
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5. No. 7, September-October 2006

Cite this article as follows: Klaus-Peter Löhr und Max Haustein: “The JAC System: Minimizing
the Differences between Concurrent and Sequential Java Code”, in Journal of Object
Technology, vol. 5, no. 7, September-October 2006, pp. 43-56
 http://www.jot.fm/issues/issue_2006_09/article5

The JAC System: Minimizing the Dif-
ferences between Concurrent and Se-
quential Java Code

Klaus-Peter Löhr, Freie Universität Berlin
Max Haustein, Freie Universität Berlin

Abstract
JAC is a Java extension for high-level concurrent programming, meant to hide the
notions of threads and synchronization statements from the programmer. Putting
into practice the concept of concurrency annotations suggested for Eiffel some time
ago, one of JAC's main assets is its support for minimizing the differences between
concurrent and sequential implementations of objects and computations. The paper
focuses on this aspect of JAC, presenting examples of successful applications of the
annotations and pointing out remaining weaknesses.

1 INTRODUCTION

Java was created as a concurrent language right from the beginning. Its concurrency
features, however, did not reflect the state of the art in concurrent object-oriented
programming at that time [Briot et al. 98]. A rather conservative approach was taken,
featuring explicit threading and a version of monitors that was even less safe than
previous monitor concepts. Concerning the interplay between concurrency and
inheritance, Java is a prime example of a language for which the infamous inheritance
anomaly is the rule rather than the exception. And regarding C#, Microsoft’s answer
to Java, one is led to wonder why the designers of the language did not take a
different road.

Java tries to alleviate the problems of concurrent programming by library
support. For instance, a properly synchronized version of an (unsynchronized)
java.util. TreeSet object is created by Collections.synchronized-
SortedSet(new TreeSet(...)). The java.util.concurrent classes
adopted for Java 1.5 support typical patterns and solutions for common concurrent
programming problems [Lea 04]. Several Java extensions meant to support higher-
level concurrency models have been suggested (see, e.g., [Bacon et al. 00]
[Felber/Reiter 02] [Itzstein/Kearney 02] [Milicia/Sassone 02] [Olsson/Keen 04] and
others). In addition, the aspect-oriented community, viewing synchronization just as
an aspect to be added to business logic, has suggested weaving synchronization code
into a given piece of sequential code [Kiczales et al. 01]. A similar approach is

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

encapsulating objects in what has been called composition filters [Aksit et al. 94],
synchronization rings [Holmes 99] or qualifying/ qualified types [Keedy et al. 02]
[Keedy et al. 05].

The high-level concurrency extensions to Java we are presenting here are
focussed on 1) declaratively stating concurrency aspects, thus minimizing the
differences between concurrent and sequential code, and 2) minimizing inheritance
anomalies. The extensions come as concurrency annotations, emphasizing the fact
that they can be either obeyed – giving rise to concurrent semantics – or ignored –
giving rise to sequential semantics. Objects of the same class but with differing
semantics can even coexist in one program. The extended language is called JAC – for
Java with Annotated Concurrency – and draws from previous experience with a
design for concurrency annotations for Eiffel [Löhr 93]. JAC has been implemented
through a precompiler that generates regular Java code. The system and its
documentation are freely available from http://www.inf.fu-berlin.de/inst/ag-ss/jac.
The reader is referred to the documentation and to [Haustein/Löhr 06] for checking on
semantic details that are omitted from this paper due to space limitations.

We will begin our presentation by giving a first flavour of JAC in section 2: we
investigate cases where some given sequential code has a natural concurrent
semantics as well; we also point out the limits of this view. Section 3 explores JAC
from the opposite direction: we argue that library classes should come as concurrent
(JAC) code, but in such a way that they can be used as sequential code as well, without
any performance penalty. Section 4 presents a case study and argues that there is a
close connection between the concurrent semantics and the sequential semantics of
JAC code. We conclude with sketching our implementation (section 5) and trying an
assessment of the JAC approach (section 6).

2 CONCURRENT SEMANTICS OF SEQUENTIAL PROGRAM
TEXT

In a concurrent system, objects that are shared among concurrent activities have to be
synchronized in a proper fashion. Assuming for now that concurrency is present in a
program (how this is achieved in JAC will be explained later), we look at
synchronization. Synchronization measures can be roughly classified as either
exclusion synchronization or condition synchronization. We begin with exclusion
synchronization.

