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Abstract 
For software engineering to meet today’s challenges, well designed reuse and com-
position mechanisms must be established in both theory and practice. Starting roughly 
ten years ago, theoretical principles and solution possibilities for assertion annotations 
in daily practice are being discussed in an ever growing number of papers and web 
pages. We present a further proposal for C++ that is based on the macro technique, 
conforms to the LSP, enables quantification, and very much resembles the way Design 
by ContractTM is implemented in Eiffel. 

1 INTRODUCTION 

In this paper I present a C++ macro package together with a technique that - while 
keeping the additional burden for the software engineer as small as possible - offer him 
much of the features of Design by Contract  (henceforth: DbC) as provided by Eiffel 
(see e.g. [Meyer97]), but avoid its deficiencies (see [Toth05]). 

TM

Though there are new ideas included in the macro packages, none of them would 
ever have been conceived without the inspiration and without the foundations laid by 
other people. What you find in this paper is what my modest C++ and time resources 
allowed me to provide using existing concepts, code and visions. However, with some 
exceptions, I will not undergo the labor to indicate sources explicitly: All of what is listed 
in the reference section has contributed in one way or the other (and perhaps some other 
sources too that I do not remember any more). 

The structure of the paper is as follows: Section 2 contains an overview of the main 
concepts and rationales behind assertion based software development and DbC. Section 3 
describes the logical and structural properties of ABS++, and in section 4 I present some 
technical details of the ABS++ and the demonstration example. The final section 
provides a summary of the main ideas and some conclusions on the technique presented 
in this paper. At the same location as the paper itself you can also find the two macro 
packages I have used as well as the example sources. A number of hints to further 
information is provided by references to papers, books, and web pages. 
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2 ASSERTIONS AND DESIGN BY CONTRACT TM 

What has been common in the area of hardware design for approximately twenty-five 
years under the name design for testability, viz. to enhance the product with means to 
increase the observability of its behavior, only during the last few years seems to gain 
some attention also within software industry. This is all the more strange, as software has 
gained a still rapidly increasing part of responsibility for the well functioning of so many 
(really or only seemingly) important things of every day life. Due to this pervasive part of 
software in modern society, its quality is important not only in the context of safety 
critical systems (e.g. nuclear power plants, cardiac pacemakers), but also for our daily life 
as a whole, from business to leisure (online banking, mobile phones, internet, cars etc.). 

The technical means for achieving design for testability in software engineering is 
assertion based programming, the logical strategy behind is best known as DbC, a 
prominent and systematic method introduced by Bertrand Meyer, the creator of the Eiffel 
language. 

What certainly should be regarded as indication of an increasing interest in this kind 
of software development starting in the mid-nineties is the growing number of 
publications in this area like e.g.: 
• a considerable number of papers dealing with the concepts and the practical use of 

assertions in general, e.g. [Binder00, chapter 17], [Mannion98], [Meyer92], 
[Meyer97, chapter11], [Mitchell02], or [Payne97]; 

• the Assertion Definition Language (ADL) developed at Sun Labs (see [ADL]); 
• newer Methods like Syntropy [Cook94], the Eiffel-related BON [Walden95] and 

Catalysis [D’Souza99], provide means for the inclusion of assertions into the 
graphical model; 

• the Object Constraint Language (OCL) becoming a supplement to the original version 
of the Unified Modeling Language (UML). Making OCL a part of UML is a 
consequence of the fact that graphical models alone are not enough for a precise and 
unambiguous specification. There often is a need to describe additional constraints 
about the objects in the model. 

• emerging support for assertions for Java (from which even the ANSI C assert 
mechanism has been removed at first, and reintroduced later on); see [Payne98], the 
iContract tool [Kramer98], Jass [Jass], or AssertMate from Reliable Software 
Technologies [AssertM]; 

• emerging support for assertions for C/C++; see the overview in [Maley00], 
[Binder99], [Porat95], or [Welch98]. 

Assertion based programming 

Although I assume many of the readers to be familiar with the topic under discussion, 
there will hopefullly also be some newcomers, and it is for them that I provide a short 
summary about the main concepts and ideas behind assertion based programming.
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Software assertions are Boolean expressions that define the correct state of a 
program at a particular location in the code. It is useful to think of them as a kind of 
watchdog having abilities which can be very helpful for you - if you are willing to 
provide them and only when you allow them to be active. They can check method calls 
for proper invocation, method code for correct computation, states of objects for 
consistency, and also individual statements for errors. Therefore, assertions may act in the 
following different roles, where the first three groups form what I call contracting 
assertions:
• Preconditions express the requirements that clients must satisfy whenever they call a 

routine, and are therefore evaluated at the entry point of a method. Preconditions are 
obligations for the client (caller), and benefits for the server (callee). 

• Postconditions inform about what the supplier (i.e. the routine) guarantees on return if 
the precondition was satisfied on entry. They have to be evaluated at all exit points of 
the method - if you allow more than one in your coding standard. Postconditions are 
obligations for the server, and benefits for the client. 

• In object-oriented projects: Class Invariants define the consistency conditions for the 
state space of a class and must be satisfied by every instance of the class whenever 
this instance is externally accessible, i.e. after creation, and after any call to an 
exported routine. Class invariants have to be evaluated at the entry and all exit points 
of all externally visible routines of a class. 

• Data assertions define the conditions that must hold at just their location in the code, 
whence they are evaluated only at just this location. You can take them for your own 
individually tailored and eventual only temporary tests. A special case of data 
assertions are loop invariants and loop variants. 

