined as equivalence preserving, to major
program restructuring. Further successful restructuring, like successful refactoring,
requires the support of comprehensive unit [3] and acceptance tests. A critical activity in
working with legacy code is bringing the test coverage and code modularity to the point
where transformations can be replied frequently with confidence.

To date we have good tools and techniques for analysis and for refactoring
(http://www.refactory.com/tools.html) but we are only beginning to understand how to
programmatically query programs and transform them. Unfortunately most current tools
only operate in modern single language IDEs, leaving those with legacy languages
without tool support. There are numerous reverse engineering tools but most of these
have been developed for quick and dirty language migrations as part of a services
engagement rather than robust life cycle evolution.

6 MAINTENANCE AS AGILE EVOLUTION – WORKING WITH
LEGACY CODE

Recently several organizations have been considering agile techniques for their
maintenance process. They quickly identified many similarities between agile concepts
and their own software maintenance experiences as shown in the table below. The Agile
development process includes the tools and techniques required to effectively deal with
the common issues organizations face when maintaining software.

Traditional Software Maintenance Agile Development

Understanding the essence of the system Metaphor and Stories

Customer defect and feature requests Customer and Stories

Test suites Test first, Unit test, Acceptance test

Regression testing Continuous integration and test

Fixes and “Dot” Release Small Increments

Change Management Scrum, Planning Game, Stand Up

http://www.refactory.com/tools.html

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 23

Meetings

Reverse Engineering, Debugging, Critical
Patches

Pair Programming

Code Reorganization, Code Simplification Refactoring

7 LEGACY TALES

How can Agile development address the challenge of passing on an understanding of
complex software? Many systems have lots and lots of use cases, massive requirements
and design documentation. Unfortunately, these documents often fail to communicate the
essence of the system to developers responsible for system evolution. A second problem
is that existing documentation is not up-to-date and often has gaps in important areas.
One of the best ways to develop a shared essence is through real storytellers who have
lived part of their lives “in” the system. Recently there has been a great resurgence in the
use of story telling as means for preserving corporate memory [3].

For many years, young recruits who joined companies like Nortel and IBM were
taken through intensive boot camps during which they were often exposed to massive
amounts of source code along with the wisdom of one or more of the key architects or
developers. These developers communicated the essence of the systems to new
developers. While the stories they imparted were imprecise and sometimes inaccurate,
they frequently provided sufficient context to enable new developers to work on many
parts of the company’s products. They learned quickly where the minefields lay, why the
system didn’t work they way they thought it should, or even the way it was documented,
etc.

This essential understanding of how the system works is still best communicated by
knowledgeable storytellers to inquisitive learners who are climbing difficult code
mountains. The “big story” is what XP calls Metaphor and the “little stories” are story
cards or use cases. These practical descriptions slice through the system exposing its
essence. Passing on an understanding of the essence of the system is an important part of
software maintenance that can be facilitated through the use of Agile development.
Dialog beats documentation every time.

8 CUSTOMERS’ CHANGE REQUESTS

One of the challenges in new development is finding the right customer and building the
right thing. This is a critical success factor for the organization and key to Agile
development. It can be a particular challenge when building a shrink-wrapped product for
a general external market where customer requirements can often only be derived from
surrogate customers, focus groups and beta customers.

AGILE EVOLUTION – TOWARDS THE CONTINUOUS IMPROVEMENT OF LEGACY SOFTWARE

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

In addition to defining the requirements for new development, Agile development
can address the challenge of requirements analysis for established products. An
established product has lots of customers who have identified defects as well as features
which they feel are missing from the product. The customer feedback is systematically
collected through problem tracking systems in which customers prioritize the important
problems and features. These change requests are used to drive the evolution of the
system. Unlike initial requirements, which are often only very high-level, problem reports
and feature enhancement requests are usually very specific. In many organizations,
customer focus groups are used to represent the customer by organizing and prioritizing
development activities in collaboration with developers. Agile evolution therefore has the
key ingredients for development stories in the problem reporting system and can engage
the team in scrums, the planning game associated with standard agile development.

9 PAIR DEVELOPMENT: SHARE THE RISK AND THE RETURN

Effective software maintenance requires a way for developers to reverse engineer, debug
and apply fixes in order to make critical software updates. Agile developers can
effectively use Pair Programming in these situations. Note that Pair Programming in
general refers to more than just coding, and in fact also provides the well known benefits
of code and design inspections/reviews, test case development, code reorganization and
refactoring applied from the point of development to deployment.

