
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5 No. 6, July - August 2006

Cite this article as follows: Herbert Toth: “ABS++: Assertion Based Subtyping in C++”, in Journal of
Object Technology, vol. 5, no. 6, July - August 2006, pp. 83-105,
http://www.jot.fm/issues/issue_2006_07/article3

ABS++ : Assertion Based Subtyping in C++

Herbert Toth, SIEMENS AG Austria, PSE KB B

Abstract
For software engineering to meet today’s challenges, well designed reuse and com-
position mechanisms must be established in both theory and practice. Starting roughly
ten years ago, theoretical principles and solution possibilities for assertion annotations
in daily practice are being discussed in an ever growing number of papers and web
pages. We present a further proposal for C++ that is based on the macro technique,
conforms to the LSP, enables quantification, and very much resembles the way Design
by ContractTM is implemented in Eiffel.

1 INTRODUCTION

In this paper I present a C++ macro package together with a technique that - while
keeping the additional burden for the software engineer as small as possible - offer him
much of the features of Design by Contract (henceforth: DbC) as provided by Eiffel
(see e.g. [Meyer97]), but avoid its deficiencies (see [Toth05]).

TM

Though there are new ideas included in the macro packages, none of them would
ever have been conceived without the inspiration and without the foundations laid by
other people. What you find in this paper is what my modest C++ and time resources
allowed me to provide using existing concepts, code and visions. However, with some
exceptions, I will not undergo the labor to indicate sources explicitly: All of what is listed
in the reference section has contributed in one way or the other (and perhaps some other
sources too that I do not remember any more).

The structure of the paper is as follows: Section 2 contains an overview of the main
concepts and rationales behind assertion based software development and DbC. Section 3
describes the logical and structural properties of ABS++, and in section 4 I present some
technical details of the ABS++ and the demonstration example. The final section
provides a summary of the main ideas and some conclusions on the technique presented
in this paper. At the same location as the paper itself you can also find the two macro
packages I have used as well as the example sources. A number of hints to further
information is provided by references to papers, books, and web pages.

ABS++ : ASSERTION BASED SUBTYPING IN C++

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

2 ASSERTIONS AND DESIGN BY CONTRACT TM

What has been common in the area of hardware design for approximately twenty-five
years under the name design for testability, viz. to enhance the product with means to
increase the observability of its behavior, only during the last few years seems to gain
some attention also within software industry. This is all the more strange, as software has
gained a still rapidly increasing part of responsibility for the well functioning of so many
(really or only seemingly) important things of every day life. Due to this pervasive part of
software in modern society, its quality is important not only in the context of safety
critical systems (e.g. nuclear power plants, cardiac pacemakers), but also for our daily life
as a whole, from business to leisure (online banking, mobile phones, internet, cars etc.).

The technical means for achieving design for testability in software engineering is
assertion based programming, the logical strategy behind is best known as DbC, a
prominent and systematic method introduced by Bertrand Meyer, the creator of the Eiffel
language.

What certainly should be regarded as indication of an increasing interest in this kind
of software development starting in the mid-nineties is the growing number of
publications in this area like e.g.:
• a considerable number of papers dealing with the concepts and the practical use of

assertions in general, e.g. [Binder00, chapter 17], [Mannion98], [Meyer92],
[Meyer97, chapter11], [Mitchell02], or [Payne97];

• the Assertion Definition Language (ADL) developed at Sun Labs (see [ADL]);
• newer Methods like Syntropy [Cook94], the Eiffel-related BON [Walden95] and

Catalysis [D’Souza99], provide means for the inclusion of assertions into the
graphical model;

• the Object Constraint Language (OCL) becoming a supplement to the original version
of the Unified Modeling Language (UML). Making OCL a part of UML is a
consequence of the fact that graphical models alone are not enough for a precise and
unambiguous specification. There often is a need to describe additional constraints
about the objects in the model.

• emerging support for assertions for Java (from which even the ANSI C assert
mechanism has been removed at first, and reintroduced later on); see [Payne98], the
iContract tool [Kramer98], Jass [Jass], or AssertMate from Reliable Software
Technologies [AssertM];

• emerging support for assertions for C/C++; see the overview in [Maley00],
[Binder99], [Porat95], or [Welch98].

Assertion based programming

Although I assume many of the readers to be familiar with the topic under discussion,
there will hopefullly also be some newcomers, and it is for them that I provide a short
summary about the main concepts and ideas behind assertion based programming.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 85

Software assertions are Boolean expressions that define the correct state of a
program at a particular location in the code. It is useful to think of them as a kind of
watchdog having abilities which can be very helpful for you - if you are willing to
provide them and only when you allow them to be active. They can check method calls
for proper invocation, method code for correct computation, states of objects for
consistency, and also individual statements for errors. Therefore, assertions may act in the
following different roles, where the first three groups form what I call contracting
assertions:
• Preconditions express the requirements that clients must satisfy whenever they call a

routine, and are therefore evaluated at the entry point of a method. Preconditions are
obligations for the client (caller), and benefits for the server (callee).