Using formal languages and methods [BowenFM] to overcome the problems of software 
development outside of some safety-critical software systems is far from getting the rule: 
This kind of formally deduced correctness is often argued to be too difficult for the 
average system modeler and thus has the great disadvantage that it can be applied by 
people with a strong mathematical background only. Thus, a steep learning curve and a 
big initial effort is to be expected for becoming familiar with it. 

Interesting alternatives in the area of formal languages and methods to overcome this 
gap between what is possible in theory and what is feasible in practice are e.g. the B-
Language [Abrial96], [Escher] or [Liu04] which allow specifications in a rather 
programming-oriented style. Another possibility that seems to be more realistic nowadays 
is assertion based programming according to DbC principles. 

As you might know, all these ideas are not really new: their roots date back at least 
to the late 60’s and the early 70’s. There is indeed a long and tedious way in formal 
methods from Floyd’s assigning meanings to programs in [Floyd67], Hoare’s axiomatic 
basis [Hoare69] to Abrial’s Assigning programs to meaning subtitle of The B-Book 
[Abrial96]. Today’s average software engineer usually does not make use, and often does 
not even know, of formal methods and corresponding tools. However, I think it is high 
time to take advantage of some of their findings, and assertion based software 
engineering may eventually prove to be a bridge between current practice and theory. 
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What is Design by ContractTM? 

“Design by Contract” denotes a software development style which (1) emphasises the 
importance of formal specifications, and (2) interleaves them with actual code. DbC is a 
systematic method of assertion usage and interpretation introduced by Bertrand Meyer as 
a standard feature of the Eiffel language. Without it, no trial would have ever been made 
to provide a similar mechanism in other languages and, by no means, would we have 
discussion papers like this and the ones mentioned in the references. 

A software contract is the specification of the behavior of a class and its associated 
methods. The contract outlines the responsibilities of both the caller and the method 
being called. Failure to meet any of the responsibilities stated in the contract results in a 
breach of the contract, and indicates the existence of a bug somewhere in the design or 
implementation of the software or - one must not forget - in the assertions themselves. 
Software contracts can be completely specified by preconditions, postconditions, and 
class invariants. 

Software construction is based on contracts between clients and suppliers. Each party 
expects some benefits from the contract, and accepts some obligations in return. As in 
human affairs, the contract document spells out these mutual benefits and obligations and 
protects both he client, by specifying how much should be done, and the supplier, by 
stating that the supplier is not liable for failing to carry out tasks outside of the specified 
scope. 

DbC is, in a way, the opposite of defensive programming, a method which 
recommends to protect every software module by as many checks as possible. This may 
result in redundancy and makes it also difficult to precisely assign responsibilities among 
modules. Software contracts are also a necessary prerequisite for introducing a notion of 
correctness: If you do not state what your program should do, you are lacking the norm to 
which to compare what your program does in reality. 

Contracts and inheritance 

As the software community has learned during the last two decades, the object-oriented 
approach is very powerful for developing large software systems. Much of this power is 
due to the key concept of inheritance. However, the statically checks enforced by e.g. 
C++ or Java compilers upon derived classes test for such syntactic and typing restrictions 
only that guarantee the lack of runtime type errors. This is the contracting and 
specification level that has been used for too many years in the past by most software 
developers. Obviously, however, this is not enough to prevent surpising and often 
disastrous behavior of programs. 

In other words, the checks done by compilers are only part of what is needed to 
reason about the behavior (i.e. the semantics) of software, especially for object-oriented 
systems when new subtypes are added. Behavioral subtyping is a technique for pre-
venting unexpected behavior in a modular way: it ensures that objects of new subtypes 
(instances of subclasses) “act like” objects of their supertypes, when used as if they were 
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supertype objects. This is what the Liskov Substitution Principle (LSP) for object-
oriented design states [Liskov88]: 

1. In class hierarchies, it should be possible to treat a specialized object as if it were 
a base class object.  

2. Or: Object-oriented functions that use pointers or references to a base class must 
be able to use objects of a derived class without knowing it. 

The basic idea here is as simple as it is important: Derived classes should not perform any 
actions that will invalidate the assumptions made by (the client of) a parent class. Put 
differently, any object of a subtype must be substitutable for an object of a supertype in 
the hierarchy without any effect on the program’s observable behavior. If the Liskov 
Substitution Principle is followed, code using a base class pointer will never break after 
another class has been added to the inheritance tree.  

This gives the basic rule governing the relationship between inheritance and 
assertions: A descendant class must obey all the ancestors’ constraints, i.e. routine pre- 
and postconditions, and the class invariants still apply. Therefore, contracting assertions 
have to be checked along the class hierarchy in a suitable way, i.e. they are used not only 
on the places where they appear in code (contrary to data assertions which have local 
impact only). The assertions of a routine specify a range of acceptable behaviors for this 
routine and its eventual redefinitions which may specialize this range, but not violate it. 

Data assertions 

Data assertions do not contribute to software contracts as outlined above, but rather are 
means to help doing some internal checks according to your specific, and usually only 
temporary, needs. They define conditions that must hold in a particular location in the 
code, and are, therefore, evaluated at this location only. As an exmaple we take a short 
look on loop variants and invariants. 

