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Scalability is an important issue in the construction of distributed systems. Shared
object spaces provide an elegant and easy-to program abstraction for building applica-
tions. However, existing shared object spaces have been realized at the cluster level.
Use of centralized components, lack of effective failure handling mechanisms, lack of
efficient object lookup mechanisms as well as consistency maintenance are the key is-
sues that inhibit scalability of existing shared object spaces. We present the case study
of scaling an existing shared object space (Virat) to the Internet. Bottlenecks in Virat
include the granularity of consistency maintenance and Object Meta-data Repository
(OMR) failures. Both the design and implementation of Virat has been modified in
order to increase the granularity at which consistency is maintained. Virat has also
been redesigned such that the OMRs form a Peer-to-Peer (P2P) overlay in order to
handle OMR failures and improve scalability. Experimental evaluations are presented
to show that the optimized version of Virat scales better, especially over a wide-area
network. In addition, this paper also explains how to develop applications over the
shared object space, with code sketches.

1 INTRODUCTION

Distributed Shared Memory (DSM) provides an illusion of globally shared memory,
in which processors can share data, without the application developer needing to
specify explicitly where data is stored and how it should be accessed. DSM abstrac-
tion is particularly useful for parallel computing applications, as demonstrated by
TreadMarks [1]. Collaborative applications such as on-line chatting and collabora-
tive browsing would be easier to develop over a DSM.

Java/DSM [2] provides a Java Virtual Machine (JVM) abstraction over Tread-
Marks. It is an example of page based DSMs, similar to Munin [3] and TreadMarks.
Page based DSMs shared data at the level of memory pages, while object based
DSMs (also known as shared object spaces) share application objects. Page based
DSMs can be more efficient, due to the availability of hardware support for detecting
memory accesses. But due to the larger granularity of sharing, page based DSMs
may suffer from false sharing. Object based DSMs alleviate the problem by a more
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application specific granularity of sharing. Examples of object based DSMs include
Linda [4] and Orca [5]. To our best knowledge, none of the shared object spaces
have been really scaled to the Internet, as we argue below. An Internet scale shared
object space can make it easier to develop applications such as computer supported
cooperative work (CSCW) based collaborative designing and multi-player games [6],
among others.

Global shared objects [7] allows heap objects in a JVM to be shared across
nodes. Based on memory access patterns of applications, it also proposes various
consistency mechanisms to be realized efficiently. However, it uses locks and a per-
object lock manager for keeping replicas consistent. It does not address failures
of the lock manager. Java spaces specification from Sun [8] provides a distributed
persistent shared object space using Java RMI and Java serialization. It provides
Linda-like operations on the tuple space and uses Jini’s transaction specification to
achieve serializability of write operations. It also does not address fault tolerance,
an important issue for Internet scale systems.

Orca relies on an update mechanism based on totally ordered group commu-
nication to serialize access to replicas. Even though a study has shown that the
overhead of totally ordered group communication affects application performance
minimally [9]!, the study was done on a Myrinet cluster. This overhead may be-
come substantial and affect application performance adversely over the Internet.
This is primarily because the totally ordered group communication relies on a se-
quencer or uses broadcast. These could be expensive over the Internet. But Orca
has not been evaluated on the Internet scale.

We have proposed a generic scalability model for analyzing distributed systems
[10]. Tt takes the view that scalability of distributed systems should be analyzed
considering related issues such as consistency, synchronization, and availability. By
applying the scalability model on shared object spaces, we have identified the key
bottlenecks that inhibit existing shared object spaces from scaling up to the Internet:

e Centralized Components
Many existing DSMs and shared object spaces have some centralized com-
ponents that affects their scalability. For instance, Orca has a sequencer for
realizing totally ordered group communication, while others like T Spaces [11]
have a centralized component for object lookups.

e Failures
Existing shared object spaces do not handle failures. For instance, JavaSpaces
and global shared objects do not handle failures of transaction coordinator,
while Orca does not handle failure of the sequencer.

e Object Lookup
Given an object identifier (id), efficient mechanisms must exist that maps

!This is due to its choice of which objects to replicate - those with high read/write ratios and
efficient implementation of totally ordered group communication.
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the id to the node that either stores a replica or stores meta-data about the
replica. Existing shared object spaces such as T Spaces uses centralized lookup
mechanisms. Object lookup mechanisms in distributed object middleware such
as CORBA, DCOM also have difficulty in handling failures and scaling up.