• Postconditions inform about what the supplier (i.e. the routine) guarantees on return if
the precondition was satisfied on entry. They have to be evaluated at all exit points of
the method - if you allow more than one in your coding standard. Postconditions are
obligations for the server, and benefits for the client.

• In object-oriented projects: Class Invariants define the consistency conditions for the
state space of a class and must be satisfied by every instance of the class whenever
this instance is externally accessible, i.e. after creation, and after any call to an
exported routine. Class invariants have to be evaluated at the entry and all exit points
of all externally visible routines of a class.

• Data assertions define the conditions that must hold at just their location in the code,
whence they are evaluated only at just this location. You can take them for your own
individually tailored and eventual only temporary tests. A special case of data
assertions are loop invariants and loop variants.

Using formal languages and methods [BowenFM] to overcome the problems of software
development outside of some safety-critical software systems is far from getting the rule:
This kind of formally deduced correctness is often argued to be too difficult for the
average system modeler and thus has the great disadvantage that it can be applied by
people with a strong mathematical background only. Thus, a steep learning curve and a
big initial effort is to be expected for becoming familiar with it.

Interesting alternatives in the area of formal languages and methods to overcome this
gap between what is possible in theory and what is feasible in practice are e.g. the B-
Language [Abrial96], [Escher] or [Liu04] which allow specifications in a rather
programming-oriented style. Another possibility that seems to be more realistic nowadays
is assertion based programming according to DbC principles.

As you might know, all these ideas are not really new: their roots date back at least
to the late 60’s and the early 70’s. There is indeed a long and tedious way in formal
methods from Floyd’s assigning meanings to programs in [Floyd67], Hoare’s axiomatic
basis [Hoare69] to Abrial’s Assigning programs to meaning subtitle of The B-Book
[Abrial96]. Today’s average software engineer usually does not make use, and often does
not even know, of formal methods and corresponding tools. However, I think it is high
time to take advantage of some of their findings, and assertion based software
engineering may eventually prove to be a bridge between current practice and theory.

ABS++ : ASSERTION BASED SUBTYPING IN C++

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

What is Design by ContractTM?

“Design by Contract” denotes a software development style which (1) emphasises the
importance of formal specifications, and (2) interleaves them with actual code. DbC is a
systematic method of assertion usage and interpretation introduced by Bertrand Meyer as
a standard feature of the Eiffel language. Without it, no trial would have ever been made
to provide a similar mechanism in other languages and, by no means, would we have
discussion papers like this and the ones mentioned in the references.

A software contract is the specification of the behavior of a class and its associated
methods. The contract outlines the responsibilities of both the caller and the method
being called. Failure to meet any of the responsibilities stated in the contract results in a
breach of the contract, and indicates the existence of a bug somewhere in the design or
implementation of the software or - one must not forget - in the assertions themselves.
Software contracts can be completely specified by preconditions, postconditions, and
class invariants.

Software construction is based on contracts between clients and suppliers. Each party
expects some benefits from the contract, and accepts some obligations in return. As in
human affairs, the contract document spells out these mutual benefits and obligations and
protects both he client, by specifying how much should be done, and the supplier, by
stating that the supplier is not liable for failing to carry out tasks outside of the specified
scope.

DbC is, in a way, the opposite of defensive programming, a method which
recommends to protect every software module by as many checks as possible. This may
result in redundancy and makes it also difficult to precisely assign responsibilities among
modules. Software contracts are also a necessary prerequisite for introducing a notion of
correctness: If you do not state what your program should do, you are lacking the norm to
which to compare what your program does in reality.

Contracts and inheritance

As the software community has learned during the last two decades, the object-oriented
approach is very powerful for developing large software systems. Much of this power is
due to the key concept of inheritance. However, the statically checks enforced by e.g.
C++ or Java compilers upon derived classes test for such syntactic and typing restrictions
only that guarantee the lack of runtime type errors. This is the contracting and
specification level that has been used for too many years in the past by most software
developers. Obviously, however, this is not enough to prevent surpising and often
disastrous behavior of programs.

In other words, the checks done by compilers are only part of what is needed to
reason about the behavior (i.e. the semantics) of software, especially for object-oriented
systems when new subtypes are added. Behavioral subtyping is a technique for pre-
venting unexpected behavior in a modular way: it ensures that objects of new subtypes
(instances of subclasses) “act like” objects of their supertypes, when used as if they were

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 87

supertype objects. This is what the Liskov Substitution Principle (LSP) for object-
oriented design states [Liskov88]:

1. In class hierarchies, it should be possible to treat a specialized object as if it were
a base class object.

2. Or: Object-oriented functions that use pointers or references to a base class must
be able to use objects of a derived class without knowing it.