The Eiffel mechanism is described in [Rist95], p.298, as follows: "If loop assertions 
are monitored at run-time, then both the variant and the invariant will be evaluated 
immediately after loop initialization. The invariant must evaluate to true, and the variant 
must be greater than or equal to zero. If either of these conditions is not met, then an 
exception will be raised and the system will terminate. As loop execution continues, both 
the variant and the invariant will be evaluated after each iteration of the body. As before, 
the invariant must be true and the variant must be non-negative or an exception will be 
generated. The system will also check that the variant is decreased by each execution of 
the loop body." 

How much assertion monitoring?  

This section summarizes the considerations of an equally headed one in [Meyer97], pp. 
394-398, often using direct quotations from there. What level of assertion tracing to 
enable at runtime "is a tradeoff between the following considerations: How much you 
trust the correctness of your software; how crucial it is to get the utmost efficiency; how 

http://www.hyperdictionary.com/dictionary/object-oriented
http://www.hyperdictionary.com/dictionary/functions
http://www.hyperdictionary.com/dictionary/pointers
http://www.hyperdictionary.com/dictionary/base+class
http://www.hyperdictionary.com/dictionary/objects
http://www.hyperdictionary.com/dictionary/derived+class
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serious the consequences of an undetected run-time error can be." The two extreme cases 
are 
• to enable assertion monitoring at the highest level for the classes of the system during 

testing it prior to release; 
• to remove all monitoring for fully trusted systems in a runtime-critical application 

area where every microsecond counts. 
Note, however, the following remark by C.A.R. Hoare [Hoare73]: "It is absurd to make 
elaborate security checks on debugging runs, when no trust is put in the results, and then 
remove them in the production runs, when an erroneous result could be extensive or 
disastrous. What would we think of a sailing enthusiast who wears his life-jacket when 
training on dry land but takes it off as soon as he goes to sea?" 

“An interesting possibility is the option that only checks preconditions ... it has the 
advantage of avoiding catastrophes that would result from undetected calls to routines 
outside of their requirements, while costing significantly less in run-time overhead than 
options that also check postconditions and invariants. … 

This option is particularly interesting for libraries. Remember the basic rule on 
assertion violation: a violated precondition indicates an error in the client; a violated 
postcondition or invariant indicates an error in the supplier. ... But even for a perfect 
library it is useful to check preconditions: the goal is to find errors in client software.” 

One cannot give a general answer to the question of how much assertion monitoring 
to do at runtime without having some rough ideas about the performance overhead caused 
by it. As a rule of thumb one can take the following: Preconditions are often relatively 
simple conditions checking for the client's obligations like lower<= idx && idx <= upper 
etc., whereas many postconditions and invariants may include a lot of relevant 
consistency conditions expressing more advanced semantic properties; moreover, 
invariants are evaluated twice. Thus, the above advice to adhere to Eiffel's default level of 
checking the preconditions seems to be a practicable one for many situations. 

3 THE ABS++ SOLUTION 

An obvious and important fact you always have to keep in mind is the following: 
Contrary to Eiffel compilers, C++ compilers do not support software development 
according to the DbC paradigm. As a consequence, you as the developer have to support 
the compiler, i.e. you alone are responsible not only for the correct implementation, but 
also for the correct placement of pre- and postconditions (with the exception of class 
invariants), of the check invocations, and of the loop variants and invariants. Again, 
following the schematic way as proposed in the ABS++ examples in this paper, this is an 
easy and systematic task. 

In case you now have the feeling that, by using ABS++, you are forced to write a lot 
of additional code, remember the following: Whether you use Eiffel or some annotations 
in form of e.g. Java pseudocomments together with some preprocessing mechanism, in 
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any case you will have to formulate and write down your assertions – in a both 
syntactical and semantical correct way. What Eiffel or an intelligent preprocessing 
mechanism will save you, is the work you have with getting assertions handled right over 
class hierarchies. This can, however, be done in a simple and schematic way using the 
macros provided in QSubtype.h (see section 4). 

The theoretical background of ABS++ 

In this section we will give a short overview on the theoretical background of ABS++ in 
order to give the reader the possibility to compare our macro package with related work. 
Our presentation is mainly based on the results in [Chen00] and [Toth05]. 

Behavioral subtyping in ABS++ is done by the so-called weak plugin specification 
match: (Cpre → SCpre) ∧ (SCpre ∧ SCpost → Cpost). This is not a most general reuse 
ensuring  match (see Theorem 7 in [Chen00]), but it is not far from it as has been shown 
in [Toth05]. It can thus be considered as a well-suited candidate for practical purposes. 

1

Compared to the percolation pattern – which is the one used in Eiffel and all the 
other DbC implementations for C++ or Java I know (Jass excluded!) – there are two 
definitive advantages of the ABS++ mechanisms: (1) hierarchy errors are detected for 
both pre- and post-conditions, as well as class invariants; (2) never will a routine with its 
own precondition evaluating to false be executed. (Suppose that for a method m SCpre 
fails and Cpre holds; according tho the percolation pattern the effective precondition (i.e. 
what is really checked at runtime) for m in SC is SCpre ∨ Cpre ≡ false ∨ true ≡ true. Thus 
the execution of method m of class SC will start notwithstanding the fact that its own 
precondition SCpre evaluates to false, and that there is an undetected hierarchy error from 
class C to class SC with respect to m violating the Liskov Substition principle.) 

It is important to know at what points in the program execution different assertions 
have to be checked. The following table shows how pre-, postconditions and class 
invariants are used in the context of a class.