e Consistency

Several existing DSM systems such as TreadMarks, Munin and shared object
spaces such as JavaSpaces provide relaxed consistency mechanism such as
release consistency and entry consistency. Relaxed consistency mechanisms
have also been explored in other areas [12, 13]. However, to our knowledge,
these mechanisms have not been evaluated in Internet scale systems. Peer-to-
Peer (P2P) systems which have been scaled to the Internet, such as Pastry
[14] and Tapestry [15] assume replicas are read-only.

Scaling up a Shared Object Space to the Internet

We have developed Virat [16], that was intended as a wide area shared object space to
addresses infrastructure support for large scale distributed applications. It supports
various object interaction styles so that applications can be architected easily. Virat
uses a novel mechanism for handling failures and provides a data centric Concurrency
Control (CC) mechanism to realize various consistency models. Virat has been
extended to a fully typed shared event space, facilitating publish-subscribe kind
of interactions and large scale event notifications [17]. However, by applying the
scalability model [10] to Virat, we find that there are bottlenecks. The goal of this
paper is to explain how we address the above mentioned problems in the context of
Virat and scale it up to the Internet.

Peer-to-Peer systems such as Pastry [14] have been proposed to handle effi-
cient, decentralized object lookups and tolerate failures. The early versions of Virat
handled OMR failures through explicit lookup servers, under the assumption that
the lookup server and the OMR in that cluster do not fail simultaneously. We
have redesigned Virat to handle OMR failures elegantly and scale up better. The
OMRs form a Pastry ring and route data through the routing protocol of Pastry
in order to find which OMR maintains information about a given object. Informa-
tion maintained in any OMR is also stored in k-replicas. The former enables the
lookup time to be only O(log(n)) for n nodes and the latter enables Virat to handle
OMR failures. Virat has been integrated with the code of Freepastry (available at
http://freepastry.rice.edu/) for object lookup and routing among the OMRs. Per-
formance evaluation over a wide-area network shows that the P2P communication
based Virat scales better.

We also find that Virat could be optimized with respect to consistency granular-
ity maintenance. We evaluate its performance and show that the optimized Virat
scales better. In the process, we experimentally compare three different design
mechanisms for achieving consistency in Virat: a two phase commit (2PC) based
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naive mechanism, a CompareAndSwap (CAS)-like update mechanism and the op-
timized mechanism. We find that the CAS-like mechanism, although it performs
well, degenerates to the optimized mechanism to handle failures and scale up.

Section 2 provides a brief overview of the existing Virat shared object space.
Section 3 describes the scalability model that we have applied to Virat. Section 4
explains the changes in design and implementation made to Virat for scaling it up.
Section 5 presents the performance evaluation of Virat over an Institute wide as
well as a wide-area testbed. Section 6 compares the modified Virat with a few other
large scale systems. Section 7 puts the paper in perspective and provides directions
for future research.

2 VIRAT: A SHARED OBJECT, EVENT AND SERVICE SPACE

Virat supports middleware services such as naming and trading as well as replica
object management. Virat uses an independent check pointing and lazy reconstruc-
tion mechanism to handle failures of OMRs. Lookup servers are also run, one in
each cluster. The lookup server maintains the current location of the OMR in that
cluster. Under the assumption that both lookup servers and OMRs in a cluster
would not fail simultaneously, failures are handled. The OMRs (one per cluster)
are responsible for cluster level management of replicas. The OMRs communicate
among themselves to locate objects across clusters.

The appendix explains how to write programs over the shared object space. A
DSM runtime object is present in every node of the system. This object serves as
the interface for the client code to access the DSM services. When the DSM runtime
object gets a request for creating shared objects, it interacts with the DSM services,
namely the lookup and OMR services and returns a replica of the object to the client.
The OMR service maintains information about objects and the current accessors for
each object. Each object has a data counter, for ensuring data centric CC [18].
The data counter is also used as a versioning mechanism that forms the basis of
reconstruction of global system states, while using independent checkpointing to
recover from failures.