The basic idea here is as simple as it is important: Derived classes should not perform any
actions that will invalidate the assumptions made by (the client of) a parent class. Put
differently, any object of a subtype must be substitutable for an object of a supertype in
the hierarchy without any effect on the program’s observable behavior. If the Liskov
Substitution Principle is followed, code using a base class pointer will never break after
another class has been added to the inheritance tree.

This gives the basic rule governing the relationship between inheritance and
assertions: A descendant class must obey all the ancestors’ constraints, i.e. routine pre-
and postconditions, and the class invariants still apply. Therefore, contracting assertions
have to be checked along the class hierarchy in a suitable way, i.e. they are used not only
on the places where they appear in code (contrary to data assertions which have local
impact only). The assertions of a routine specify a range of acceptable behaviors for this
routine and its eventual redefinitions which may specialize this range, but not violate it.

Data assertions

Data assertions do not contribute to software contracts as outlined above, but rather are
means to help doing some internal checks according to your specific, and usually only
temporary, needs. They define conditions that must hold in a particular location in the
code, and are, therefore, evaluated at this location only. As an exmaple we take a short
look on loop variants and invariants.

The Eiffel mechanism is described in [Rist95], p.298, as follows: "If loop assertions
are monitored at run-time, then both the variant and the invariant will be evaluated
immediately after loop initialization. The invariant must evaluate to true, and the variant
must be greater than or equal to zero. If either of these conditions is not met, then an
exception will be raised and the system will terminate. As loop execution continues, both
the variant and the invariant will be evaluated after each iteration of the body. As before,
the invariant must be true and the variant must be non-negative or an exception will be
generated. The system will also check that the variant is decreased by each execution of
the loop body."

How much assertion monitoring?

This section summarizes the considerations of an equally headed one in [Meyer97], pp.
394-398, often using direct quotations from there. What level of assertion tracing to
enable at runtime "is a tradeoff between the following considerations: How much you
trust the correctness of your software; how crucial it is to get the utmost efficiency; how

http://www.hyperdictionary.com/dictionary/object-oriented
http://www.hyperdictionary.com/dictionary/functions
http://www.hyperdictionary.com/dictionary/pointers
http://www.hyperdictionary.com/dictionary/base+class
http://www.hyperdictionary.com/dictionary/objects
http://www.hyperdictionary.com/dictionary/derived+class

ABS++ : ASSERTION BASED SUBTYPING IN C++

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

serious the consequences of an undetected run-time error can be." The two extreme cases
are
• to enable assertion monitoring at the highest level for the classes of the system during

testing it prior to release;
• to remove all monitoring for fully trusted systems in a runtime-critical application

area where every microsecond counts.
Note, however, the following remark by C.A.R. Hoare [Hoare73]: "It is absurd to make
elaborate security checks on debugging runs, when no trust is put in the results, and then
remove them in the production runs, when an erroneous result could be extensive or
disastrous. What would we think of a sailing enthusiast who wears his life-jacket when
training on dry land but takes it off as soon as he goes to sea?"

“An interesting possibility is the option that only checks preconditions ... it has the
advantage of avoiding catastrophes that would result from undetected calls to routines
outside of their requirements, while costing significantly less in run-time overhead than
options that also check postconditions and invariants. …

This option is particularly interesting for libraries. Remember the basic rule on
assertion violation: a violated precondition indicates an error in the client; a violated
postcondition or invariant indicates an error in the supplier. ... But even for a perfect
library it is useful to check preconditions: the goal is to find errors in client software.”

One cannot give a general answer to the question of how much assertion monitoring
to do at runtime without having some rough ideas about the performance overhead caused
by it. As a rule of thumb one can take the following: Preconditions are often relatively
simple conditions checking for the client's obligations like lower<= idx && idx <= upper
etc., whereas many postconditions and invariants may include a lot of relevant
consistency conditions expressing more advanced semantic properties; moreover,
invariants are evaluated twice. Thus, the above advice to adhere to Eiffel's default level of
checking the preconditions seems to be a practicable one for many situations.

3 THE ABS++ SOLUTION

An obvious and important fact you always have to keep in mind is the following:
Contrary to Eiffel compilers, C++ compilers do not support software development
according to the DbC paradigm. As a consequence, you as the developer have to support
the compiler, i.e. you alone are responsible not only for the correct implementation, but
also for the correct placement of pre- and postconditions (with the exception of class
invariants), of the check invocations, and of the loop variants and invariants. Again,
following the schematic way as proposed in the ABS++ examples in this paper, this is an
easy and systematic task.