                                                           
1 A specification match M is reuse ensuring if M(SC,C) ∧ {SCpre}mSC {SCpost} → {Cpre}mSC{Cpost}, where {P}m{Q} 
represents a Hoare triple, informally stating that method m if started in a state such that P holds does stop in a state 
where Q holds. 
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     Invariant Pre-
condition 

Post-
condition 

Instance Method yes yes 1) - 

Constructor no - - 

Private Method no yes 4) - 

Method 
Entry 

Static Method no yes - 

Instance Method yes 2) - yes 

Constructor yes 3) - - 

Private Method no - yes 4)
Method Exit 

Static Method no - yes 

 
1. The preconditions of a method are checked only in case that the class invariant 

has been found valid. 
2. The class invariant is checked at the end of a method only if its postcondition has 

been found valid. 
3. You have to insert the classInvariant(_FL_) calls manually into 

constructors. This means that you have to provide at least one in order to avoid 
C++’s default constructor. 

4. You may think of doing these checks (which are not ‘official’ contracts for 
external clients of the class) using the check mechanism, in order to clearly 
differentiate between contracting and other constraints. 

Down-calling or How to manage visibility  

In this section we shortly present the technique of down-calling as proposed in [Payne97]. 
Down-calling can be used to ensure the semantic consistency of method inter-faces for 
polymorphic methods. 

Polymorphic methods with public visibility can become problematic, because clients 
may provide different implementations of both assertion and application code in derived 
classes. Down-calling solves this problem by structuring the polymorphic call so that a 
method's pre- and postconditions are always evaluated consistently across all derivations 
of a class. The technique uses two types of methods: 
• Interface methods are public but not polymorphic (whence a derived class will inherit 

them directly in the base class form); they manage the preconditions and 
postconditions for the class methods, as well as the class invariant. These methods are 
thus responsible for ensuring the logical semantics of a method across the class 
hierarchy. 

• Implementation methods are not public but polymorphic (whence a derived class can 
adapt their behavior to its specific needs) and provide the implementation for a 
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particular interface method. Since their visibility is restricted to the inheritance tree, 
clients cannot introduce improper redefinitions. 

This technique finally results in the Template Method pattern (see [Gamma95]) and looks 
like the following example: 

   void C::foo(int aParam, _DefFL_) 
   {  
      fooPre(aParam, _CallFL_); 
      fooImp(aParam); 
      fooPost(_CallFL_); 
   } 

The interface method of our example clearly is C::foo, structured in three parts: 
fooPre checks foo's precondition (and class invariant), fooImp contains the application 
code for foo, and fooPost checks the methods postcondition (and class invariant). 

The typical ABS++ pattern  

By putting the contracts into the .h files, we can emulate something which is similar to 
Eiffel’s short form, but we will never get such a beautiful and elegant layout. You can do 
one more step by using an IclassName.h file for the client interface containing all public 
methods in addition to the usual className.h (which then has to include the 
IclassName.h file) and className.cpp. 

Combining this with the considerations of the foregoing section we get a typical 
(empty) template including the class invariant and the constraints for method foo in e.g. 
C.h. Do carefully note which methods are virtual and which are not, as well as which 
methods are public and which are not. 
 

#ifndef C_hpp 
#define C_hpp 1 
 
#include "QSubtype.h" 
 
class C 
{ 
public: 
   // ... 
   void foo(int aParam, _DefFL_); 
 
protected: 
 
   int* natSequ; 
   const int  seqLen; 
 
   virtual void fooImp(int aParam); 
     
   // § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § §  
   // --------------------------------------------------------------------- 
   virtual bool classInvariant(_DefFL_) const 
   { 
       checkInvariants( 
          invariant(true, "C");    // this is an empty template 
       , file, line, C); 
   }     
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   // --------------------------------------------------------------------- 
   virtual bool fooPre(int aParam, _DefFL_) const 
   { 
      checkPreconditons( 
         require(true, "preCond_1 of C::foo"); 
      , file, line, C); 
   } 
 
   // --------------------------------------------------------------------- 
   virtual bool fooPost(_DefFL_) const 
   { 
      checkPostconditons( 
         ensure(true, "postCond_1 of C::foo"); 
      , file, line, C); 
   } 
 
   // obligatory, because internally used in ABS++, are: 
   //  
   static bool _inABSppHierarchyCheck_;  
 
public: 
 
   static bool _ABSppChecksEnabled_;  
// § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § § 
}; // end of C.hpp 
 
#endif   // C_hpp 
 

How to handle empty assertions 

It may, of course, occur that you do not have specific constraints of a certain kind for 
either a method or a class. The question, then, arises what default values to assign to such 
“empty” pre- or postconditions, or class invariants. Empty assertions are trivially set to 
true, since no constraint means no restriction whatsoever. Hence, for pre- and post-
conditions as well as for class invariants everything is okay – always, regardless of the 
concrete program state. 

Note: Do always provide the empty pre- and postconditions, and the empty class 
invariants in order to enable proper subtype and class invariant checks ! (The information 
on the class names is passed in the corresponding macros.) 