The DSM runtime on each node handles the initial object discovery requests. It
looks up the object in its cache, failing which it contacts the lookup service of the
cluster. If the object has not been created before or has been created in a different
cluster, the DSM runtime sends a request to the OMR of this cluster. The OMR
creates a new unique oid for the object and gives back a copy of the object. The
OMR maintains list of current accessors for each object. When an update request
message is received from an accessor, it is propagated to all other accessors, the
order depending on the application specific consistency criteria.
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3 THE SCALABILITY MODEL

A number of studies have been made considering the scalability of distributed sys-
tems. A scalability metric based on productivity was defined in [19]. The metric
evaluates scalability as the product of throughput and response time (or any value
function) divided by the cost factor. An analytical model of server systems based
on Layered Queuing Networks (LQN) was proposed in [20]. A more general ana-
lytical model of client-server systems based on rendezvous networks was given in
[21]. It illustrates how certain slow servers could become bottlenecks and suggests
threading/cloning to relieve these bottlenecks. Recent work on design patterns for
concurrent and networked systems documents patterns such as Reactor, Half-Sync
Half-Async for efficient multi-threading in server systems [22]. Scalability of Java 2
Enterprise Edition (J2EE) technology has been evaluated in [23].

All the above efforts perceive scalability in isolation and some are even specific
to certain technologies. The inter-related issues of synchronization, consistency and
availability are neglected. One of our main conjectures is that availability, consis-
tency, synchronization and scalability are closely related and should be looked at
in totality, not in isolation. We have proposed an analytical model that considers
scalability as a function of synchronization, consistency, availability, workload and
faultload [10].

scalability = f(avail, sync, consis, workload, faultload)

e qvail is availability - can be quantified as the ratio of number of transactions
accepted versus submitted. Availability itself is a function of network avail-
ability (number of operations reaching any replica) and service availability
(number of operations accepted by a replica). If the availability requirements
are very high, a trade-off between scalability and consistency may be required.
If strict consistency is also required, the scalability of the system may be com-
promised. If consistency can be relaxed, both high availability and scalability
can be achieved [24].

e consis is consistency, itself a function of update ordering and consistency gran-
ularity. Update ordering refers to update ordering mechanisms across replicas
and can be one of causal, serializable or PRAM. Consistency granularity refers
to the grain size at which consistency needs to be maintained in the system.
There are two dimensions to consistency granularity. Caching is an important
and well known method for improving performance. The size of caching is
an important factor governing the performance. A higher size implies more
chances of program locality effects and better performance. The other di-
mension is the granularity of consistency maintenance; whether it is at the
individual replica level or using some form of aggregation. It may be easier to
maintain consistency at aggregate level than at individual replica level, but at
the cost of strictness.
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e sync refers to synchronization among the replicas. The two dimensions of
synchronization are how often the replicas are synchronized and the mode
of synchronization. The former is captured in terms of the § value [25], §
referring to the number of updates that can be buffered in a particular node
before synchronizing with others. The latter can be modeled as a v value,
with v = 0 implying a server push/invalidation model and a positive non-zero
value indicating that a replica could miss some updates and can be updated
lazily, either in push or pull mode. This may reduce the messaging overhead
and improve the scalability of the system. A similar idea has been exploited in
the notion of local consistency [13], but without any attempt at quantification.

e Workload can be broken down into workload intensity and workload service
demand characterization. Workload intensity refers to number of transactions
per second or number of clients etc. and service demand refers to CPU time
for operations, network delays etc. As workload increases, performance of the
system must degrade gracefully. Improving service demand (say by having a
faster processor) can help in graceful degradation.

e Faultload is the failure sequences and number as well as location of replicas.
In Internet scale systems, failures become important. Systems as well as net-
works are prone to failure, with increased message latencies creating additional
difficulties.

The function fcould be a mathematical function that can be used to quantify the
scalability of a distributed system. At a higher level, the fcan also be viewed as an
algorithm. The primary goal of this algorithm is to identify scalability bottlenecks in
the system. An open issue is whether the arguments to fare complete and minimal.