Software developers working on large existing systems often are required to make
changes to software that they don’t understand. They need to reverse engineer legacy
code to identify the defective modules, determine which modules need to be changed and
determine the order in which to make the changes. Given the uncertainty, these reverse
engineering and debugging activities are often done by pairs of developers.

For example, mission critical applications changes often need to be made to a system
running live in a customer’s location. A common practice among seasoned maintenance
developers is to approach such critical changes in pairs, relying on the human redundancy
to reduce error. Similarly, design and code reviews are well known ways to eliminate
bugs by “staring them out”. The benefits of an additional pair of hands and eyes include
the ability to provide feedback, increased confidence with estimates, as well as reduced
risk and improved quality.

10 REGRESSION TESTING AND CONTINUOUS INTEGRATION

Regression testing is a key factor in effective software maintenance. The use of Agile
development allows for more frequent regression testing through continuous integration.
For many years, strict regression testing has been the mantra of a successful maintenance
organization. Recent efforts in the Agile community to develop efficient continuous
integration approaches can easily be embraced by regression testers to allow them to

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 25

increase the frequency of regression testing through the use of dedicated test servers,
mock data bases, etc.

11 MAINTENANCE AS A DEVELOPMENT ACTIVITY –
INCREMENTAL REENGINEERING AND DEVELOPMENT

“The most amazing thing was that I learned as much in a maintenance month three
years into the project as I did in a programming month before release. In fact, I came
to think of the practices we'd put in place as a safety net that made maintenance a safe
place to learn. The very best objects in the product weren't discovered, couldn't even be
discovered, until we had the full richness of the (agile) maintenance environment in
place.”

-Ward Cunningham [4].

How can Agile development be used to deal with large systems that have well-known
modules, which for one reason or another are known to contain a substantial number of
defects? Historically, these modules are often the least understood by developers, hence
each new fix or feature is often approached with great trepidation. In some cases it may
be very difficult to make timely releases due to concerns about touching the core
components of the system. The time-honored solution to these problems is to
incrementally replace the faulty components – one component at a time. This approach is
often called developing your way out of maintenance.

The Agile/XP approach to this problem is to develop stories and then test cases to try
to ascertain the correct operation of this component. Theses test cases will include
existing regression test cases as well as new test cases identified by developers or
customers. Once one has sufficient test cases, changes can be safely made to the defective
module or it can be replaced, both without fear of unknown side effects. It is important
that both management and developers gain confidence with this approach and move
slowly, first making changes in single functions or data structures rather than making
wholesale change to whole classes or hierarchies.

12 REFACTORING TO REDUCE DEFECTS AND EASE CHANGES

Code reorganization and simplification is an important software maintenance activity that
can be addressed through refactoring in Agile development. In general, any activity that
substantially reduces the number of lines of code and/or improves the readability will
reduce defects and facilitate future changes. This is one of the primary goals of
refactoring, which seeks to reduce duplication of code, simplify overly complex code and
introduce improved names as well as class and method organization. While these changes
can be implemented with an editor, we strongly recommend industrial strength
refactoring tools if they can be obtained. These tools support the developers in making
and unmaking small changes and reduce the risk associated with a refactoring effort. One

AGILE EVOLUTION – TOWARDS THE CONTINUOUS IMPROVEMENT OF LEGACY SOFTWARE

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

of course should not attempt major refactorings unless the test cases provide full coverage
of the component to be refactored.

13 AGILE EVOLUTION - A POSITIVE ALTERNATIVE APPROACH
TO SOFTWARE MAINTENANCE

The essence of Agile evolution is to gradually transform a typically conservative, risky
and unattractive activity into a positive and proactive development activity. We argue that
the impact of Agile practices on the evolution of large software systems will be even
more important than its impact on new application development. Further, by adopting
similar practices throughout the life cycle, the schism between new development and
maintenance can be reduced.

REFERENCES

[1] Ralph Johnson, Software Development Is Program Transformation,
http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showComments
=true&entry=3319915651

[2] Adele Goldberg , Story Telling: Collaborative Software Engineering, Journal of
Object Technology, http://www.jot.fm/issues/issue_2002_05/column1

[3] Michael Feathers, Working Effectively with Legacy Code, Prentice Hall, 2004

[4] Ward Cunningham Personal Communication, http://fit.c2.com/wiki.cgi?WhatsWhat

About the author
Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding director
of the Agile Alliance (www.agilealliance.com). He is an adjunct
research professor at Carleton University, Canada and the University of
Queensland, Australia. Dave is the founder and past CEO of Object

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him
at dave@bedarra.com or www.davethomas.net.

http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showComments=true&entry=3319915651
http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showComments=true&entry=3319915651
http://www.bedarra.com/