In case you now have the feeling that, by using ABS++, you are forced to write a lot
of additional code, remember the following: Whether you use Eiffel or some annotations
in form of e.g. Java pseudocomments together with some preprocessing mechanism, in

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 89

any case you will have to formulate and write down your assertions – in a both
syntactical and semantical correct way. What Eiffel or an intelligent preprocessing
mechanism will save you, is the work you have with getting assertions handled right over
class hierarchies. This can, however, be done in a simple and schematic way using the
macros provided in QSubtype.h (see section 4).

The theoretical background of ABS++

In this section we will give a short overview on the theoretical background of ABS++ in
order to give the reader the possibility to compare our macro package with related work.
Our presentation is mainly based on the results in [Chen00] and [Toth05].

Behavioral subtyping in ABS++ is done by the so-called weak plugin specification
match: (Cpre → SCpre) ∧ (SCpre ∧ SCpost → Cpost). This is not a most general reuse
ensuring match (see Theorem 7 in [Chen00]), but it is not far from it as has been shown
in [Toth05]. It can thus be considered as a well-suited candidate for practical purposes.

1

Compared to the percolation pattern – which is the one used in Eiffel and all the
other DbC implementations for C++ or Java I know (Jass excluded!) – there are two
definitive advantages of the ABS++ mechanisms: (1) hierarchy errors are detected for
both pre- and post-conditions, as well as class invariants; (2) never will a routine with its
own precondition evaluating to false be executed. (Suppose that for a method m SCpre
fails and Cpre holds; according tho the percolation pattern the effective precondition (i.e.
what is really checked at runtime) for m in SC is SCpre ∨ Cpre ≡ false ∨ true ≡ true. Thus
the execution of method m of class SC will start notwithstanding the fact that its own
precondition SCpre evaluates to false, and that there is an undetected hierarchy error from
class C to class SC with respect to m violating the Liskov Substition principle.)

It is important to know at what points in the program execution different assertions
have to be checked. The following table shows how pre-, postconditions and class
invariants are used in the context of a class.

1 A specification match M is reuse ensuring if M(SC,C) ∧ {SCpre}mSC {SCpost} → {Cpre}mSC{Cpost}, where {P}m{Q}
represents a Hoare triple, informally stating that method m if started in a state such that P holds does stop in a state
where Q holds.

ABS++ : ASSERTION BASED SUBTYPING IN C++

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

 Invariant Pre-
condition

Post-
condition

Instance Method yes yes 1) -

Constructor no - -

Private Method no yes 4) -

Method
Entry

Static Method no yes -

Instance Method yes 2) - yes

Constructor yes 3) - -

Private Method no - yes 4)
Method Exit

Static Method no - yes

1. The preconditions of a method are checked only in case that the class invariant

has been found valid.
2. The class invariant is checked at the end of a method only if its postcondition has

been found valid.
3. You have to insert the classInvariant(_FL_) calls manually into

constructors. This means that you have to provide at least one in order to avoid
C++’s default constructor.

4. You may think of doing these checks (which are not ‘official’ contracts for
external clients of the class) using the check mechanism, in order to clearly
differentiate between contracting and other constraints.

Down-calling or How to manage visibility

In this section we shortly present the technique of down-calling as proposed in [Payne97].
Down-calling can be used to ensure the semantic consistency of method inter-faces for
polymorphic methods.

Polymorphic methods with public visibility can become problematic, because clients
may provide different implementations of both assertion and application code in derived
classes. Down-calling solves this problem by structuring the polymorphic call so that a
method's pre- and postconditions are always evaluated consistently across all derivations
of a class. The technique uses two types of methods:
• Interface methods are public but not polymorphic (whence a derived class will inherit

them directly in the base class form); they manage the preconditions and
postconditions for the class methods, as well as the class invariant. These methods are
thus responsible for ensuring the logical semantics of a method across the class
hierarchy.

• Implementation methods are not public but polymorphic (whence a derived class can
adapt their behavior to its specific needs) and provide the implementation for a

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 91

particular interface method. Since their visibility is restricted to the inheritance tree,
clients cannot introduce improper redefinitions.

This technique finally results in the Template Method pattern (see [Gamma95]) and looks
like the following example:

 void C::foo(int aParam, _DefFL_)
 {
 fooPre(aParam, _CallFL_);
 fooImp(aParam);
 fooPost(_CallFL_);
 }

The interface method of our example clearly is C::foo, structured in three parts:
fooPre checks foo's precondition (and class invariant), fooImp contains the application
code for foo, and fooPost checks the methods postcondition (and class invariant).

The typical ABS++ pattern

By putting the contracts into the .h files, we can emulate something which is similar to
Eiffel’s short form, but we will never get such a beautiful and elegant layout. You can do
one more step by using an IclassName.h file for the client interface containing all public
methods in addition to the usual className.h (which then has to include the
IclassName.h file) and className.cpp.

Combining this with the considerations of the foregoing section we get a typical
(empty) template including the class invariant and the constraints for method foo in e.g.
C.h. Do carefully note which methods are virtual and which are not, as well as which
methods are public and which are not.