4 REDESIGNING VIRAT TO THE INTERNET SCALE

The scalability model is a useful tool to identify bottlenecks in distributed systems.
The scalability model has been applied to Virat and it gives directions for optimiza-
tion of Virat. First, relating to the consistency parameter, Virat has been optimized
to implement different update ordering mechanisms. These imply different con-
sistency mechanisms, namely causal consistency, sequential consistency and causal
serializability. This is in line with the established principle that relaxing consistency
ordering leads to improved scalability [13]. The stricter the consistency mechanism
that needs to be enforced, the more overhead is involved in terms of messages and
protocols. For instance, to enforce serial consistency, a two phase commit (2PC) or
a more sophisticated three phase commit (3PC) protocol may have to be in place.
Causal consistency can be implemented by a data centric mechanism [26]. Causal
serializability can also be implemented without a system wide agreement protocol.

A further optimization in Virat relates to consistency granularity. Serial consis-
tency is enforced by a 2PC protocol. The DSM objects in each node which maintain
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replicas of an object, run the 2PC among themselves. The initiator node acts as
a 2PC coordinator. 2PC may be expensive, especially in a wide-area setting. An
optimization is to ensure strict consistency only at the level of OMRs. They are
responsible for update propagation to other nodes. Thus, a serializability protocol,
if required is enforced only among the repositories and not among all replicas. This
reduces the number of participants in the 2PC algorithm, making it more efficient.
The OMRs are responsible for propagating updates to individual replicas. An inval-
idation based approach is used to maintain consistency among the OMRs, to avoid
2PC. These optimizations are expected to improve the scalability of Virat.

Fault tolerance is the other dimension along which Virat has been redesigned.
Nodes as well as networks are more prone to failure in an Internet setting, making
the initial version of Virat unsuitable. This is true especially with respect to OMR
failures. OMRs maintain information about objects or object meta-data, including
details like object id and list of accessors for the object. Each cluster has a pre-
designated node as an OMR. To handle OMR failure, a lookup server was used.
The lookup server keeps update information about the current location of its (cluster
level) OMR. The assumption was that both the lookup server and the corresponding
OMR do not fail simultaneously. This may be untenable in an Internet setting. If an
object that is created in one cluster (its meta-data is maintained by OMR1) needs to
be replicated in a different cluster (which has OMR2), OMR1 does not know which
of the OMRs has meta-data corresponding to that object. Hence, OMRI1 searches
through all the OMRs and finds that OMR2 maintains this data. This causes replica
creation requests to be delayed, especially in a wide-area setting. Thus, a better
mechanism is required to handle OMR failure and efficient object lookups across
clusters.

The OMRs form a Pastry ring and route data through the routing protocol of
Pastry in order to find which OMR maintains information about a given object.
This enables the lookup time to be only O(log(n)) for n nodes and can reduce cross-
cluster replication request times considerably. Information maintained in any OMR
is also stored in k-replicas, meaning k other OMRs. Thus, even if an OMR fails, the
routing protocol of Pastry ensures that, among the k OMRs that are alive at that
point, the message is routed to the OMR with the closest matching id. Thus, OMR
failures are also handled elegantly.

Design and Implementation

This section presents the details of redesigning Virat along the lines of consistency
granularity and fault-tolerance (P2P routing among OMRs) for scalability. We now
explain the design and implementation details of the three consistency mechanisms:
naive 2PC mechanism, a CAS-like update mechanism and an optimized 2PC mech-
anism. The client instantiates a DSM object and makes calls on that object. All the
calls are forwarded to a local DSM runtime object, which in turn forwards them to
the OMR whenever necessary. The DSM runtime object contains data structures to

VOL 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 81



G#_/ SCALING A SHARED OBJECT SPACE TO THE INTERNET: CASE STUDY OF VIRAT

maintain the objects created or read by the local node. The OMR maintains details
of objects accessed within a cluster.

Interface Additions for Naive 2PC Based Consistency Mechanism

The methods to be added to the interface of the DSM object are given below, with
brief explanations of their purpose.

e String WriteSequential (Object obj, String ClassName, Object[] dependen-
cyList)

This method allows an application to write into an object and ensure sequential
consistency. The normal Write method of Virat ensures only causal consistency by
default. This method makes the DSM object act as a 2PC coordinator and initiate
a 2PC algorithm to ensure that the write is propagated to all replicas consistently.

e public void UpdateClientList(String oid, server.returnable clientList)

This method is called from a Create method (this creates a new replica). It adds
the new replica to all the existing clients, so that whichever client initiates a 2PC,
this client is also included as a participant.

