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Abstract 
JAC is a Java extension for high-level concurrent programming, meant to hide the 
notions of threads and synchronization statements from the programmer. Putting 
into practice the concept of concurrency annotations suggested for Eiffel some time 
ago, one of JAC's main assets is its support for minimizing the differences between 
concurrent and sequential implementations of objects and computations. The paper 
focuses on this aspect of JAC, presenting examples of successful applications of the 
annotations and pointing out remaining weaknesses. 

1 INTRODUCTION 

Java was created as a concurrent language right from the beginning. Its concurrency 
features, however, did not reflect the state of the art in concurrent object-oriented 
programming at that time [Briot et al. 98]. A rather conservative approach was taken, 
featuring explicit threading and a version of monitors that was even less safe than 
previous monitor concepts. Concerning the interplay between concurrency and 
inheritance, Java is a prime example of a language for which the infamous inheritance 
anomaly is the rule rather than the exception. And regarding C#, Microsoft’s answer 
to Java, one is led to wonder why the designers of the language did not take a 
different road. 

Java tries to alleviate the problems of concurrent programming by library 
support. For instance, a properly synchronized version of an (unsynchronized) 
java.util. TreeSet object is created by Collections.synchronized-
SortedSet(new TreeSet(...)). The java.util.concurrent classes 
adopted for Java 1.5 support typical patterns and solutions for common concurrent 
programming problems [Lea 04]. Several Java extensions meant to support higher-
level concurrency models have been suggested (see, e.g., [Bacon et al. 00] 
[Felber/Reiter 02] [Itzstein/Kearney 02] [Milicia/Sassone 02] [Olsson/Keen 04] and 
others). In addition, the aspect-oriented community, viewing synchronization just as 
an aspect to be added to business logic, has suggested weaving synchronization code 
into a given piece of sequential code [Kiczales et al. 01]. A similar approach is 
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encapsulating objects in what has been called composition filters [Aksit et al. 94], 
synchronization rings [Holmes 99] or qualifying/ qualified types [Keedy et al. 02] 
[Keedy et al. 05]. 

The high-level concurrency extensions to Java we are presenting here are 
focussed on 1) declaratively stating concurrency aspects, thus minimizing the 
differences between concurrent and sequential code, and 2) minimizing inheritance 
anomalies. The extensions come as concurrency annotations, emphasizing the fact 
that they can be either obeyed – giving rise to concurrent semantics – or ignored – 
giving rise to sequential semantics. Objects of the same class but with differing 
semantics can even coexist in one program. The extended language is called JAC – for 
Java with Annotated Concurrency – and draws from previous experience with a 
design for concurrency annotations for Eiffel [Löhr 93]. JAC has been implemented 
through a precompiler that generates regular Java code. The system and its 
documentation are freely available from http://www.inf.fu-berlin.de/inst/ag-ss/jac. 
The reader is referred to the documentation and to [Haustein/Löhr 06] for checking on 
semantic details that are omitted from this paper due to space limitations. 

We will begin our presentation by giving a first flavour of JAC in section 2: we 
investigate cases where some given sequential code has a natural concurrent 
semantics as well; we also point out the limits of this view. Section 3 explores JAC 
from the opposite direction: we argue that library classes should come as concurrent 
(JAC) code, but in such a way that they can be used as sequential code as well, without 
any performance penalty. Section 4 presents a case study and argues that there is a 
close connection between the concurrent semantics and the sequential semantics of 
JAC code. We conclude with sketching our implementation (section 5) and trying an 
assessment of the JAC approach (section 6). 

2 CONCURRENT SEMANTICS OF SEQUENTIAL PROGRAM 
TEXT 

In a concurrent system, objects that are shared among concurrent activities have to be 
synchronized in a proper fashion. Assuming for now that concurrency is present in a 
program (how this is achieved in JAC will be explained later), we look at 
synchronization. Synchronization measures can be roughly classified as either 
exclusion synchronization or condition synchronization. We begin with exclusion 
synchronization. 