#ifndef C_hpp
#define C_hpp 1

#include "QSubtype.h"

class C
{
public:
 // ...
 void foo(int aParam, _DefFL_);

protected:

 int* natSequ;
 const int seqLen;

 virtual void fooImp(int aParam);

 // §
 // ---
 virtual bool classInvariant(_DefFL_) const
 {
 checkInvariants(
 invariant(true, "C"); // this is an empty template
 , file, line, C);
 }

ABS++ : ASSERTION BASED SUBTYPING IN C++

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

 // ---
 virtual bool fooPre(int aParam, _DefFL_) const
 {
 checkPreconditons(
 require(true, "preCond_1 of C::foo");
 , file, line, C);
 }

 // ---
 virtual bool fooPost(_DefFL_) const
 {
 checkPostconditons(
 ensure(true, "postCond_1 of C::foo");
 , file, line, C);
 }

 // obligatory, because internally used in ABS++, are:
 //
 static bool _inABSppHierarchyCheck_;

public:

 static bool _ABSppChecksEnabled_;
// §
}; // end of C.hpp

#endif // C_hpp

How to handle empty assertions

It may, of course, occur that you do not have specific constraints of a certain kind for
either a method or a class. The question, then, arises what default values to assign to such
“empty” pre- or postconditions, or class invariants. Empty assertions are trivially set to
true, since no constraint means no restriction whatsoever. Hence, for pre- and post-
conditions as well as for class invariants everything is okay – always, regardless of the
concrete program state.

Note: Do always provide the empty pre- and postconditions, and the empty class
invariants in order to enable proper subtype and class invariant checks ! (The information
on the class names is passed in the corresponding macros.)

Contract Support Evaluation of ABS++

The criteria used for evaluation of contract support are taken more or less literally from
[Plösch02] and [Plösch04], and are split into four groups as shown in the tables below.
(Note: For simplicity reasons the term 'system' is used for programming languages,
programming language extensions and programming systems.)

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 93

Basic assertion support (BAS)

BAS-1 (Basic assertions)

Does the system support basic assertion annotations in the implementation of a method? yes

BAS-2 (Preconditions and Postconditions)

Does the system support preconditions? yes

Does the system support postconditions? yes

May assertion expressions access properties of a class? yes

Are properties of a class guaranteed to remain unchanged during assertion checking? yes

May assertion expressions also contain method calls? yes

Is it guaranteed, that a method call does not produce any side effects (especially changes
of the state of the object)? yes 1)

BAS-3 (Invariants)

Is it possible to formulate invariants? yes

Are the restrictions in formulating invariants the same as for the formulation of
preconditions or postconditions? yes

1. Use const methods for pre- and postconditions and class invariants, but be
cautious using the check macro.

Advanced assertion support (AAS)
AAS-1 (Enhanced assertion expressions)

May assertions contain Boolean implications? yes

May postconditions access the original values of parameters, i.e., the values at method
entry? yes 1)

May an arbtrary expression be evaluated at method entry? yes

AAS-2 (Operations on collections)

Does the system support assertion expressions on collections? yes 2)

Is it guaranteed that collections remain immutable in assertion expressions? yes 3)

May universal quantifications be expressed in the expression language? yes 2)

May existential quantifications be expressed in the expression language? yes 2)

AAS-3 (Additional expressions)

Does the assertion expression language have additional features? no

Are these additional features guaranteed to be side effect free? no

1. You have to provide the values at entry by using a macro.

ABS++ : ASSERTION BASED SUBTYPING IN C++

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

2. The mechanism works for iterators too; see the vector example at the bgin of
ABS.cpp.

3. See note to table for Basic Assertion Support on page 11.

Support for Behavioral subtyping (SBS)
SBS-1 (Interfaces)

Is it possible to specify contracts for interfaces? (yes)

May contracts be added for classes implementing assertion-enriched interfaces? -

SBS-2 (Correctness I)

Does the system impose any restrictions on subcontracts? yes

Does the system ensure that preconditions may only be weakened? yes

Does the system ensure that postconditions may only be strengthened? yes

SBS-2 (Correctness II)

Does the system impose stronger requirements on subcontracts as specified in SBS-
2? yes 1)

Does the system ensure, that the correctness rules for behavioral subtyping
[Liskov94] are not violated? yes

1. Does subtype checks for class invariants too (analogous to postconditions).

Runtime monitoring of assertions (RMA)
RMA-1 (Contract violations)

Is an exception handling mechanism available in case of violations of assertions? yes2)

Are there additional features available for dealing with assertion violations (e.g., log
files)? yes

RMA-2 (Configurability)

Is it possible to enable and disable precondition checking, postcondition checking
and invariant checking selectively? yes

Is it possible to enable and disable assertion checking on a package, class or even
method level? no3)