e public boolean Prepare2PC(String oid, Object obj)

This method refers to the prepare phase of 2PC among replicas to serialize
writes. This method is invoked by the 2PC coordinator. It checks local constraints
and returns true if there are no other updates pending. It returns false otherwise,
in which case the 2PC coordinator will abort in the next phase.

e public void Commit2PC(String oid, Object obj)

This method refers to the commit phase of 2PC among replicas to serialize
writes. This method is invoked by the 2PC coordinator, after it gets a 'true’ from
all replicas. Even if it gets a single 'no’ vote, the 2PC has to be aborted.

e public void Abort2PC(String oid, Object obj)

This is similar to the above for the abort phase of 2PC.
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CompareAndSwap(CAS)-like Updates

The naive 2PC based consistency mechanism of Virat can be compared to the Dis-
tributed Data Structure (DDS) approach of [27]. DDS was proposed as a centralized
interface to persistent distributed data for web services. DDS is actually based on
replication and distribution and provides atomic single element updates. The con-
sistency of the replicas are maintained by a 2PC protocol to ensure serialization.
This makes write operations very expensive and a bottleneck for scalability. Thus,
an efficient mechanism for updating replicas would be very useful.

We have developed a CAS-like primitive that is inspired from multi-processor
synchronization primitives [28]. We have implemented the CAS-like update mech-
anism by using a hierarchical tree-based multilevel CAS. It provides only serializ-
ability semantics. The main idea is that CAS-like update mechanism is optimistic,
compared to the pessimistic approach of 2PC or mutual exclusion. A simple way to
realize the CAS-like update mechanism is to have only a single node (owner) at the
top of the hierarchy. A CAS operation is done at each level of the hierarchy and
propagated up, if the local CAS succeeds. If the local CAS fails, the CAS returns
failure. Different nodes may be owners for different data items for load distribution.
However, this mechanism may not be able to handle failures. To handle failures,
multiple nodes may be required at the root of the hierarchy. But this may lead to
consistency problems at the root set. The interfaces required to realize this CAS-like
update mechanism is given below.

e Object CompareAndSwap(String oid, Object oldValue, Object newValue)

This is the CAS method on the OMR. This method is invoked by a CAS operation
from the child. If local CAS succeeds, it sends a CAS request to the owner of the
object with id as oid. If local CAS fails, it returns a failure. There is a similar CAS
method on the DSM runtime object, which is invoked by the application. The DSM
runtime object invokes CAS on the OMR of the cluster.

Optimized Consistency Mechanism - OMR Level 2PC

Consistency is maintained at the level of OMRs only, and they are responsible for
update propagation to other nodes. Thus, serializability protocol, if required is
enforced only among the repositories and not among all replicas. The number of
nodes among which agreement must be reached for serializing writes is decreased
drastically. As a result, it is much easier to implement. Further, as the number of
nodes is higher, greater is the failure probability. 2PC will be even more expensive
given failure scenarios. The optimized mechanism is hence, expected to scale better,
especially in a wide-area setting (in spite of its dynamic nature). However, this
method does not ensure strict serializability among all replicas. It is a different way
of relaxing consistency compared to the normal ways [12]. Applications which can
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tolerate slight inconsistencies such as those given in [29] can benefit. The interface
changes required to realize this mechanism are:

e The methods Prepare2PC, Commit2PC and Abort2PC on the DSM runtime
object must be moved to the OMR.

e public boolean WriteObjRepoSeq(String oid,Object obj) method must be added
to the OMR. This method will initiate the 2PC among the OMRs, with this
OMR acting as 2PC coordinator. The WriteSequential method on the DSM
object must be modified to invoke this method of the OMR.

e void notifyLocalSubscribers(Object obj, String event Type) method of the OMR?
must be modified to propagate updates to objects. Basically, the event space
of Virat [17] is being used for update propagation by the OMRs within clusters.

Incorporating Pastry Routing Among OMRs

The Freepastry implementation of Pastry provides the commonapi class. This class
is an abstraction of common APIs for P2P systems. Important methods of this
class include route(Id key, Message msg, NodeHandle hint) and replicaSet(1d id, int
maxRank). The route method implements the traditional P2P routing, ensuring
that the message is routed to the node with the closest matching id that is alive.
The deliver message on the receiving Application instance is invoked. The replicaSet
returns a set of nodes on which replica meta-data of a given object can be stored.