Exclusion synchronization

Consider a typical Java collection class, say, the aforementioned java.util.-
TreeSet. To avoid performance penalties for sequential usage, this class is not syn-
chronized and thus cannot be used safely in a concurrent context (i.e., by more than
one thread at a time). But instead of resorting to wrappers we can take a higher-level
view and argue that the compiler should be able to add the required synchronization
code, essentially establishing the object as a monitor. This is easier said than done,
though: how can the compiler know that the object will be used by concurrent

http://www.inf.fu-berlin.de/inst/ag-ss/jac

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 45

threads? It turns out that this is not possible without considerable modifications to the
language; Guava [Bacon et al. 00] is a prime example of this approach.

A lightweight, if not fully automatic, alternative is to rely on the programmer’s
knowledge about the object’s intended usage. This is what JAC does: if a statement
containing an object creation expression is marked with a control annotation, access
to that object will be synchronized, as explained below. For instance, given a class
SimpleSet implements java.util.Set, such a statement could read

 controlled Set jobs = new SimpleSet();

Note that this annotation is not applicable to collection classes of present Java sys-
tems, because JAC relies on source code transformation. Also note that the annotation
may or may not be obeyed, depending on the context, as discussed in section 4.

controlled is slightly reminiscent of the separate keyword that has been
suggested for Eiffel/SCOOP [Meyer 97] [Nienaltowski et al. 03] [Fuks et al. 04]. There
are major differences, though, to be discussed below.

Condition synchronization

Buffers have always been a favorite study object in concurrent object-oriented lan-
guage design. Sequentially used queues and concurrently used buffers have almost
identical functionality. They behave differently only when a client tries to remove an
entry from an empty queue/buffer (given infinite capacity). Here again we can argue
that the compiler should be responsible for providing code that either raises an excep-
tion or just causes a delay, depending on whether the object is used in a sequential or
in a concurrent setting.

In a first approximation, this suggests that methods in classes envisaged for con-
current usage should not raise exceptions explicitly but should rather be equipped
with a precondition, as known from Eiffel’s requires clause. Establishing the ap-
propriate object behaviour – according to the control annotation – would again be left
to the compiler. The precondition would be interpreted as a guard for possible delays
in the concurrent case. A tentative syntax is shown in this version of a queue/buffer
class:

 class Queue<Item> { // infinite queue/buffer
 public void append(Item i) {.....}
 public Item remove() pre length>0 {.....}

 }

The rationale is, of course, that delaying makes sense because the guard refers to the
object’s state and will become true (hopefully ;-) in due time. By implication, guards
referring to a method’s arguments only should always raise exceptions if not valid.

Taking a precondition’s referral to the object’s state as a necessary and sufficient
condition for delaying is a fallacy, though. There are cases where an exception, not a
delay, is called for even in a concurrent setting. Consider the example of a “cloak
room” where objects can be deposited in exchange for a “ticket”; when picking up the
object later, the ticket has to be presented:

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

 class CloakRoom {
 public Ticket deposit(Object o) pre !full {
 return new Ticket(o); }
 public Object pickup(Ticket t) pre isValid(t) {
 return t.getObject(); }
 // storage, nested class Ticket, etc.
 }

Tickets are not reused; a ticket is invalidated by the very act of picking up the
corresponding object. The preconditions both of deposit and of pickup are
dependent on the state of their CloakRoom object. But if the check for
isValid(t) fails, an exception has to be raised in any case, irrespective of whether
the cloak room is used sequentially or concurrently. We conclude that the idea to just
furnish Java with a precondition clause the semantics of which will depend on the
control annotation is too simple-minded. So we reject the tentative pre and look for
a better solution.

3 SEQUENTIAL SEMANTICS OF CONCURRENT PROGRAM
TEXT

The delay annotation

Taking into account the arguments given above, JAC distinguishes between
preconditions and guards, featuring two additional annotations, a precondition
annotation and a guard annotation. The corresponding keywords are if and when,
respectively, and the cloak room example becomes

 class CloakRoom {
 public Ticket deposit(Object o) when !full {
 return new Ticket(o); }
 public Object pickup(Ticket t) if isValid(t) {
 return t.getObject(); }
 // storage, nested class Ticket, etc.
 }

If an object of this class is controlled, deposit may cause a delay (the guard being
re-evaluated upon each method return) and pickup may raise an exception
(ViolatedPreconditionException). If the object is not controlled, the semantics
of if and when are identical. Note that it is not unusual for a method to have both
annotations, as in

 public Ticket deposit(Object o) if o!=null when !full {
 return new Ticket(o); }

Having introduced these annotations we can no longer claim that any given sequential
class code has a natural concurrent semantics. But the inverse argument is still valid.