RMA-3 (Efficiency)

Are there any additional memory requirements even when assertion checking is
disabled? no

Is there any additional processor usage even when assertion checking is disabled? no

2. Depends on how you define the assertAndReact macro in QAssert.h.
Alternatively, you may think of integrating exeception handling in another way,
e.g. as shown in section 5.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 95

3. Possible on class level; but does not make very much sense in the light of proper
subtype checking.

4 THE ABS++ MACRO PACKAGES AND SOME EXAMPLES

QAssert.h

This part of ABS++ is due to [Mueller94], with some slight modifications and renamings.
It is here where quantifiers are made possible. For technical details we have to refer the
reader to [Mueller94], but in order to make the current paper a rather self contained piece
of information and to prevent any difficulties concerning the availability of the October
1994 CUJ issue, we give some hints on how to use this macro package.
• assertAndReact has the same effect as the normal assert, but additionally it outputs

all values given in the second parameter to a special output stream, and thus it avoids
the secrecy of assert about the values that caused the assertion to fail. This is
especially useful in connection with the forall and exists conditions, because
knowing which cycle of the internal for loop failed is important for tracing an error. If
you want to output the loop variable in case an assertion fails, you must declare it at
the global scope as shown in the examples of in the subsequent section.
Both the output stream and the reaction on errors can be changed simply by
redefining the macros ASSERTSTREAM and REACT_ON_ERROR, respectively. Note,
however, that due to the definition of assertAndReact as an expression,
REACT_ON_ERROR must be an expression, too.

• There are two restrictions on forall and exists conditions: They cannot be used
as conditions in if statements, and they cannot be used inside a parenthesized
subexpression. To work around the following:
 require(constraint_1 && (constraint_2 || forall((int
. . .)));

• you have to write:
 require(constraint_1);
 require(constraint_2 || forall((int . . .));

• There may also arise the need for adapting the QAssert.h macros to the specific needs
of your project, e.g in the following way:

 #define assertAndReact(errorId,line,file,errorInfo)\
 YourErrorHandler::errorHandler().\
 raiseError(errorId, line, file, errorInfo)

ABS++ : ASSERTION BASED SUBTYPING IN C++

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

QSubtype.h

The ABS++ macro package (in file QSubtype.h) provides some simple macros that
correspond to Eiffel’s DbC philosophy and approximate also its syntax. It consists of two
logical layers:
• The basic assertion layer defines the four kinds of clauses that Eiffel provides for

formulating constraints on methods, classes, or statements:
• require for preconditions;
• ensure for postconditions;
• invariant for class invariants; and
• check for non-contracting constraints.

Furthermore we use
• LoopInvariant for loop invariants;
• InitVariant and LoopVariant for loop variants.

Via CONTRACT_LEVEL you can define check levels similar to Eiffel:

//---
// CONTRACT_LEVEL - this defines the various levels of checking.
// (see p.133 of "Eiffel: the language" by Bertrand Meyer)
//---
//
#define CHECK_NOTHING 0
#define CHECK_REQUIRE 1 // require
#define CHECK_ENSURE 2 // require + ensure
#define CHECK_INVARIANT 3 // require + ensure + invariant

//CONTRACT_LEVEL - the level of checking to be used for next compilation.
//
#ifndef CONTRACT_LEVEL
//#define CONTRACT_LEVEL CHECK_NOTHING
//#define CONTRACT_LEVEL CHECK_REQUIRE
//#define CONTRACT_LEVEL CHECK_ENSURE
#define CONTRACT_LEVEL CHECK_INVARIANT
#endif

In addition to and independent from this Eiffel-like layering for contracting assertions, in
ABS++ you can also define data assertions using check macros which also provide
different levels, as well as constraints for loops.

Examples for the usage of the check feature can be found e.g. in Anything.cpp or at
the begin of ABS.cpp in conntection with the iterator tests, and for loops a little bit later
in this paper. You have control over these checking mechanisms if you e.g. #define
CHECK_LEVEL 1 or #define CHECK_LOOPS according to your needs.
• The subtype control layer macros enable you to write

- Preconditions (checkPreconditions),
- Postconditions (checkPostconditions, upwardsCheck),
- class invariants (checkInvariants, checkInvars), and

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 97

- subtype checks (checkPreSubtype, checkPreSubtype_P1, checkPreSubtype2,
checkPostSubtype, checkPostSubtype2, checkInvSubtype, checkInvSubtype2) in a
comfortable way.

Note, that you do not need to bother with the invariant checking macros: they are
implicitly used by the pre- and postcondition checks. Do also note that it is
straightforward how to extend the subtype checking macros to deal with more than two
parent classes if you ever will want to use multiple (not simple code inheritance but)
subtyping, or to properly handle more than one method parameter according to the
following scheme. (This is a stupid thing, but somehow you must provide the intelligence
that is otherwise included in tool algorithms.)