If an OMR invokes the route method, the deliver message on the application
process at the destination OMR is invoked. However, the originating OMR needs
a handle to the destination OMR to invoke methods such as Read, Write etc. that
are part of the OMR interface. Since, the route method does not return a handle, in
our implementation the deliver method invokes the passMyHandle on the originating
OMR to pass its own reference. The originating OMR makes invocations such as
GetObjectDetails WithID (to get details of an object created under a different OMR)
on the handle.

Each OMR maintains a list of OMRs (since it gets an invocation from the OMR,
it can get the IP address) for all objects for which it stores meta-data. This list is
used for updating OMRs for Write operations. Currently, we provide only causal
consistency in the P2P based version of Virat. It should be noted that for im-
plementing causal consistency, local operations are sufficient and global agreement
protocols may not be necessary [30]. Alternative consistency mechanisms for P2P
systems have not been explored too much in the literature, with many current P2P
systems such as Tapestry [15] assuming data is read-only. We leave it for future
research to realize other consistency models in the P2P version of Virat.

2This method normally notifies events to the local subscribers (who are within this cluster).
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An optimization to avoid 2PC among OMRs has been realized. When an OMR
needs to write an object, instead of becoming a 2PC coordinator and realizing 2PC
for serializing writes, the OMR sends an invalidate message to other OMRs. When
OMRs receive invalidate message, they invalidate the local copy of the object. A
pull based model is used for updating the values, implying that other OMRs can
pull the values from the current writer. The OMRs are responsible for propagating
the updates to the replicas within their cluster.

5 PERFORMANCE STUDIES

This section details some of the performance studies we have conducted over Virat
to show its scalability. The initial set of experiments have been conducted on an
Institute wide network, consisting of about thirty five heterogeneous machines, each
having memory from 64MB to 1GB, processing speed from 350MHz to 2.4 GHz
and running different operating systems (linux, solaris etc.). The machines are
spread across three clusters, with each cluster being connected by a 10/100 Ethernet
connection. A few nodes from an engineering college in Trichy® were used and a wide-
area testbed was formed. This testbed was used for the wide-area results reported
in this paper.

Figure 1 shows the overhead of the WriteSequential method call with increasing
number of nodes and hence clients (each node can be hosting hundreds of clients).
It can be observed that the naive Virat incurs nearly linear overheads. This non-
trivial overhead is more prominently seen in the wide area results. Thus, as the
number of Internet nodes participating in Virat increases, the naive Virat may have
trouble scaling up. This is due to the overhead involved in the 2PC algorithm that
is required to serialize the writes.
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Figure 1: Write Overheads in Naive Virat on Campus Intranet and Wide-Area
Testbeds

3 Another city in Tamil Nadu, about 200 miles from Chennai.
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Figure 2 shows the overhead of the WriteSequential method call for the CAS-like
update mechanism, with only one node at the top of the tree. It can be observed
that this method performs far better, that too with increasing number of nodes.
However, the fact that there is only one node at the top of the hierarchy implies
that this mechanism is prone to failures, both node as well as network failures. If
the number of nodes forming the top of the hierarchy is increased, failures can be
tolerated better. But, this leads to issues of synchronization between the top level
nodes. This update mechanism becomes similar to the optimized Virat mechanism
(with a 2PC at object repository level), which handles consistency such issues.
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Figure 2: Performance of CAS-like Update Mechanism on Campus Intranet

Figure 3 shows the performance of the WriteSequential method in optimized
Virat. Since the overheads of 2PC are reduced by increasing the granularity of
consistency, the performance degrades slowly, even in the wide-area testbed.

