
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 6, July - August 2006

Cite this column as follows: Won Kim: “On Assuring Software Quality and Curbing Software
Development Cost”, in Journal of Object Technology, vol. 5, no. 6, July-August 2006, pp. 35-42
http://www.jot.fm/issues/issue_2006_07/column5

On Assuring Software Quality and
Curbing Software Development Cost

Won Kim, Samsung Electronics, Suwon, S. Korea

Abstract
Software quality and software development productivity have been topics of major
interest and concern for the past three decades. The recent rapid growth in the size and
complexity of software, and the cost of developing software, has given a greater sense
of urgency to finding ways to assure quality of software and bring the cost of developing
software under some semblance of control. In this article, I will outline ways of assuring
software quality and curbing software development cost.

1 INTRODUCTION

To assure software quality, a few things have to be done right. The development team has
to be properly staffed and organized. A development process has to be in place and
followed by members of a development team. To curb the cost of developing software, a
few things have to be done. Beyond possibly outsourcing development to where the cost
is much lower, the in-house development team has to work as a cohesive team, and the
caliber of each member of the development team needs to be continually and
appropriately upgraded. Reuse of software assets has to be maximized. In the remainder
of this article, I expand on the two issues of assuring software quality and curbing
software development cost.

2 ASSURING SOFTWARE QUALITY

Software quality is determined simply by people and process. I will discuss the process
aspect first.

The Process Aspect

A software development process is the specification of a collection of steps involved in
developing software, an ordering of the steps, and a collection of deliverables in the
course of development. Various software development processes have been proposed and

ON ASSURING SOFTWARE QUALITY AND CURBING SOFTWARE DEVELOPMENT COST

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6.

adopted over the years, including the waterfall process, iterative process, Rational unified
process, etc. Some process is required for a software development project, even if it is a
one-person project. There is no such thing as “the best” process for the development of
all software. What is an appropriate process depends on a number of factors, including
the nature of software to be developed, the competitive pressure that forces the
development schedule, the size and quality of human resources that can be committed to
the development efforts, whether the software will be maintained and reused, whether
human lives or very expensive consequences are at stake, etc.

Any software development process always includes the following steps, regardless
of how well each step may be executed or whether some of the steps are well-formalized:
project planning, software requirements analysis, architecture design, detailed design, test
planning, coding, testing, and release. The first five steps constitute the “upstream” of the
process, while the latter three steps the “downstream”. If the upstream is not done
properly, the downstream efforts may suffer greatly. A change in the upstream, while the
downstream efforts are underway, forces changes in the downstream. For example, if a
requirement is added or changed while coding is well underway, the design has to
change, test plan has to be updated, and coding has to be changed. Frequent or significant
changes in the upstream can wreak havoc on the downstream, resulting in software that is
poor in quality, poor in reusability, and high in post-release maintenance cost.

The deliverables are the outputs corresponding to each of the steps: a project plan, a
software requirements specification, an architecture design specification, a detailed
design specification, a test plan, source code with block comments, test suites, and release
notes and manuals (user manuals, administrator manuals, tutorials). When outsourcing
any or all of the steps of a development process, the deliverables are the tangible means
of communication and evaluation of the results and quality of work. As such, the delivery
of each deliverable represents the synchronization point between the in-house
development team and the outsourcing partner.

The ordering of the steps in the waterfall process would be the order in which they
are listed above. In general, however, all the steps except release need to be iterated. For
example, a project plan is subject to change based on a detailed requirements analysis;
requirements analysis in turn may not really be completed without an architecture design
and detailed design, as the design efforts may reveal that some of the requirements cannot
be met; detailed design may need to be changed after coding reveals mistakes in the
design, etc.

Below I will discuss each of the steps in a software development process, except
project planning and test planning. The requirements analysis step typically starts with a
requirements specification that the marketing team has produced. Leaders of the
development team analyze the requirements specification, and make changes to it.
Changes typically reflect considerations of architecture quality attributes and constraints
related to development efforts. Architectural quality attributes include performance,
scalability, reliability, extensibility, availability, security, portability, etc. Constraints
related to development efforts include estimated schedule, availability of human

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 37

resources, development environment, availability of development-related tools and third-
party software, etc.