Contract Support Evaluation of ABS++  

The criteria used for evaluation of contract support are taken more or less literally from 
[Plösch02] and [Plösch04], and are split into four groups as shown in the tables below. 
(Note: For simplicity reasons the term 'system' is used for programming languages, 
programming language extensions and programming systems.)
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Basic assertion support (BAS) 

BAS-1 (Basic assertions) 

Does the system support basic assertion annotations in the implementation of a method? yes 

BAS-2 (Preconditions and Postconditions) 

Does the system support preconditions? yes 

Does the system support postconditions? yes 

May assertion expressions access properties of a class? yes 

Are properties of a class guaranteed to remain unchanged during assertion checking? yes 

May assertion expressions also contain method calls? yes 

Is it guaranteed, that a method call does not produce any side effects (especially changes 
of the state of the object)? yes 1)

BAS-3 (Invariants) 

Is it possible to formulate invariants? yes 

Are the restrictions in formulating invariants the same as for the formulation of 
preconditions or postconditions? yes 

1. Use const methods for pre- and postconditions and class invariants, but be 
cautious using the check macro. 

Advanced assertion support (AAS) 
AAS-1 (Enhanced assertion expressions) 

May assertions contain Boolean implications? yes 

May postconditions access the original values of parameters, i.e., the values at method 
entry? yes 1)

May an arbtrary expression be evaluated at method entry?  yes 

AAS-2 (Operations on collections) 

Does the system support assertion expressions on collections? yes 2)

Is it guaranteed that collections remain immutable in assertion expressions? yes 3)

May universal quantifications be expressed in the expression language? yes 2)

May existential quantifications be expressed in the expression language?  yes 2)

AAS-3 (Additional expressions) 

Does the assertion expression language have additional features? no 

Are these additional features guaranteed to be side effect free? no 

 
1. You have to provide the values at entry by using a macro. 
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2. The mechanism works for iterators too; see the vector example at the bgin of 
ABS.cpp. 

3. See note to table for Basic Assertion Support on page 11. 
 

Support for Behavioral subtyping (SBS) 
SBS-1 (Interfaces) 

Is it possible to specify contracts for interfaces? (yes) 

May contracts be added for classes implementing assertion-enriched interfaces?  - 

SBS-2 (Correctness I) 

Does the system impose any restrictions on subcontracts? yes 

Does the system ensure that preconditions may only be weakened? yes 

Does the system ensure that postconditions may only be strengthened?  yes 

SBS-2 (Correctness II) 

Does the system impose stronger requirements on subcontracts as specified in SBS-
2? yes 1)

Does the system ensure, that the correctness rules for behavioral subtyping 
[Liskov94] are not violated? yes 

 
1. Does subtype checks for class invariants too (analogous to postconditions). 

 

Runtime monitoring of assertions (RMA) 
RMA-1 (Contract violations) 

Is an exception handling mechanism available in case of violations of assertions? yes2)

Are there additional features available for dealing with assertion violations (e.g., log 
files)? yes 

RMA-2 (Configurability) 

Is it possible to enable and disable precondition checking, postcondition checking 
and invariant checking selectively? yes 

Is it possible to enable and disable assertion checking on a package, class or even 
method level? no3)

RMA-3 (Efficiency) 

Are there any additional memory requirements even when assertion checking is 
disabled? no 

Is there any additional processor usage even when assertion checking is disabled? no 

2. Depends on how you define the assertAndReact macro in QAssert.h. 
Alternatively, you may think of integrating exeception handling in another way, 
e.g. as shown in section 5. 
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3. Possible on class level; but does not make very much sense in the light of proper 
subtype checking. 

4 THE ABS++ MACRO PACKAGES AND SOME EXAMPLES 

QAssert.h 

This part of ABS++ is due to [Mueller94], with some slight modifications and renamings. 
It is here where quantifiers are made possible. For technical details we have to refer the 
reader to [Mueller94], but in order to make the current paper a rather self contained piece 
of information and to prevent any difficulties concerning the availability of the October 
1994 CUJ issue, we give some hints on how to use this macro package. 
• assertAndReact has the same effect as the normal assert, but additionally it outputs 

all values given in the second parameter to a special output stream, and thus it avoids 
the secrecy of assert about the values that caused the assertion to fail. This is 
especially useful in connection with the forall and exists conditions, because 
knowing which cycle of the internal for loop failed is important for tracing an error. If 
you want to output the loop variable in case an assertion fails, you must declare it at 
the global scope as shown in the examples of in the subsequent section.  
Both the output stream and the reaction on errors can be changed simply by 
redefining the macros ASSERTSTREAM and REACT_ON_ERROR, respectively. Note, 
however, that due to the definition of assertAndReact as an expression, 
REACT_ON_ERROR must be an expression, too. 

• There are two restrictions on forall and exists conditions: They cannot be used 
as conditions in if statements, and they cannot be used inside a parenthesized 
subexpression. To work around the following:  
   require( constraint_1 && ( constraint_2 || forall((int 
. . .)) ); 

• you have to write:  
   require( constraint_1 );  
   require( constraint_2 || forall((int . . .) );       

• There may also arise the need for adapting the QAssert.h macros to the specific needs 
of your project, e.g in the following way: 

      #define assertAndReact(errorId,line,file,errorInfo)\ 
         YourErrorHandler::errorHandler().\ 
            raiseError(errorId, line, file, errorInfo) 
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QSubtype.h 

The ABS++ macro package (in file QSubtype.h) provides some simple macros that 
correspond to Eiffel’s DbC philosophy and approximate also its syntax. It consists of two 
logical layers: 
• The basic assertion layer defines the four kinds of clauses that Eiffel provides for 

formulating constraints on methods, classes, or statements: 
• require for preconditions; 
• ensure for postconditions; 
• invariant for class invariants; and 
• check for non-contracting constraints. 