 #define checkPreSubtypeM_PN(myCond, superCond, par1, …, parN, \
 file, line, myClass, superClass1, …, superClassM)

Where:
M >= 2: number of direct parent classes in case of multiple subtyping, and
N >= 1: number of parameters.
Our general checking policy is as follows:

• Each of the checkXXX blocks can have several clauses all of which we want to
check in order to get as much error information as possible. Therefore, we do not stop
at the first clause that has been found to fail, but continue checking all clauses. So we
need a checksOkay_ flag for each of the checkXXX blocks for making the final
decision if an error has been detected in the sequence of its clauses.

• Each class with pre- or postconditions has to provide a function with the name
classInvariant, which is called from both the checkPreXXX and
checkPostXXX macros in an appropriate way. This is the only thing you have to do
for class invariant checks.

• The preconditions of a method are checked only in case that the class invariant has
been found valid, and the class invariant is checked at the end of a method only if its
postcondition has been found valid.

• Contrary to Eiffel, where non-contracting data assertions can be activated only on top
of the other three kinds of assertions (i.e. only if require, ensure, and invariant have
already been switched on), ABS++ keeps such data assertions via check completely
independent from contracting assertions and also provides a separate level mechanism
for them), in order to eventually avoid runtime penalties.

• In postconditions it sometimes makes sense to compare the new value of a variable
with the old one, i.e. we want to check a certain relationship x’ = f(x, …), with x’
denoting the new value. Contrary to Eiffel, C++ does not provide a mechanism that
saves the old value before the execution of a method’s body; therefore, it is up to you
as the programmer to do that. Using QSubtype.h you can use the old-mechanism in a
very simple way as shown in the following code (from C.hpp):

ABS++ : ASSERTION BASED SUBTYPING IN C++

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

 // ---
 virtual bool fooPre(int aParam, _DefFL_) const
 {
 saveold("seqLen" , seqLen);
 saveold("aLong" , aLong);
 int j = 0; // NOTE: You MUST declare the loop variables here in order to
 // have them ready for output !!

 // check for nonnegative parameter & bounded range
 checkPreconditons(
 require(aParam >= 0, " preCond1 failed in C::foo");
 require(
 forall((j=0; j<seqLen; j++),
 1 <= natSequ[j] && natSequ[j] <= seqLen),
 ": for j=" << j << ": natSequ[j]=" << natSequ[j] << " in C::foo!"
);
 require(implies(true, true),
 ": Demo of implication usage in C::foo!");
 , file, line, C);
 }

 // ---
 virtual bool fooPost(_DefFL_) const
 {
 // check for special sequence & some unchanged values
 checkPostconditons(
 ensure(forall((j=0; j<seqLen; j++), natSequ[j] == seqLen - j),
 " for j=" << j << "! (=" << natSequ[j] << ") in C::fooPost"
);
 ensure(old("seqLen") == seqLen,
 " seqLen has changed in C::foo to " << seqLen);
 ensure(old("aLong") == aLong,
 " aLong has changed in C::foo to " << aLong);
 , file, line, C);
 }

In ABS++ you can easily turn on and off (in part (1) of Qsubtype.h)
• a trace of the assertion mechanism, either for debugging this mechanism itself, or to

gain a better understanding of it by activating the appropriate definition of the
TRACE_CONTRACT macro;

• the check of invariants in preconditions (in case you are sure that you need not check
for the indirect invariant effect; see [Meyer97]);

• the data assertions mentioned above using the check and the CHECK_LEVEL, and
the CHECK_LOOPS macros mechanisms as desired;

• the checking of the contracting assertions on three increasing severity levels:
• (a): preconditions, (b): (a) + postconditions, and (c): (b) + class invariants;
• on a per class basis all kinds of contracting assertions by appropriately initializing the

public static bool _ABSppChecksEnabled_ attribute. In the light of subtype
checking however, this is a possible but not very meaningful strategy.

With ABS++ you can easily
• redirect the output of ABS++ via the ASSERTSTREAM macro in Qassert.h (in the

example I use cout or ABSppLog connected to a file in ABSppGlobals.h).
• adapt the REACT_ON_ERROR macro in Qassert.h to your preferred error handling

strategy by redefining it to a call of a project specific error handler (in the example I

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 99

simply use exit(333) or WaitForEnterKey() which does not immediately stop
after an assertion violation, but allows to continue, mainly for testing purposes of
ABS++ itself.

• handle recursive function calls correctly: Due to the separation of the contracts from
the implementation, the recursion naturally is in the fooImp; so only the outermost
call is checked against the contract.

• follow the “Don’t check the checker” rule: Just call fooImp instead of foo. This
may eventually interfere with the visibility constraints if called from outside the
implementing class; if this is the case, you might provide a suitable query for clients
[Mitchell02, ch. 2]. Remember: Contracts have to be side-effect free!