Exclusion synchronization 

Consider a typical Java collection class, say, the aforementioned java.util.-
TreeSet. To avoid performance penalties for sequential usage, this class is not syn-
chronized and thus cannot be used safely in a concurrent context (i.e., by more than 
one thread at a time). But instead of resorting to wrappers we can take a higher-level 
view and argue that the compiler should be able to add the required synchronization 
code, essentially establishing the object as a monitor. This is easier said than done, 
though: how can the compiler know that the object will be used by concurrent 
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threads? It turns out that this is not possible without considerable modifications to the 
language; Guava [Bacon et al. 00] is a prime example of this approach. 

A lightweight, if not fully automatic, alternative is to rely on the programmer’s 
knowledge about the object’s intended usage. This is what JAC does: if a statement 
containing an object creation expression is marked with a control annotation, access 
to that object will be synchronized, as explained below. For instance, given a class 
SimpleSet implements java.util.Set, such a statement could read 

 
 controlled Set jobs = new SimpleSet(); 

Note that this annotation is not applicable to collection classes of present Java sys-
tems, because JAC relies on source code transformation. Also note that the annotation 
may or may not be obeyed, depending on the context, as discussed in section 4. 

controlled is slightly reminiscent of the separate keyword that has been 
suggested for Eiffel/SCOOP [Meyer 97] [Nienaltowski et al. 03] [Fuks et al. 04]. There 
are major differences, though, to be discussed below. 

Condition synchronization 

Buffers have always been a favorite study object in concurrent object-oriented lan-
guage design. Sequentially used queues and concurrently used buffers have almost 
identical functionality. They behave differently only when a client tries to remove an 
entry from an empty queue/buffer (given infinite capacity). Here again we can argue 
that the compiler should be responsible for providing code that either raises an excep-
tion or just causes a delay, depending on whether the object is used in a sequential or 
in a concurrent setting. 

In a first approximation, this suggests that methods in classes envisaged for con-
current usage should not raise exceptions explicitly but should rather be equipped 
with a precondition, as known from Eiffel’s requires clause. Establishing the ap-
propriate object behaviour – according to the control annotation – would again be left 
to the compiler. The precondition would be interpreted as a guard for possible delays 
in the concurrent case. A tentative syntax is shown in this version of a queue/buffer 
class: 

 
 class Queue<Item> { // infinite queue/buffer 
 public void append(Item i) {.....} 
 public Item remove() pre length>0 {.....} 
 ..... 
 } 

The rationale is, of course, that delaying makes sense because the guard refers to the 
object’s state and will become true (hopefully ;-) in due time. By implication, guards 
referring to a method’s arguments only should always raise exceptions if not valid. 

Taking a precondition’s referral to the object’s state as a necessary and sufficient 
condition for delaying is a fallacy, though. There are cases where an exception, not a 
delay, is called for even in a concurrent setting. Consider the example of a “cloak 
room” where objects can be deposited in exchange for a “ticket”; when picking up the 
object later, the ticket has to be presented: 
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 class CloakRoom { 
 public Ticket deposit(Object o) pre !full { 
     return new Ticket(o); } 
 public Object pickup(Ticket t) pre isValid(t) { 
     return t.getObject(); } 
 ..... // storage, nested class Ticket, etc. 
 } 
 

Tickets are not reused; a ticket is invalidated by the very act of picking up the 
corresponding object. The preconditions both of deposit and of pickup are 
dependent on the state of their CloakRoom object. But if the check for 
isValid(t) fails, an exception has to be raised in any case, irrespective of whether 
the cloak room is used sequentially or concurrently. We conclude that the idea to just 
furnish Java with a precondition clause the semantics of which will depend on the 
control annotation is too simple-minded. So we reject the tentative pre and look for 
a better solution. 