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 47

Exclusion synchronization revisited

JAC supports a kind of weak exclusion mechanism that is a declarative generalization
of read/write locking. A method m can be declared “compatible with methods x,y,…”
by means of a compatibility annotation, as in

 class MyMap<Key,Value> implements Map<Key,Value> {
 public void add(Key k, Value v) {.....}
 public Value lookup(Key k) compatible lookup(Key) {...}

 }

The keyword compatible is followed by a comma-separated list of method
signatures for uniquely identifying the methods in question. “x is compatible with y”
means that there are no race conditions between x and y, so their executions can
safely overlap in arbitrary ways. The simple example given above solves the
reader/writer problem between lookup and add: the method add is not
compatible with any other method; lookups can be executed concurrently.

Compatibility is a non-reflexive, non-transitive, but symmetric relation. Due to
the symmetry, redundant compatibility annotations may be omitted. This blends well
with inheritance and avoids many pitfalls with respect to inheritance anomalies. For
instance, extending the class MyMap towards

class ExtendedMap<K,V> extends MyMap<K,V> {
public boolean contains(V v) compatible contains(V),
 lookup(K) {...}
}

does not require any overriding of inherited methods. Also note that compatibility is
orthogonal to the notions of precondition and guard, and a method may well be
furnished with all these annotations. Constructing a version of the buffer example
where append is compatible with remove is left as an exercise.

The compatibility annotation - as opposed to Java’s synchronized modifier -
is attractive because omitting it means “erring” on the safe side: the result is just
stricter exclusion. In many cases, the programmer who designs a class may defer
adding compatibility annotations - or just not care about them - without introducing
race conditions.

The compatibility annotation, just like the other annotations, is ignored for
objects that are not controlled – because synchronization is not required in this case.
This means that the introduction of the compatibility annotation does not invalidate
our claim that concurrent JAC code has a natural sequential semantics.

Generating concurrency

Concurrency originates from active objects in JAC. A method can be either of
• synchronous,
• asynchronous,
• autonomous.

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

A normal Java method is synchronous. A method annotated with async, like in

 public async Object method(...) {.....} ,

is executed in an asynchronous fashion, i.e., concurrently with the caller which
continues right after the invocation; if the method is not void, a future object is
returned. An autonomous method, annotated auto instead of async, like in

 protected auto void method() {.....} ,

is executed without ever being invoked, and is repeated indefinitely (possibly subject
to delays if guarded). A class can feature an arbitrary mixture of synchronous,
asynchronous and autonomous methods. If it has at least one asynchronous or
autonomous method, it is called an active class. A JAC active object is a controlled
object of an active class. Note that the designer of the class has to be careful when
declaring a method asynchronous, ensuring that interleaving activities of caller and
callee, whatever the caller may do (!), must not have undesirable effects. We will
come back to this issue below.

Benefits of just having special methods, instead of introducing a notion like
thread or task, include - again - minimal deviation from sequential code and, by
implication, minimal susceptibility to inheritance anomalies. async and auto are
again ignored for non-controlled objects, leaving behind sequential Java code with
unaltered business logic. So here we have another example of concurrent code that is
reusable in a sequential setting, fitting this section’s theme of “sequential semantics of
concurrent program text”.

However, comparing the context of an active object (i.e., controlled) to that of a
corresponding passive object (i.e., non-controlled), we will necessarily see more
differences than for objects of non-active classes. A non-controlled object will of
course never execute its autonomous methods. Explicit invocation of such a method
(visibility allowing) is fine, but a typical concurrent context for the active version will
of course not invoke that method (while not forbidden, is has no effect).

The situation is less problematic with asynchronous methods. It is sometimes
argued, independently of a specific programming language, that executing a given
procedure/method in an asynchronous rather than a synchronous fashion is a natural
way of parallelizing sequential code. This is a fallacy, though, because the semantics
of synchronous and asynchronous execution are different. With synchrony, a caller
continuing after the call can rely on the effects brought about by the method; with
asynchrony it cannot, and the danger of races looms. So we avoid the claim that a
synchronous method has the asynchronous interpretation as its natural concurrent
semantics. But we do state that it is safe to argue the other way around: given an
asynchronous method, syntax and semantics remain the same for its synchronous
invocation in a sequential setting (unless, of course, there is explicit cooperation
among caller and callee via shared objects featuring condition synchronization).