Furthermore we use 
• LoopInvariant for loop invariants; 
• InitVariant and LoopVariant for loop variants. 

 
Via CONTRACT_LEVEL you can define check levels similar to Eiffel: 
 

//----------------------------------------------------------------------- 
// CONTRACT_LEVEL - this defines the various levels of checking. 
//    (see p.133 of "Eiffel: the language" by Bertrand Meyer) 
//----------------------------------------------------------------------- 
// 
#define  CHECK_NOTHING    0 
#define  CHECK_REQUIRE    1   // require 
#define  CHECK_ENSURE     2   // require + ensure 
#define  CHECK_INVARIANT  3   // require + ensure + invariant 

 
 
//CONTRACT_LEVEL - the level of checking to be used for next compilation. 
// 
#ifndef CONTRACT_LEVEL 
//#define CONTRACT_LEVEL CHECK_NOTHING 
//#define CONTRACT_LEVEL CHECK_REQUIRE 
//#define CONTRACT_LEVEL CHECK_ENSURE 
#define CONTRACT_LEVEL CHECK_INVARIANT 
#endif 

 

In addition to and independent from this Eiffel-like layering for contracting assertions, in 
ABS++ you can also define data assertions using check macros which also provide 
different levels, as well as constraints for loops.  

Examples for the usage of the check feature can be found e.g. in Anything.cpp or at 
the begin of ABS.cpp in conntection with the iterator tests, and for loops a little bit later 
in this paper. You have control over these checking mechanisms if you e.g. #define 
CHECK_LEVEL 1 or #define CHECK_LOOPS according to your needs. 
• The subtype control layer macros enable you to write 

- Preconditions  (checkPreconditions), 
- Postconditions (checkPostconditions, upwardsCheck), 
- class invariants (checkInvariants, checkInvars), and 
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- subtype checks (checkPreSubtype, checkPreSubtype_P1, checkPreSubtype2, 
checkPostSubtype, checkPostSubtype2, checkInvSubtype, checkInvSubtype2) in a 
comfortable way. 

Note, that you do not need to bother with the invariant checking macros: they are 
implicitly used by the pre- and postcondition checks. Do also note that it is 
straightforward how to extend the subtype checking macros to deal with more than two 
parent classes if you ever will want to use multiple (not simple code inheritance but) 
subtyping, or to properly handle more than one method parameter according to the 
following scheme. (This is a stupid thing, but somehow you must provide the intelligence 
that is otherwise included in tool algorithms.) 

   

 #define checkPreSubtypeM_PN(myCond, superCond, par1, …, parN, \ 
           file, line, myClass, superClass1, …, superClassM) 
 

Where: 
M  >= 2: number of direct parent classes in case of multiple subtyping, and 
N >= 1: number of parameters. 
Our general checking policy is as follows: 

• Each of the checkXXX blocks can have several clauses all of which we want to 
check in order to get as much error information as possible. Therefore, we do not stop 
at the first clause that has been found to fail, but continue checking all clauses. So we 
need a checksOkay_ flag for each of the checkXXX blocks for making the final 
decision if an error has been detected in the sequence of its clauses. 

• Each class with pre- or postconditions has to provide a function with the name 
classInvariant, which is called from both the checkPreXXX and 
checkPostXXX macros in an appropriate way. This is the only thing you have to do 
for class invariant checks.  

• The preconditions of a method are checked only in case that the class invariant has 
been found valid, and the class invariant is checked at the end of a method only if its 
postcondition has been found valid. 

• Contrary to Eiffel, where non-contracting data assertions can be activated only on top 
of the other three kinds of assertions (i.e. only if require, ensure, and invariant have 
already been switched on), ABS++ keeps such data assertions via check completely 
independent from contracting assertions and also provides a separate level mechanism 
for them), in order to eventually avoid runtime penalties. 

• In postconditions it sometimes makes sense to compare the new value of a variable 
with the old one, i.e. we want to check a certain relationship x’ = f(x, …), with x’ 
denoting the new value. Contrary to Eiffel, C++ does not provide a mechanism that 
saves the old value before the execution of a method’s body; therefore, it is up to you 
as the programmer to do that. Using QSubtype.h you can use the old-mechanism in a 
very simple way as shown in the following code (from C.hpp): 
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    // ----------------------------------------------------------------------- 
    virtual bool fooPre(int aParam, _DefFL_) const 
    { 
        saveold("seqLen" , seqLen); 
        saveold("aLong"  , aLong); 
        int j = 0; // NOTE: You MUST declare the loop variables here in order to 
                   //       have them ready for output !! 
 