In the architecture design step, architects design and document the architecture.
Software architecture consists of elements that comprise the software, and relationships
and interactions among the elements. An element may be a module, process, or thread.
Relationships between elements include aggregation, specialization, depends, etc.
Interactions between elements include data passing, control passing, communication, etc.
All relevant architecture quality attributes must be considered in the architecture design.
A design may be documented in large part in textual form. It may (and should) be
augmented with visual notations, such as informal boxes and lines (a box representing a
software element, and a line representing a relationship or interaction between elements),
the increasingly popular UML (united modeling language), or some combination of
notations.

In the detailed design step, architects or developers map the architecture design to
function/class level detail, including the input and output parameters of each function, or
the attributes and methods of each class, and interactions among the functions/classes.
Techniques, algorithms and data structures relevant for the implementation of all required
functions and all architecture quality attributes must be included in a detailed design
specification.

There are two aspects of the testing step that need to be emphasized. First, contrary
to the false impression that the waterfall process may imply, the testing step should not
follow the coding step; instead, coding and testing must be started simultaneously and
performed simultaneously. In other words, the coding and testing steps should really be
merged into a single step. Only in this way, defects may be detected early, isolated within
a coding unit (a function or a class), and fixed by the developer who wrote it. If testing is
done after many coding units are assembled, pinpointing the location of defects becomes
much harder and time-consuming. Further, the same type of defect may have been
repeated in other code units, requiring all instances of the same defect to be pinpointed
and fixed.

Second, the testing step itself is not a single simple step. Instead, testing consists of
seven sub-steps or elements, including code self-inspection, unit/module testing, code
review, integration testing, system testing, field testing, and acceptance testing. Below I
discuss each of the sub-steps or elements.

Code self-inspection is the inspection of a code unit to be done by the developer who
wrote it. It is to be done when a code unit has been written, and done before or after
compilation but ideally before attempting to run the code. Code self-inspection is the
least expensive (in terms of time) and most efficient (in terms of the number and types of
defects to detect and fix) testing method. The most serious objective of code self-
inspection is to discover errors in program logic. However, it may be used effectively to
detect defects that may become very troublesome to detect at runtime. A minimal
checklist should include potential defects related to memory reference (in C or its
derivative languages -- incorrect pointer chasing, dangling pointer, indexing of memory
outside an array or structure, memory leak), responding to errors (invalid input, error

ON ASSURING SOFTWARE QUALITY AND CURBING SOFTWARE DEVELOPMENT COST

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6.

return from a function call), missing conditionals (missing case, missing default case in a
switch statement, incorrect if-else chain), and termination (incorrect loop count, incorrect
exit from the loop, incorrect computation due to incorrect looping).

Unit/module testing is the creation and execution of a test program to test a code unit
or a module (a small assembly of code units that collectively implements a particular
required function). The test program makes calls to the code unit or module being tested
with a combination of values for the input parameters, and compares the resulting outputs
against expected correct outputs. Unit/module testing should consist of positive testing
and negative testing. Positive testing uses only valid input values, while negative testing
uses only invalid input values. Through negative testing, it must be established that the
code unit will not crash or hang, but rather respond to an invalid input with appropriate
error recovery, such as return with an error message. Both positive and negative test cases
should account for “boundary” values, values at the boundary and values just outside the
boundary of correct input. Unit/module testing may primarily be black box testing, and
not bother much with white box testing. When a proper code self-inspection precedes
unit/module testing, most of the defects that can be identified through white box testing
will have been fixed.

Integration testing is the testing of a major module or subsystem that results from
assembling a set of code units. It is difficult to draw the line between a module and a
subsystem, as it depends on the nature of the required function that it implements.
Whether it is a module or a subsystem, in order to be amenable to testing, there should be
a user interface (application programming interface or graphical user interface). It is this
user interface against which integrating testing exercises the module/subsystem. As with
unit/module testing, integration testing consists of black box positive and negative
testing. However, as a module involves code units, and there are in general required
interaction orderings among code units, integration testing needs to be more
sophisticated. Specifically, integration testing should include scenario-based test cases,
both positive and negative. A scenario is a sequence of invocation of code units to
implement certain required function. A positive scenario-based test case is one that
invokes the code units in the required correct ordering, while a negative scenario-based
test case is one that invokes them in incorrect ordering. Further, the test cases created for
integration testing may be organized into a test suite, and may be rerun whenever some
changes are made to the module/subsystem under test. This is regression testing whose
purpose is to make sure that changes to existing code did not trigger defects elsewhere in
the code.