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 49

4 SIMPLE CASE STUDY: A PARALLEL ASSEMBLER

We present a simple but non-trivial example of a concurrent JAC program that can be
transformed into a sequential version with ease. While this may not be too exciting in
itself, the purpose rather is to see the annotations in action and to appreciate the
proximity of sequential versus concurrent readings of the classes involved.
Ultimately, it is to convince the reader that it makes sense to design concurrent code
that can be used (or reused) both under a concurrent and under a sequential
interpretation.

The two-pass assembler presented below includes a parser and a code generator.
As forward references are supported, the final machine code equivalent of an
assembler statement containing a symbolic address can only be generated after the
symbol has been found by the parser. A sequential assembler would first do a
complete parse and then generate the code (or do a one-pass translation right away).
But a certain degree of concurrency between parser and generator is possible, with
two constraints: 1) the generator must not get ahead of the parser when processing the
statement sequence and 2) the generator may be slowed down further by forward
references not yet resolved by the parser. Parallel execution on a multiprocessor
would promise a certain speedup, depending on the presence of forward references
(and of course on the synchronization overhead).

Our parallel assembler gets its input from a source file f (a command line
parameter) and produces machine code in a file f.out. The parser and the generator
share the intermediate code – an object of class Code – and the symbol table – an
object of class MapImpl – produced by the parser. The translation process is set up
by the main method of class Assembler:

import java.io.*;

public class Assembler {
 static String input;
 static FileOutputStream output;
 static Code intermediate;
 static MapImpl symbolTable;

public static void main(String[] arg) throws IOException {
 input = arg[0];
 output = new FileOutputStream(input + ".out");
 controlled intermediate = new Code(new FileReader(
 input));
 controlled symbolTable = new MapImpl();
 controlled Assembler asm = new Assembler();

 asm.parser();
 asm.generator();
 System.exit(0);
 }
.....

For establishing concurrent operation of parser and generator, the parser method is
declared asynchronous. So the class introduced above continues like this:

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

async void parser() {
 for(int ip=0;;) {
 Statement s = null;
 try { s = intermediate.addStatement(); }
 catch(SyntaxErrorException e) {...}
 catch(IOException e) {...}
 if(s==null) break;
 ...
 if(s.label != null) ...
 symbolTable.put(s.label, new Integer(ip));
 ip += s.length;
 }
 symbolTable.close();
}

All error handling (for missing labels, name clashes etc.) has been omitted here for
ease of presentation. addStatement reads and parses a source statement from the
input file and appends its objectified version to the intermediate code. If the statement
is labelled, put adds the appropriate entry (with instruction pointer ip) to the
symbol table. The parser indicates the end of information flow into the symbol table
by issuing a close; we will come back to this below.

For ensuring that parser and generator can indeed proceed concurrently, the
generator method is declared compatible with the parser method. (Other
designs would be possible, e.g., introducing separate parser and generator objects.).
So the Assembler class concludes as follows:

void generator() compatible parser() {
 for(;;) {
 Statement s = intermediate.nextStatement();
 if(s==null) break;
 ...
 Integer addr = (Integer)symbolTable.get(s.target);
 int address;
 if(addr != null) address = addr.intValue();
 ...
 byte[] instruction = s.generate(address);
 try { output.write(instruction); }
 catch(IOException e) {...}
 }
 System.out.println("Done.");
 }
}

Getting the next intermediate code statement using nextStatement may block if
that statement is not available yet. Similarly, a symbol table lookup using get may
block if the symbol in question is not present yet. Note that a missing label would
cause a hangup in the generator if the parser would not signal that parsing is done and
no more symbol table entries are to be expected. This is why the parser uses close,
as shown above. The get method (see below) has to recognize this.