        // check for nonnegative parameter & bounded range 
        checkPreconditons( 
           require(aParam >= 0, " preCond1 failed in C::foo"); 
           require( 
               forall((j=0; j<seqLen; j++),  
                      1 <= natSequ[j] && natSequ[j] <= seqLen), 
               ": for j=" << j << ": natSequ[j]=" << natSequ[j] << " in C::foo!" 
               ); 
           require(implies(true, true),  
                   ": Demo of implication usage in C::foo!"); 
        , file, line, C); 
    } 
 
    // ----------------------------------------------------------------------- 
    virtual bool fooPost(_DefFL_) const 
    { 
       // check for special sequence &  some unchanged values 
       checkPostconditons( 
            ensure(forall((j=0; j<seqLen; j++), natSequ[j] == seqLen - j), 
                " for j=" << j << "! ( =" << natSequ[j] << " ) in C::fooPost" 
                ); 
            ensure(old("seqLen") == seqLen, 
                   " seqLen has changed in C::foo to " << seqLen);   
            ensure(old("aLong")  == aLong,   
                   " aLong has changed in C::foo to " << aLong); 
        , file, line, C); 
    }   
   
 

In ABS++ you can easily turn on and off (in part (1) of Qsubtype.h) 
• a trace of the assertion mechanism, either for debugging this mechanism itself, or to 

gain a better understanding of it by activating the appropriate definition of the 
TRACE_CONTRACT macro; 

• the check of invariants in preconditions (in case you are sure that you need not check 
for the indirect invariant effect; see [Meyer97]); 

• the data assertions mentioned above using the check and the CHECK_LEVEL, and 
the CHECK_LOOPS macros mechanisms as desired; 

• the checking of the contracting assertions on three increasing severity levels: 
•  (a): preconditions, (b): (a) + postconditions, and (c): (b) + class invariants; 
• on a per class basis all kinds of contracting assertions by appropriately initializing the 

public static bool _ABSppChecksEnabled_ attribute. In the light of subtype 
checking however, this is a possible but not very meaningful strategy. 

With ABS++ you can easily 
• redirect the output of ABS++ via the ASSERTSTREAM macro in Qassert.h (in the 

example I use cout or ABSppLog connected to a file in ABSppGlobals.h). 
• adapt the REACT_ON_ERROR macro in Qassert.h to your preferred error handling 

strategy by redefining it to a call of a project specific error handler (in the example I 
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simply use exit(333) or WaitForEnterKey() which does not immediately stop 
after an assertion violation, but allows to continue, mainly for testing purposes of 
ABS++ itself. 

• handle recursive function calls correctly: Due to the separation of the contracts from 
the implementation, the recursion naturally is in the fooImp; so only the outermost 
call is checked against the contract. 

• follow the “Don’t check the checker” rule: Just call fooImp instead of foo. This 
may eventually interfere with the visibility constraints if called from outside the 
implementing class; if this is the case, you might provide a suitable query for clients 
[Mitchell02, ch. 2]. Remember: Contracts have to be side-effect free! 

• (A feature of a class, i.e. an attribute or a method, is either a query (which yields 
information about but does not change the visible properties of an object) or an 
command (which might change the object but does not return a result). The idea is 
that queries do not need any precondition, nor does it guarantuee anything: by 
definition it must not change an object’s state.)  

• start into an already running project: Doing things correctly, there should be no 
troubles. 

Some small examples 

• We start with a small and simple example for loop checking (the loop variant 
construction has been adapted from [Marin96]): 
 

   int k; 
   int total; 
 
   total = 0; 
   InitVariant(k); 
 
   for (k=1; k <= 10; k++) { 
      total += k; 
 
      // check invariant: total == sum of all integers from 1 to k ? 
      LoopInvariant((1 <= k && k <= 10 && total == k*(k+1)/2), 
                    "loop invariant for k !!! (total = " << total  
                    << "/k = " << k << ")"  
                   );  
      LoopVariant(10-k, "loop variant is " << 10-k  
                  << "(for k = " << k <<")", k); 
      }     

 

By placing the loop variant and invariant at the end of the loop body you only loose their 
check after initialization. However, it is reasonable to assume that a wrong initialization 
will have some severe impacts on the calculation of the loop's body and will thus not go 
undetected through the check at its end. Though you will not get the exact Eiffel behavior 
in that way, you will be able to work with a sufficiently close approximation to it. 
• Here is an example for the nested usage of quantifiers (but perhaps not necessarily for 

clever C++ data structures) that checks if all possible triples are there: 
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      forall((i = 0; i < MAX_i; i++), 
      forall((j = 0; j < MAX_j; j++), 
      forall((k = 0; k < MAX_k; k++), 
         exists((int ii = 0; ii < MAX_i; ii++), 
         exists((int jj = 0; jj < MAX_j; jj++), 
         exists((int kk = 0; kk < MAX_k; kk++), 
            (*table->operator()(ii,jj,kk)).i == i && 
            (*table->operator()(ii,jj,kk)).j == j && 
            (*table->operator()(ii,jj,kk)).k == k 
            ))) 
         ))) 

 

• Here is an example that shows how subtype checks over the class hierarchy have to 
be written for the precondition of method foo of class SC which is a subclass of C, 
using one parameter: 

    
   virtual bool fooPre(int aParam, _DefFL_) const 
   { 
      int i=0, j=0; 
      checkPreSubtype_P1( 
         require(aParam >= 0, " preCond1 failed in SC::foo"); 
 
         // check for permutation containing all of 1,2,3, ... seqLen 
         require( 
            forall((i=1; i<=seqLen; i++), 
               exists((j=0; j<seqLen; j++),  
                  natSequ[j] == i 
                  ) 
               ), 
            ": i = " << i << " is missing in SC::foo!" 
            ); 
         , fooPre, aParam, file, line, SC, C); 
   } 

         

The demonstration example 

Let us have a short look on how these principles are used in the 
attached example files where you can find the main program together 
with a sample output for which the assertions have been configured in 
a way to give a complete walk through. Thus you can trace how 
assertion checking is done across the class hierarchies according to 
DbC and subtype requirements. 