The overhead of object replication has been measured in both the naive Virat
(Virat without P2P routing between OMRs) and the P2P based Virat. These over-
heads have been measured by creating an object replica (by the Create method call
on the Virat interface) from an OMR in a different cluster than the one on which the
object was originally created. The originating OMR sequentially searches through
each of the other OMRs to find which OMRs maintain information about this object
in naive Virat. In the P2P version, the originating OMR does a P2P routing to find
the OMR which maintains meta-data about this object. Consequently, the overhead
of object replication across clusters is much higher in naive Virat compared to the
P2P based Virat. This is depicted in figure 4.
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6 RELATED WORK

Two other models have endeavoured to extend DSM across clusters: JDSM [31]
and Lemuria [32]. JDSM presents an implementation of software DSM written in
Java that can be ported to several cluster platforms. JDSM attempts to provide
complete distribution transparency, which means that the programmer is totally
transparent to the DSM. This results in non-trivial overheads to check object ac-
cesses. This, coupled with cache coherency maintenance costs and lack of adequate
failure handling mechanisms limits the scalability of JDSM. Lemuria uses a new
consistency criteria called cluster based release consistency to enable the DSM to be
used in a wide-area environment. However, no detailed study of the performance
and scalability of these DSMs have been documented in the literature.

T spaces is a shared object space from IBM [11] that adds database functionality
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to Linda tuplespace [4] and is implemented in Java to take advantage of its wider
usability. In addition to the traditional Linda primitives of in, out, read, T spaces
supports set oriented operators and a novel rendezvous operator called rhonda. How-
ever, scalability is not one of the design goals of T spaces nor has it been evaluated for
scalability. It may have difficulty scaling up, as it uses tspace server as a centralized
component. Even if an application uses multiple tspace servers, the communication
between these servers is not P2P. Hence, just like a naive Virat where communi-
cation between OMRs was not P2P, T spaces may not scale. Further, it does not
address failures. At the Internet scale, failures become a serious concern.

Legion is a middleware approach targeted at providing a global virtual computer
abstraction, that is built on top of Mentat, a parallel programming platform. Legion
addresses wide area scalability issues explicitly. However, it does not provide dis-
tribution transparency to applications. It is well known that though object request
brokers such as CORBA provide distribution transparency and various services such
as transactions, replication and fault tolerance is not easily handled. FT-CORBA,
the Fault Tolerance specification of CORBA [33] which addresses replication, still
has serious limitations with respect to: nondeterminism, transparency, three kinds
of state (application, POA, infrastructure), weak identity, replication of clients and
factories etc. [34].

Globe [35] is a middleware for constructing wide-area applications that addresses
scalability issues explicitly. However, for scaling up to the wide-area, it needs scal-
able object location services as documented in [35]. They have addressed scalable
location services for Globe in [36]. The location service is based on a worldwide dis-
tributed search tree that can be compared to the Distributed Hash Table (DHT) on
which many structured P2P systems [37] including Pastry and consequently Virat
is based on. The tree based approach is scalable in terms of performance but does
not handle node failures, whereas DHT's handle both.

7 CONCLUSIONS

We have analyzed both the geographic and numerical scalability of Virat, a shared
object space by using an analytical model that we had proposed earlier. We had to
redesign (and re-implement) Virat along two dimensions: consistency granularity -
maintain consistency at the level of OMRs; fault tolerance - make the OMRs form
a P2P overlay to handle failures and scale up better. Thus, Virat becomes a unique
scalable P2P based wide-area shared object space. To the best of our knowledge,
shared object space or Distributed Shared Memory (DSM) implementations have not
been realized over P2P systems, nor scaled to the wide-area. We have also presented
performance studies over a wide-area testbed to show the scalability improvements
made in Virat.

An interesting future direction is to make Virat a completely P2P shared object
space, instead of making only the OMRs form a P2P overlay. All the nodes could
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form the overlay, with OMRs being super-peers. We are integrating Virat into
Vishva, a two layered P2P routing substrate that we have developed as a middleware
for grid computing systems [38]. This would enable OMR data to be replicated
within a zone and make it easier to keep the data consistent. We are also building a
replication service for large data grids over Virat and Vishva. This is a step towards
our end goal of realizing large data grids over Virat. The idea of building grids over
shared object spaces is also being exploited by other researchers [39].
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APPENDIX: PROGRAMMING WITH VIRAT SHARED OBJECT SPACE

We first illustrate how the client program will look like. This program creates an
object and makes it sharable across nodes. The code to be written for accessing
this shared object from a different node is shown next. The application is a simple
chat application. It is taken for illustrative purposes and one can develop complex
applications over Virat.

class createSharedObject
{
public static void main(String args[])