The class for managing the intermediate code is simple enough:

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 51

import java.util.*;
import java.io.*;
class Code { ...
 Vector code = new Vector();
 int current = 0; // instead of iterator
public Statement addStatement() throws SyntaxErrorException,
 IOException {
 Statement statement;
 ... // read and parse line, transform into statement,
 // add statement to vector of statement objects,
 // ... null if EOF !
 return statement;
 }
public Statement nextStatement() when current<code.size()
 compatible addStatement() {
 return (Statement)code.get(current++);
 }
}

The careful reader will notice that this class does not require any exclusion measures
at all when used in the special context presented here. We could achieve the desired
effect by just declaring concurrent class Code { }; this is equivalent
to stating that all methods are mutually compatible, so we would not have to struggle
with adding compatibility annotations.

The last class to be considered is MapImpl, used for the symbol table object:

import java.util.*;
class MapImpl {
 Map map = new java.util.HashMap();
 boolean closed = false;
 Object lastKey, lastValue;
public Object get(Object key) when containsKey(key)||closed
{
 boolean ok = lastValue != null &&
 key.equals(lastKey)?true:containsKey(key);
 return ok ? lastValue : null;
 }
public Object put(Object key, Object value) {
 Object res = map.put(key,value);
 return res;
 }
public boolean containsKey(Object key) {
 lastKey = key;
 lastValue = map.get(key);
 return lastValue != null;
 }
public void close() { closed = true; }
}

The MapImpl code, although largely relying on HashMap, is not quite trivial. This
is due to the fact that evaluating the crucial part of the get method’s guard,
containsKey, virtually amounts to the lookup effort itself. To avoid duplicating this

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

effort, containsKey does a complete lookup and remembers the result. Note that
ignoring the well-known caveat against side-effects of preconditions or guards, as
seen here, must go together with a thorough check that no harm is done. – We omit
the class Statement. Its code is simple, and no new insight is gained from it.

Having presented the parallel assembler, we would like to emphasize two points.
First, deleting all JAC annotations in the given code will not only produce a
syntactically correct (sequential) Java program, but this program is also free of
runtime errors and produces the same result. We do not claim that this is the case for
any imaginable JAC program (actually, it is not). But it should be obvious that the
semantics of the sequential version of a JAC program is so close to its concurrent
semantics that this version can either be used right away or after minimal
modifications.

The second point may be more important: consider library classes, not complete
programs. A library class of a JAC system should always be furnished with the
appropriate annotations for a concurrent environment (variants for restricted
concurrency may also be helpful, e.g., a buffer for only one producer and one
consumer). If such a class is used for creating a non-controlled object, no
synchronization overhead will be incurred; the object will just ignore all the
annotations. The emphasis is on ignore rather than delete (as above). Thanks to the
control annotation, objects of both kinds can even coexist in one program.

A last remark is in order. The control annotation, like all annotations, is itself
subject to control: it is ignored within non-controlled objects. Static methods are not
subject to concurrency control; they serve as “anchor points” from which all
concurrency-related behaviour emanates. This has interesting ramifications which are
beyond the scope of this paper, though.

5 IMPLEMENTATION ISSUES

For the current version of the precompiler, the annotations do not come as keywords
but as special Javadoc tags (which are ignored by the Java compiler). Aesthetically,
this is less pleasing; it has two advantages, though: 1) any JAC program is a valid
sequential Java program, so the assembler mentioned above works either in parallel
(JAC+Java compilation) or sequentially (Java compilation); 2) ease of implementation
(see below). Here is the actual version of the aforementioned nextStatement
method

/**
 * @when current<code.size()
 * @compatible addStatement()
 */
public Statement nextStatement() {
 return (Statement)code.get(current++);
 }

The precompiler uses Barat, a compiler front-end for Java [Bokowski 98]. Barat
parses Java source code files and builds an abstract semantics graph (ASG) contain-

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 53

ing name and type analysis information. The ASG is traversed using the well-known
visitor pattern. Barat provides an OutputVisitor that rewrites the source code parsed
from a file using a default syntax. Formatting issues are not covered by the ASG. The
precompiler extends the standard visitor to insert the modifications implementing the
semantics expressed by the annotations. Additional classes are generated on demand.
Note that Barat and, by implication, JAC do not support Java 1.5 (as of August 2005).
So several of the code examples given above, exhibiting generics, are dreams of the
future rather than reality.

Any class processed by the precompiler is transformed into another class that can
be used both for controlled and for non-controlled objects. Modified constructors,
parameterized according to the presence or absence of a control annotation, determine
the behaviour of the object.

Several shell scripts supporting easy usage of the system are available. In
addition, the ant tool can be used in connection with an easily adaptable build.xml.