Code review is the review of source code to both detect defects and program logic,
and to identify undesirable coding practices. There are two types of code review,
depending on whether the software is developed by the development team or by
outsourcing partners. When software is developed by the in-house development team, the
most effective way is for technical leaders of the development group to review the code
of each member of the group, rather than for peers of comparable skill level to review
each other’s code. When software is received from outsourcing partners, the in-house
development team takes it over and extends it and modifies it. In such a situation, the in-

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 39

house development team has to review all or selected modules of the code for the purpose
of learning them.

System testing is essentially integration testing against full software when all code
units have been implemented and assembled. As system testing is in effect the “final”
testing, the scope of testing must be all-encompassing, including not only all required
functions, but all applicable architectural quality attributes, and boundary conditions on
system-wide parameters. System testing must stress the software on all relevant major
parameters, such as the number of files, the number of records, the number of
simultaneous users, the input rate, etc. The system test cases should be organized into a
system test suite, managed and preserved as part of project deliverables.

There is one important gray line with system testing. The responsibility of system
testing should be shared between the development group and the SQA/testing group. The
development group should do at least the “initial” system testing, on all required
functions and on all relevant architecture quality attributes, before turning it over to the
SQA/testing group. The SQA/testing group should fully exercise the software by adding
scenario-based test cases, test cases that stress the limits of the software on required
functions and architecture quality attributes.

A subset of the system test suite that can be run automatically in about six hours may
be selected and used for regression testing nightly by the development group. Such a
nightly regression test suite may be run automatically after hours, immediately after an
automatic daily build of software under development at the end of the day each day.

If the software is to be used in a geographical region that is different from where it is
developed and tested, the SQA/testing group may take the field testing step. For example,
in the case of embedded systems such as televisions, cell phones, printers, etc., different
countries may use different signals and different formats. Often, only extensive field
testing can expose certain defects, including some major ones.

The acceptance testing step is the final testing step. This should be the responsibility
of a group outside the development team (that is, not the SQA/testing group) whose
responsibility is to give a go or no-go decision on the release of software.

When software is released, often release notes accompany the software. Release
notes include a list of non-critical bugs that are known but not fixed, and instructions for
working around them. Manuals, including user manuals, references, tutorials,
administrator manuals, go out with the software. All deliverables are stored for
management and reuse for the next-release efforts.

The requirements analysis, architecture design, detailed design, coding, and testing
require formal and informal reviews. The project plan, requirements specification,
architecture design specification, detailed design specification, test plan, and system test
suite must all be reviewed by leaders of the development group and the SQA/testing
group. Source code must be reviewed within the development group as noted above.

ON ASSURING SOFTWARE QUALITY AND CURBING SOFTWARE DEVELOPMENT COST

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6.

The People Aspect

I will now discuss the people aspect in assuring software quality. The development team
needs to be organized properly and duties of each group within the team, and each
member within the group, must be clearly defined. A development team in general
consists of people who play four roles: project management, development, SQA/testing,
and maintenance. Duties of project management include project planning, schedule
creation and management, people and resource management, process compliance
management, interaction with management and marketing. Duties of the development
group include requirements analysis, architecture design, detailed design, coding, and
testing (that developers must perform). Duties of SQA/testing include test planning, test
case generation, testing, defect management, software release, and process improvement.
Development and SQA/testing have a shared duty of evaluating and adopting
development and testing tools. Duties of the maintenance group include fixing defects
discovered after release. A development team without a maintenance group gets to be
hampered in its next release efforts by having to lose a part of its next-release
development resources (often the most talented ones) to the unplanned task of tracking
down and fixing defects in the previous releases. (As such, the need for the maintenance
group is not really for assuring software quality.) (In the background, of course, there is
another role, that of system administration. Duties of system administration are to
maintain computers, and development and computing environment for the development
team, so that the development team can perform their duties.)

Staffing the SQA/testing and maintenance groups is usually a serious challenge. Due
partly to the seemingly unglamorous nature of the work involved, and partly to the
impression of a relatively lower status associated with it, software engineers are loath (to
the point of finding other employers) to being assigned to these groups. They much prefer
to belong to the development group (and create lots of defects that the SQA/testing will
uncover, and that the maintenance group will track and fix).