3 SEQUENTIAL SEMANTICS OF CONCURRENT PROGRAM 
TEXT 

The delay annotation 

Taking into account the arguments given above, JAC distinguishes between 
preconditions and guards, featuring two additional annotations, a precondition 
annotation and a guard annotation. The corresponding keywords are if and when, 
respectively, and the cloak room example becomes 
 

 class CloakRoom { 
 public Ticket deposit(Object o) when !full { 
     return new Ticket(o); } 
 public Object pickup(Ticket t) if isValid(t) { 
     return t.getObject(); } 
 ..... // storage, nested class Ticket, etc. 
 } 

 
If an object of this class is controlled, deposit may cause a delay (the guard being 
re-evaluated upon each method return) and pickup may raise an exception 
(ViolatedPreconditionException). If the object is not controlled, the semantics 
of if and when are identical. Note that it is not unusual for a method to have both 
annotations, as in 

 
 public Ticket deposit(Object o) if o!=null when !full { 
     return new Ticket(o); } 

Having introduced these annotations we can no longer claim that any given sequential 
class code has a natural concurrent semantics. But the inverse argument is still valid. 
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Exclusion synchronization revisited 

JAC supports a kind of weak exclusion mechanism that is a declarative generalization 
of read/write locking. A method m can be declared “compatible with methods x,y,…” 
by means of a compatibility annotation, as in 

 
 class MyMap<Key,Value> implements Map<Key,Value> { 
 public void add(Key k, Value v) {.....} 
 public Value lookup(Key k) compatible lookup(Key) {...} 
 ..... 
 } 
 

The keyword compatible is followed by a comma-separated list of method 
signatures for uniquely identifying the methods in question. “x is compatible with y” 
means that there are no race conditions between x and y, so their executions can 
safely overlap in arbitrary ways. The simple example given above solves the 
reader/writer problem between lookup and add: the method add is not 
compatible with any other method; lookups can be executed concurrently. 

Compatibility is a non-reflexive, non-transitive, but symmetric relation. Due to 
the symmetry, redundant compatibility annotations may be omitted. This blends well 
with inheritance and avoids many pitfalls with respect to inheritance anomalies. For 
instance, extending the class MyMap towards 

 
class ExtendedMap<K,V> extends MyMap<K,V> { 
public boolean contains(V v) compatible contains(V),  
                    lookup(K) {...} 
} 
 

does not require any overriding of inherited methods. Also note that compatibility is 
orthogonal to the notions of precondition and guard, and a method may well be 
furnished with all these annotations. Constructing a version of the buffer example 
where append is compatible with remove is left as an exercise. 

The compatibility annotation - as opposed to Java’s synchronized modifier - 
is attractive because omitting it means “erring” on the safe side: the result is just 
stricter exclusion. In many cases, the programmer who designs a class may defer 
adding compatibility annotations - or just not care about them - without introducing 
race conditions. 

The compatibility annotation, just like the other annotations, is ignored for 
objects that are not controlled – because synchronization is not required in this case. 
This means that the introduction of the compatibility annotation does not invalidate 
our claim that concurrent JAC code has a natural sequential semantics. 

Generating concurrency 

Concurrency originates from active objects in JAC. A method can be either of 
• synchronous, 
• asynchronous, 
• autonomous. 
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A normal Java method is synchronous. A method annotated with async, like in 
 
  public async Object method(...) {.....} , 
 

is executed in an asynchronous fashion, i.e., concurrently with the caller which 
continues right after the invocation; if the method is not void, a future object is 
returned. An autonomous method, annotated auto instead of async, like in 

 
  protected auto void method() {.....} , 
 

is executed without ever being invoked, and is repeated indefinitely (possibly subject 
to delays if guarded). A class can feature an arbitrary mixture of synchronous, 
asynchronous and autonomous methods. If it has at least one asynchronous or 
autonomous method, it is called an active class. A JAC active object is a controlled 
object of an active class. Note that the designer of the class has to be careful when 
declaring a method asynchronous, ensuring that interleaving activities of caller and 
callee, whatever the caller may do (!), must not have undesirable effects. We will 
come back to this issue below. 

Benefits of just having special methods, instead of introducing a notion like 
thread or task, include - again - minimal deviation from sequential code and, by 
implication, minimal susceptibility to inheritance anomalies. async and auto are 
again ignored for non-controlled objects, leaving behind sequential Java code with 
unaltered business logic. So here we have another example of concurrent code that is 
reusable in a sequential setting, fitting this section’s theme of “sequential semantics of 
concurrent program text”. 