{

try {
dclass chatObject = new dclass();
Dsm dsm = new Dsm();
String oid = dsm.CreateNewObject(chatObject ,"dclass");
// this means we want to share the dc object.
...... // other code.
// accept user input for next line
while (!done)

{
try
{
ch = System.in.read();
if (ch < 0 || (char)ch == ’\n’)
done = true;
else
userInput = userInput + (char) ch;
}
}

chatObject.setValue (userInput);
// this is a local change.

dsm.Write(oid,chatObject);
// this will reflect the value to others.

chatObject = dsm.Read(oid);
// fetch current value from DSM (possibly changed by other chatters)

}
catch(Exception E)
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System.out.println("Exception in client " + E.getMessage());
E.printStackTrace();

The above program has created a shared object and made it sharable. The object
(identified by its oid) can be accessed from a remote node by writing the following
code. The assumption here is that the object identifier is known at the remote node.
By using other operations such as Read, Remove in addition to the Read and Write
shown here, complex distributed applications can be developed over the Internet, as
the shared object space has been shown to be scalable. The programmer only has
to write this client code and run it on the available machines. He/She must also run
an OMR object per cluster and the DSM object in each node.

class accessSharedObject

{
public static void main(String argsl[])
{
try {
dclass chatObject = new dclass();
Dsm dsm = new Dsm();

System.out.println("value of args[0] is: " + args[0]);
// assuming oid is args[O0].

chatObject = (dclass)dsm.Create(args[0],1);

// code for getting user input, just as above.
chatObject.setValue(userInput);

// local write
dsm.Write(args[0],chatObject);

// reflects the value at all replicas

}

catch(Exception E)

{
System.out.println("Exception in client " + E.getMessage());
E.printStackTrace();

94 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 7



7 CONCLUSIONS

ABOUT THE AUTHORS

A Vijay Srinivas obtained the MS (By Research) degree from the
Distributed & Object Systems Lab, Indian Institute of Technology,
Madras in 2001 and a Bachelors in Engineering from the University
of Madras in 1998. He is currently finishing up his PhD from the
same lab under Prof D Janakiram. His research interests span dis-
tributed systems, object technology and software engineering. His
thesis is focused on building a data management platform for Peer-
to-Peer grids. He is a student member of the IEEE and a member
of the ACM. He can be reached at avs@cs.iitm.ernet.in. See also
www.cs.iitm.ernet.in/~ avs

D Janakiram is currently a professor in the Department of Com-
puter Science and Engineering, Indian Institute of Technology (I1T),
Madras, India. He obtained his Ph.D degree from IIT, Delhi. He
heads and coordinates the research activities of the Distributed and
Object Systems Lab at II'T Madras. He has published over 30 in-
ternational journal papers and 60 international conference papers
and edited 5 books. His latest book on Grid Computing has been
brought out by Tata Mcgraw Hill Publishers in 2005. He served as
program chair for 8th International Conference on Management of
Data (COMAD). He is the founder of the Forum for Promotion of
Object Technology, which conducts the National Conference on Ob-
ject Oriented Technology(NCOOT) and Software Design and Archi-
tecture (SoDA) workshop annually. He is the prinicipal investigator
for a number of projects which include the grid computing project
from Department of Science and Technology, Linux redesign project
from Department of Information Technology, Middleware Design for
Wireless Sensor Networks from Honeywell Research Labs and A Mo-
bile Data Grid Framework for Telemedicine from Intel Corporation,
USA.

He has taught courses on distributed systems, software engineer-
ing, object-oriented software development, operating systems, and
programming languages at graduate and undergraduate levels at
IIT, Madras. He is a consulting engineer in the area of software
architecture and design for various organizations. His research in-
terests include distributed and grid computing, object technology,
software engineering, distributed mobile systems and wireless sen-
sor networks, and distributed and object databases. He is a mem-
ber of the IEEE, the IEEE Computer Society, the ACM, and a life
member of the Computer Society of India. He can be reached at
djram@iitm.ac.in. See also www.cs.iitm.ernet.in/~ djram

VOL 5, NO. 7

JOURNAL OF OBJECT TECHNOLOGY 95


mailto:avs@cs.iitm.ernet.in
http://www.cs.iitm.ernet.in/~avs
mailto:djram@iitm.ac.in
http://www.cs.iitm.ernet.in/~djram