All of this can be found on JAC’s website, http://www.inf.fu-berlin.de/inst/ag-
ss/jac, together with documentation for the language. We repeat our earlier remark
that space does not allow for a complete language description here.

6 ASSESSMENT AND CONCLUSION

Separating business logic from concurrency issues is an important principle for high-
level concurrent programming. This is not specific to Java dialects, or even to object
orientation in general; but it has the potential of blending especially well with
inheritance, mitigating inheritance anomalies.

Several examples of applying that principle to Java have been mentioned in the
introduction. JAC is unique among them in its extremely lightweight mechanism for
choosing between the sequential and the concurrent version of a class – the annotation
controlled. Its closest relative is Eiffel/SCOOP’s separate keyword, recently
also adopted for Java [Morales 05]. But note that separate (by design) implies 1)
asynchronous operations, 2) mutual exclusion of all operations, and 3)
indiscriminately interpreting all state-related preconditions as guards (which we
identified as unsound in section 3.1).

As opposed to this, JAC uses additional annotations, in order to give the
programmer more degrees of freedom. This greater flexibility comes at a price: the
annotations are not foolproof. While we may omit most annotations without causing
much harm, this is not true for the control annotation. For instance, forgetting to
declare controlled an object that is shared among several concurrent activities
would wreak havoc in most cases. Eiffel is safer in this respect. Among the Java
dialects, Guava enjoys the same degree of safety [Bacon et al. 00] (but does not enjoy
the flexibility of deciding about an object’s semantics at declaration/creation time).

The existing Java dialects suffer from inheritance anomalies to different degrees.
It should always be remembered that describing an object’s synchronization
properties in a centralized fashion, detached from the code proper, say, with a path
expression or the like, is asking for problems [Briot et al. 98]. While looking attractive
at first sight, such an approach is easily prone to inheritance anomalies because

http://www.inf.fu-berlin.de/inst/ag-ss/jac
http://www.inf.fu-berlin.de/inst/ag-ss/jac

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

extending a class will necessarily require revisiting, and probably modifying, the
synchronization expression. JAC’s rules for inheritance (described in detail in the
documentation) eliminate all inheritance anomalies except the history-related
anomaly.

Last but not least, we view async and auto as valuable assets of JAC. They
hide the notion of threads, blend extremely well with inheritance, and offer the
programmer a choice: while async and auto can be used to simulate each other,
the experience is rather unpleasant, and there is enough of a pragmatic difference to
warrant supporting both.

REFERENCES

[Aksit et al. 94] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, A. Yonezawa: “Ab-
stracting object interactions using Composition Filters”, Proc. ECOOP ’93
Workshop on Object-Based Distributed Programming, LNCS 791, pp.
152-184, Springer, 1994.

[Bacon et al. 00] D.F. Bacon, R.E. Strom, A. Tarafdar: “Guava: a dialect of Java
without data races”, Proc. Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA ’00), pp. 382-400,
October 2000.

[Bokowski 98] B. Bokowski, A. Spiegel: “Barat – a front-end for Java”, TR B-98-09,
Fachbereich Mathematik und Informatik, Freie Universität Berlin,
December 1998. See also http://barat.sourceforge.net

[Briot et al. 98] J.-P. Briot, R. Guerraoui, K.-P. Löhr: “Concurrency and distribution
in object-oriented programming”, ACM Computing Surveys, vol. 30, no. 3,
pp. 291-329, September 1998.

[Felber/Reiter 02] P. Felber, M.K. Reiter: “Advanced concurrency control in Java”,
Concurrency and Computation: Practice and Experience, vol. 14, no. 4,
pp. 261-285, April 2002.

[Fuks et al. 04] O. Fuks, J. Ostroff, R. Paige: “SECG: The SCOOP-to-Eiffel code
generator”, Journal of Object Technology, vol. 3, no. 10, pp. 143-160,
November - December 2004, http://www.jot.fm/issues/issue_2004_11/
article3

[Haustein/Löhr 06] M. Haustein, K.-P. Löhr: “JAC – Declarative Java concurrency”,
Concurrency and Computation: Practice and Experience, vol. 18, no. 5,
pp.519-546, 2006. http://www3.interscience.wiley.com/cgi-bin/abstract/
112126170

[Holmes 99] D. Holmes: “Synchronization Rings – Composable Synchronization for
Object-Oriented Systems”, PhD thesis, Mcquarie University, Sydney,
1999.