However, comparing the context of an active object (i.e., controlled) to that of a 
corresponding passive object (i.e., non-controlled), we will necessarily see more 
differences than for objects of non-active classes. A non-controlled object will of 
course never execute its autonomous methods. Explicit invocation of such a method 
(visibility allowing) is fine, but a typical concurrent context for the active version will 
of course not invoke that method (while not forbidden, is has no effect). 

The situation is less problematic with asynchronous methods. It is sometimes 
argued, independently of a specific programming language, that executing a given 
procedure/method in an asynchronous rather than a synchronous fashion is a natural 
way of parallelizing sequential code. This is a fallacy, though, because the semantics 
of synchronous and asynchronous execution are different. With synchrony, a caller 
continuing after the call can rely on the effects brought about by the method; with 
asynchrony it cannot, and the danger of races looms. So we avoid the claim that a 
synchronous method has the asynchronous interpretation as its natural concurrent 
semantics. But we do state that it is safe to argue the other way around: given an 
asynchronous method, syntax and semantics remain the same for its synchronous 
invocation in a sequential setting (unless, of course, there is explicit cooperation 
among caller and callee via shared objects featuring condition synchronization). 
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4 SIMPLE CASE STUDY: A PARALLEL ASSEMBLER 

We present a simple but non-trivial example of a concurrent JAC program that can be 
transformed into a sequential version with ease. While this may not be too exciting in 
itself, the purpose rather is to see the annotations in action and to appreciate the 
proximity of sequential versus concurrent readings of the classes involved. 
Ultimately, it is to convince the reader that it makes sense to design concurrent code 
that can be used (or reused) both under a concurrent and under a sequential 
interpretation. 

The two-pass assembler presented below includes a parser and a code generator. 
As forward references are supported, the final machine code equivalent of an 
assembler statement containing a symbolic address can only be generated after the 
symbol has been found by the parser. A sequential assembler would first do a 
complete parse and then generate the code (or do a one-pass translation right away). 
But a certain degree of concurrency between parser and generator is possible, with 
two constraints: 1) the generator must not get ahead of the parser when processing the 
statement sequence and 2) the generator may be slowed down further by forward 
references not yet resolved by the parser. Parallel execution on a multiprocessor 
would promise a certain speedup, depending on the presence of forward references 
(and of course on the synchronization overhead). 

Our parallel assembler gets its input from a source file f (a command line 
parameter) and produces machine code in a file f.out. The parser and the generator 
share the intermediate code – an object of class Code – and the symbol table – an 
object of class MapImpl – produced by the parser. The translation process is set up 
by the main method of class Assembler: 

 
import java.io.*; 

public class Assembler {  
    static String input; 
    static FileOutputStream output; 
    static Code intermediate;   
    static MapImpl symbolTable; 

public static void main(String[] arg) throws IOException { 
    input = arg[0];             
    output = new FileOutputStream(input + ".out"); 
    controlled intermediate = new Code(new FileReader(  
                        input));              
    controlled symbolTable  = new MapImpl(); 
    controlled Assembler asm = new Assembler(); 
 
    asm.parser(); 
    asm.generator(); 
    System.exit(0); 
    } 
..... 
 

For establishing concurrent operation of parser and generator, the parser method is 
declared asynchronous. So the class introduced above continues like this: 
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async void parser() {  
   for(int ip=0;;) {  
     Statement s = null; 
     try { s = intermediate.addStatement(); } 
     catch(SyntaxErrorException e) {...} 
     catch(IOException e)     {...} 
     if(s==null) break; 
     ... 
     if(s.label != null) ... 
       symbolTable.put(s.label, new Integer(ip));  
     ip += s.length; 
     }  
   symbolTable.close();  
} 
 

All error handling (for missing labels, name clashes etc.) has been omitted here for 
ease of presentation. addStatement reads and parses a source statement from the 
input file and appends its objectified version to the intermediate code. If the statement 
is labelled, put adds the appropriate entry (with instruction pointer ip) to the 
symbol table. The parser indicates the end of information flow into the symbol table 
by issuing a close; we will come back to this below. 