In order to facilitate understanding I have chosen a very simple 
class hierarchy as follows: we have two base classes C and C1, with 
SC inheriting from C, and SSC from SC and C1, i.e. we work with 
multiple inheritance. The consequence of this you can see in the 
implementation methods of the class SSC, viz. 

SSC::ClassInvariant, SSC::fooPre, and SSC::fooPost, where you have to 
check for both ancestor classes, i.e. C1 and SC. Note that, while traversing across the 
class hierarchy is done in the implementation methods, the invocation of the class 
invariants and the checks for the instrumentation level is done in the Qsubtype.h macros. 

C

C1SC

SSC

Do also be aware that the contents of the pre- and postconditions and of the 
invariants in our example serve mainly for documentation purposes. The §-ed comment 
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lines are bordering those parts of the program text that deal with DbC stuff: Do not get 
fooled by their size compared to the rest, but take into account that, practically, we do not 
have any real code. 

Scattered about the code there are lines marked with ‘failure# # # # # # #’; 
they contain statements that cause the error as indicated in the comment above it. The 
kind of error occurs only when the activation of the corresponding statement is done 
starting from the original source, i.e. assertion violations are – obviously - not 
independent from each other. Eventually, you will thus have to do a short play for 
producing them. 

5 SUMMARY AND CONCLUSIONS 

Following the DbC paradigm in the way as proposed here has some remarkable 
advantages: 
• You do not need a tool in addition to the C++ compiler of your choice. 
• You do not need to learn another language or pseudocomment syntax: Following the 

method proposed in this paper you write normal C/C++ code. The only thing you 
have to take care of is to place and type things appropriately; but this can be done in 
an easy and schematic way using the template routines of the example. 

• You can use quantified assertions explicitly. Thus you can translate predicate logic 
specifications of e.g. BON, Catalysis, or Syntropy (which you may have formulated 
in OCL, eventually) directly into code.  

• You gain seamlessness, i.e. it is possible to use a single notation and a single set of 
concepts throughout the software life cycle, from analysis and design, to 
implementation and maintenance.  

• You may also overcome the programmer’s usual resistance against what they feel 
excessive documentation requests burdened upon them by management, an emotion 
that - we should frankly admit it - is not unknown to most of us. Where does this 
come from? Rather sooner than later in the design phase, experienced software 
engineers tend to write down syntax fragments instead of prose, because at some 
point they start to think mainly or also in programming language constructs. Using 
assertions they can do just that, normally gaining a lot of benefits of both 
psychological (they feel good because they write down what they can use 
immediately), but also of technical kind (they save the error prone activity to translate 
everything from ambiguous natural-language texts or UML diagrams to exact, but 
executable specifications in a programming language). And managers should not 
forget that, in addition to the just mentioned advantages, software contracts also can 
provide documentation which is much more exact than just pure prose. As always, a 
good mixture of the two will yield the best results. 

• You can - and this is the most important of all the benefits - apply a win-win strategy 
using assertion based software engineering with obvious advantages for both your 
customer and you as the developer of a software system. 
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Applying the ideas underlying DbC can help us a lot on the way towards correct and 
reliable software: 
• Writing contracts from the very beginning enforces developers to state what they are 

trying to do already during design. This definitely helps doing it right! 
• Assertion based programming in general, and DbC as a systematic and well defined 

variant of it especially, should be regarded as built in self tests and as a permanent 
online review that both help in early error detection and give the software developers 
a reasonable amount of security about the correctness status of their programs.  

• Contracts can, and usually should, also serve as a basis for (technical) documentation, 
especially for an up-to-date description of the public interfaces. 

• Contracts enable the top developers to express the intent behind their designs and 
hence to leave behind a clear statement of their original concepts, reducing the risk 
that further contributors or maintainers will destroy the software’s consistency and 
quality. 

• Contracts are a useful testing and debugging tool: (i) they save debugging time due to 
the improved observability, where failures occur close to the bugs; (ii) they express 
unambiguously what an author expects and what (s)he guarantees in turn. So one has 
a clear statement not only of What Is (in the implementation part) but also of What 
Should Be (in the assertions part). And only under such circumstances one can 
definitely identify a discrepancy between the two.; and (iii) they help you in 
designing and performing your tests. 

My main aim was to put emphasis on the benefits of assertion based software 
development, as well as to provide a basic framework for C++ to start with. As it is usual 
not only for a first version, this framework is open for extensions and improvements. 
Some major topics not handled are: 
• a more sophisticated Anything class for saving the “old” values; 
• coding conventions for enforcing a ‘result style’, i.e. the possibility to check the 

calculated result of a non-void method immediately before it will be returned to the 
caller; 

• considerations on the integration possibilities of a rescue mechanism; 
• a more explicit integration of an exception handling mechanism. This, usually, 

depends on the project specific coding conventions. ABS++ can eventually be 
adapted to your needs by a suitable definition of the assertAndReact and 
REACT_ON_ERROR macros in Qassert.h. 

• As alternative consider the adaptation of a scheme like the one below. But be aware 
that properly designing an application for exception handling is a topic of its own. 
 

void foo()  
{ 
   assert(PreCondition); 
   try { 
      fooImp; 
      }  
   catch (const fooException fooE) {  
      // rethrown to client; part of the interface 
      throw; 
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      } 
   catch (...) { 
      // catch exceptions that are not part of interface;  
      // they violate Postcondition 
      throw PostconditionFailure(); 
      } 
   assert(Postcondition && Check_Invariants); 
} 
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