There are two practical ways to solve this problem. One is to require the
development group to perform those elements of testing that are rightfully developers’
responsibilities. These include code self-inspection, code review, unit/module testing,
integration testing, nightly regression testing, and initial system testing. Full system
testing then falls on the SQA/testing group. Another is to periodically move people. Some
members of the development group may be moved to SQA/testing and maintenance,
some from SQA/testing to development and maintenance, and some from maintenance to
development and SQA/testing. The period would best be determined based on
development cycle and career development needs for people involved. Leaders of the
development group and the SQA/testing group should in principle be exempt from this
role-rotation scheme, as these two groups need steady and firm leadership to function
properly.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 41

3 CURBING THE DEVELOPMENT COST

One currently fashionable way to curb software development cost is to outsource some
steps in the development process to where the cost of skilled labor is much lower. Of
course, the added cost of managing outsourcing partners and ensuring that
miscommunications do not mitigate productivity has to be taken into account. Beyond the
outsourcing route, broadly there are two ways to curb software development cost. One is
to increase productivity of the in-house development team and each member of the
development team. Another is to increase reuse of software assets. I will explore both
below.

To increase productivity of a development team, the project schedule has to be
understood and bought into by all members of the team. Further, as noted earlier, the
development team has to be properly organized and staffed, every member of the team
must understand his duties and work with other members of the team, and each group
within the team must understand its duties and work with other groups. There should be a
career development plan for each member of the development team, so that he may
receive training on new technical skills, project management skills, technical
communication skills, etc. to become a more valuable asset for the development team
(and the organization that includes the development team) for the future. The need for the
maintenance group within a development team is primarily to increase productivity of the
development team in the next-release efforts. The moving of selected members of the
development team from one group to another periodically, as mentioned earlier, serves
the purpose of training them on different aspects of software development, besides
facilitating the staffing of the SQA/testing group and the maintenance group. All the
formal and informal reviews of the deliverables of the development process also help
train members of the development team, besides helping them understand the
requirements and design of the software being developed and tested.

Beyond enhancing the caliber of each member of the development team, each
member should learn to use appropriate development and testing tools. Some are
commercial offerings, while others are free open source tools. There are of course
debuggers. There are also tools that analyze source code for various aspects of the
structure of the code and potential problems; that automatically generate test cases; that
launch test suites automatically and compare results against stored correct results; that
help manage defects; that profile performance and system resource usage; that estimate
test coverage; etc. There are simulators and emulators that allow testing without the
necessary hardware being in place. There are tools, such as DoxyGen and JavaDoc, that
help extract elements of the source code documentation for automatic inclusion in
detailed design documentation. There are tools for managing versions and configurations
of source code and other documents; for helping create requirements and design
documents in visual notations. When used judiciously, these tools can help developers
save a lot of time, and provide valuable insight into the structure and behavior of the

ON ASSURING SOFTWARE QUALITY AND CURBING SOFTWARE DEVELOPMENT COST

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6.

software they are developing. They are of course essential in managing and exchanging
deliverables.

To increase reuse of software assets, the requirements analysis, architecture design,
detailed design, and coding must be done properly. Reusable software assets include all
deliverables of the development process, not just the undocumented source code or the
binary code. If architecture design and detailed design do not properly reflect both the
functional requirements and architectural quality attribute requirements, both the designs
and, most likely, also the code resulting from the designs, will later have to be modified
substantially for the next release. If coding is done poorly, it will tend to require
substantial modifications in the next release to improve performance and reliability, to
reduce footprint size, etc. Of particular importance, with respect to reuse, is to “predict”
future modifications (adding functions), porting (different OS or chipset, different locale),
extension (interfacing to different third-party software, different peripheral devices), and
scaling (larger data set to manage, larger number of simultaneous users to support, larger
number of devices to support).

About the Author

Won Kim is Senior Advisor at Samsung Electronics, Korea. He is
Editor-in-Chief of ACM Transactions on Internet Technology
(www.acm.org/toit). He is Global General Chair of the
Human.Society@Internet International Conference. He is the recipient
of the ACM 2001 Distinguished Services Award, and is an ACM
Fellow.

http://www.acm.org/toit
mailto:Human.Society@Internet