For ensuring that parser and generator can indeed proceed concurrently, the 
generator method is declared compatible with the parser method. (Other 
designs would be possible, e.g., introducing separate parser and generator objects.). 
So the Assembler class concludes as follows: 

 
void generator() compatible parser() { 
    for(;;) {  
      Statement s = intermediate.nextStatement(); 
      if(s==null) break; 
      ... 
      Integer addr = (Integer)symbolTable.get(s.target); 
      int address; 
      if(addr != null) address = addr.intValue(); 
      ... 
      byte[] instruction = s.generate(address); 
      try { output.write(instruction); } 
      catch(IOException e) {...} 
      } 
    System.out.println("Done."); 
    }  
} 
 

Getting the next intermediate code statement using nextStatement may block if 
that statement is not available yet. Similarly, a symbol table lookup using get may 
block if the symbol in question is not present yet. Note that a missing label would 
cause a hangup in the generator if the parser would not signal that parsing is done and 
no more symbol table entries are to be expected. This is why the parser uses close, 
as shown above. The get method (see below) has to recognize this. 

The class for managing the intermediate code is simple enough: 
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import java.util.*; 
import java.io.*; 
class Code { ... 
    Vector code = new Vector(); 
    int current = 0; // instead of iterator 
public Statement addStatement() throws SyntaxErrorException, 
                    IOException { 
    Statement statement; 
    ... // read and parse line, transform into statement, 
      // add statement to vector of statement objects, 
      // ... null if EOF ! 
    return statement; 
    } 
public Statement nextStatement() when current<code.size()  
                 compatible addStatement() { 
    return (Statement)code.get(current++); 
    } 
} 
 

The careful reader will notice that this class does not require any exclusion measures 
at all when used in the special context presented here. We could achieve the desired 
effect by just declaring concurrent class Code { ..... }; this is equivalent 
to stating that all methods are mutually compatible, so we would not have to struggle 
with adding compatibility annotations. 

The last class to be considered is MapImpl, used for the symbol table object: 
 
import java.util.*; 
class MapImpl { 
    Map map = new java.util.HashMap(); 
    boolean closed = false; 
    Object lastKey, lastValue; 
public Object get(Object key) when containsKey(key)||closed 
{ 
    boolean ok = lastValue != null &&  
          key.equals(lastKey)?true:containsKey(key); 
    return ok ? lastValue : null; 
    } 
public Object put(Object key, Object value) { 
    Object res = map.put(key,value); 
    return res; 
    } 
public boolean containsKey(Object key) { 
    lastKey  = key; 
    lastValue = map.get(key); 
    return lastValue != null;  
    } 
public void close() { closed = true; } 
} 
 

The MapImpl code, although largely relying on HashMap, is not quite trivial. This 
is due to the fact that evaluating the crucial part of the get method’s guard, 
containsKey, virtually amounts to the lookup effort itself. To avoid duplicating this 
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effort, containsKey does a complete lookup and remembers the result. Note that 
ignoring the well-known caveat against side-effects of preconditions or guards, as 
seen here, must go together with a thorough check that no harm is done. – We omit 
the class Statement. Its code is simple, and no new insight is gained from it. 

Having presented the parallel assembler, we would like to emphasize two points. 
First, deleting all JAC annotations in the given code will not only produce a 
syntactically correct (sequential) Java program, but this program is also free of 
runtime errors and produces the same result. We do not claim that this is the case for 
any imaginable JAC program (actually, it is not). But it should be obvious that the 
semantics of the sequential version of a JAC program is so close to its concurrent 
semantics that this version can either be used right away or after minimal 
modifications. 

The second point may be more important: consider library classes, not complete 
programs. A library class of a JAC system should always be furnished with the 
appropriate annotations for a concurrent environment (variants for restricted 
concurrency may also be helpful, e.g., a buffer for only one producer and one 
consumer). If such a class is used for creating a non-controlled object, no 
synchronization overhead will be incurred; the object will just ignore all the 
annotations. The emphasis is on ignore rather than delete (as above). Thanks to the 
control annotation, objects of both kinds can even coexist in one program. 

A last remark is in order. The control annotation, like all annotations, is itself 
subject to control: it is ignored within non-controlled objects. Static methods are not 
subject to concurrency control; they serve as “anchor points” from which all 
concurrency-related behaviour emanates. This has interesting ramifications which are 
beyond the scope of this paper, though. 