http://barat.sourceforge.net/
http://www.jot.fm/issues/issue_2004_11/article3
http://www.jot.fm/issues/issue_2004_11/%0Barticle3
http://www3.interscience.wiley.com/cgi-bin/abstract/112126170
http://www3.interscience.wiley.com/cgi-bin/abstract/%0B112126170

VOL. 5, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 55

[Itzstein/Kearney 02] G.S. Itzstein, D. Kearney: “Applications of Join Java”, Proc. 7.
Asia-Pacific Computer Systems Architecture Conf. (ACSAC 2002),
Melbourne, 2002.

[Keedy et al. 02] J.L. Keedy, G. Menger, C. Heinlein, and F. Henskens: “Qualifying
Types illustrated by synchronisation examples”, Proc. Objects, Compo-
nents, Architectures, Services and Applications for a Networked World,
Int. Conf. NetObjectDays (NODe 2002), LNCS 2591, pp. 330-344,
Springer, 2003.

[Keedy et al. 05] J.L. Keedy, K. Espenlaub, Ch. Heinlein, G. Menger, M. Evered:
“Statically qualified types in Timor”, Journal of Object Technology, vol.
4, no. 7, pp. 115-137, September/October 2005. http://www.jot.fm/issues/
issue_2005_09/article5

[Kiczales et al. 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G.
Griswold: “An overview of AspectJ”, Proc. 15. European Conf. on
Object-Oriented Programming (ECOOP ‘01), LNCS 2072 , pp. 327-353,
Springer, 2001.

[Lea 04] D. Lea: “The java.util.concurrent synchronizer framework”. Proc. Workshop
on Concurrency and Synchronization in Java Programs (CSJP ’04), pp. 1-
9, St. Johns, July 2004. http://www.podc.org/podc2004/csjp-proceed.pdf

[Löhr 93] K.-P. Löhr: “Concurrency annotations for reusable software”, Comm. ACM,
vol. 36, no. 9, pp. 81-89, September 1993.

[Meyer 97] B. Meyer: Object-Oriented Software Construction. Pearson, 1997.

[Milicia/Sassone 02] G. Milicia, V. Sassone: “Jeeg: a programming language for con-
current objects synchronization”, Proc. Joint ACM-ISCOPE Conf. on Java
Grande (JGI-02), ACM Press, 2002.

[Morales 05] F. Morales: “Eiffel-like separate classes”, http://jdj.sys-con.com/read/
36146.htm

[Nienaltowski et al. 03] P. Nienaltowski, V. Arslan, B. Meyer: “Concurrent object-
oriented programming on .NET”, IEE Proceedings – Software, vol. 150,
no. 5, pp. 308-314, October 2003. See also http://se.ethz.ch/research/
scoop.html

[Olsson/Keen 04] R.A. Olsson, A.W. Keen: “The JR Programming Language”,
Kluwer, 2004.

http://www.jot.fm/issues/issue_2005_09/article5
http://www.jot.fm/issues/%0Bissue_2005_09/article5
http://www.podc.org/podc2004/csjp-proceed.pdf
http://jdj.sys-con.com/read/36146.htm
http://jdj.sys-con.com/read/%2036146.htm
http://se.ethz.ch/research/scoop.html
http://se.ethz.ch/research/%0Bscoop.html

THE JAC SYSTEM: MINIMIZING THE DIFFERNECES BETWEEN CONCURRENT AND SE-

QUENTIAL JAVA CODE

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 7

About the authors
Klaus-Peter Löhr is a professor of computer science and head of the Systems
Software Laboratory at Freie Universität Berlin. His research interests include
concurrent systems, distributed software architecture, systems security and software
visualization. He can be reached at lohr@inf.fu-berlin.de

Max Haustein received his Dipl.-Inform. degree at Freie Universität Berlin. He is a
research and teaching assistant in the Systems Software Laboratory, working on
architecture and development of component-based software. He can be reached at
haustein@inf.fu-berlin.de

http://www.inf.fu-berlin.de/inst/ag-ss/index.E.html
http://www.inf.fu-berlin.de/inst/ag-ss/index.E.html
mailto:lohr@inf.fu-berlin.de
http://www.inf.fu-berlin.de/inst/ag-ss/index.E.html
mailto:haustein@inf.fu-berlin.de