5 IMPLEMENTATION ISSUES 

For the current version of the precompiler, the annotations do not come as keywords 
but as special Javadoc tags (which are ignored by the Java compiler). Aesthetically, 
this is less pleasing; it has two advantages, though: 1) any JAC program is a valid 
sequential Java program, so the assembler mentioned above works either in parallel 
(JAC+Java compilation) or sequentially (Java compilation); 2) ease of implementation 
(see below). Here is the actual version of the aforementioned nextStatement 
method 

/**  
 * @when current<code.size() 
 * @compatible addStatement() 
 */ 
public Statement nextStatement() { 
    return (Statement)code.get(current++); 
    } 
 

The precompiler uses Barat, a compiler front-end for Java [Bokowski 98]. Barat 
parses Java source code files and builds an abstract semantics graph (ASG) contain-
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ing name and type analysis information. The ASG is traversed using the well-known 
visitor pattern. Barat provides an OutputVisitor that rewrites the source code parsed 
from a file using a default syntax. Formatting issues are not covered by the ASG. The 
precompiler extends the standard visitor to insert the modifications implementing the 
semantics expressed by the annotations. Additional classes are generated on demand. 
Note that Barat and, by implication, JAC do not support Java 1.5 (as of August 2005). 
So several of the code examples given above, exhibiting generics, are dreams of the 
future rather than reality. 

Any class processed by the precompiler is transformed into another class that can 
be used both for controlled and for non-controlled objects. Modified constructors, 
parameterized according to the presence or absence of a control annotation, determine 
the behaviour of the object. 

Several shell scripts supporting easy usage of the system are available. In 
addition, the ant tool can be used in connection with an easily adaptable build.xml.  

All of this can be found on JAC’s website, http://www.inf.fu-berlin.de/inst/ag-
ss/jac, together with documentation for the language. We repeat our earlier remark 
that space does not allow for a complete language description here. 

6 ASSESSMENT AND CONCLUSION 

Separating business logic from concurrency issues is an important principle for high-
level concurrent programming. This is not specific to Java dialects, or even to object 
orientation in general; but it has the potential of blending especially well with 
inheritance, mitigating inheritance anomalies. 

Several examples of applying that principle to Java have been mentioned in the 
introduction. JAC is unique among them in its extremely lightweight mechanism for 
choosing between the sequential and the concurrent version of a class – the annotation 
controlled. Its closest relative is Eiffel/SCOOP’s separate keyword, recently 
also adopted for Java [Morales 05]. But note that separate (by design) implies 1) 
asynchronous operations, 2) mutual exclusion of all operations, and 3) 
indiscriminately interpreting all state-related preconditions as guards (which we 
identified as unsound in section 3.1). 

As opposed to this, JAC uses additional annotations, in order to give the 
programmer more degrees of freedom. This greater flexibility comes at a price: the 
annotations are not foolproof. While we may omit most annotations without causing 
much harm, this is not true for the control annotation. For instance, forgetting to 
declare controlled an object that is shared among several concurrent activities 
would wreak havoc in most cases. Eiffel is safer in this respect. Among the Java 
dialects, Guava enjoys the same degree of safety [Bacon et al. 00] (but does not enjoy 
the flexibility of deciding about an object’s semantics at declaration/creation time). 

The existing Java dialects suffer from inheritance anomalies to different degrees. 
It should always be remembered that describing an object’s synchronization 
properties in a centralized fashion, detached from the code proper, say, with a path 
expression or the like, is asking for problems [Briot et al. 98]. While looking attractive 
at first sight, such an approach is easily prone to inheritance anomalies because 
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extending a class will necessarily require revisiting, and probably modifying, the 
synchronization expression. JAC’s rules for inheritance (described in detail in the 
documentation) eliminate all inheritance anomalies except the history-related 
anomaly. 

Last but not least, we view async and auto as valuable assets of JAC. They 
hide the notion of threads, blend extremely well with inheritance, and offer the 
programmer a choice: while async and auto can be used to simulate each other, 
the experience is rather unpleasant, and there is enough of a pragmatic difference to 
warrant supporting both. 
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