• (A feature of a class, i.e. an attribute or a method, is either a query (which yields
information about but does not change the visible properties of an object) or an
command (which might change the object but does not return a result). The idea is
that queries do not need any precondition, nor does it guarantuee anything: by
definition it must not change an object’s state.)

• start into an already running project: Doing things correctly, there should be no
troubles.

Some small examples

• We start with a small and simple example for loop checking (the loop variant
construction has been adapted from [Marin96]):

 int k;
 int total;

 total = 0;
 InitVariant(k);

 for (k=1; k <= 10; k++) {
 total += k;

 // check invariant: total == sum of all integers from 1 to k ?
 LoopInvariant((1 <= k && k <= 10 && total == k*(k+1)/2),
 "loop invariant for k !!! (total = " << total
 << "/k = " << k << ")"
);
 LoopVariant(10-k, "loop variant is " << 10-k
 << "(for k = " << k <<")", k);
 }

By placing the loop variant and invariant at the end of the loop body you only loose their
check after initialization. However, it is reasonable to assume that a wrong initialization
will have some severe impacts on the calculation of the loop's body and will thus not go
undetected through the check at its end. Though you will not get the exact Eiffel behavior
in that way, you will be able to work with a sufficiently close approximation to it.
• Here is an example for the nested usage of quantifiers (but perhaps not necessarily for

clever C++ data structures) that checks if all possible triples are there:

ABS++ : ASSERTION BASED SUBTYPING IN C++

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

 forall((i = 0; i < MAX_i; i++),
 forall((j = 0; j < MAX_j; j++),
 forall((k = 0; k < MAX_k; k++),
 exists((int ii = 0; ii < MAX_i; ii++),
 exists((int jj = 0; jj < MAX_j; jj++),
 exists((int kk = 0; kk < MAX_k; kk++),
 (*table->operator()(ii,jj,kk)).i == i &&
 (*table->operator()(ii,jj,kk)).j == j &&
 (*table->operator()(ii,jj,kk)).k == k
)))
)))

• Here is an example that shows how subtype checks over the class hierarchy have to
be written for the precondition of method foo of class SC which is a subclass of C,
using one parameter:

 virtual bool fooPre(int aParam, _DefFL_) const
 {
 int i=0, j=0;
 checkPreSubtype_P1(
 require(aParam >= 0, " preCond1 failed in SC::foo");

 // check for permutation containing all of 1,2,3, ... seqLen
 require(
 forall((i=1; i<=seqLen; i++),
 exists((j=0; j<seqLen; j++),
 natSequ[j] == i
)
),
 ": i = " << i << " is missing in SC::foo!"
);
 , fooPre, aParam, file, line, SC, C);
 }

The demonstration example

Let us have a short look on how these principles are used in the
attached example files where you can find the main program together
with a sample output for which the assertions have been configured in
a way to give a complete walk through. Thus you can trace how
assertion checking is done across the class hierarchies according to
DbC and subtype requirements.

In order to facilitate understanding I have chosen a very simple
class hierarchy as follows: we have two base classes C and C1, with
SC inheriting from C, and SSC from SC and C1, i.e. we work with
multiple inheritance. The consequence of this you can see in the
implementation methods of the class SSC, viz.

SSC::ClassInvariant, SSC::fooPre, and SSC::fooPost, where you have to
check for both ancestor classes, i.e. C1 and SC. Note that, while traversing across the
class hierarchy is done in the implementation methods, the invocation of the class
invariants and the checks for the instrumentation level is done in the Qsubtype.h macros.

C

C1SC

SSC

Do also be aware that the contents of the pre- and postconditions and of the
invariants in our example serve mainly for documentation purposes. The §-ed comment

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 101

lines are bordering those parts of the program text that deal with DbC stuff: Do not get
fooled by their size compared to the rest, but take into account that, practically, we do not
have any real code.

Scattered about the code there are lines marked with ‘failure# # # # # # #’;
they contain statements that cause the error as indicated in the comment above it. The
kind of error occurs only when the activation of the corresponding statement is done
starting from the original source, i.e. assertion violations are – obviously - not
independent from each other. Eventually, you will thus have to do a short play for
producing them.

5 SUMMARY AND CONCLUSIONS

Following the DbC paradigm in the way as proposed here has some remarkable
advantages:
• You do not need a tool in addition to the C++ compiler of your choice.
• You do not need to learn another language or pseudocomment syntax: Following the

method proposed in this paper you write normal C/C++ code. The only thing you
have to take care of is to place and type things appropriately; but this can be done in
an easy and schematic way using the template routines of the example.

• You can use quantified assertions explicitly. Thus you can translate predicate logic
specifications of e.g. BON, Catalysis, or Syntropy (which you may have formulated
in OCL, eventually) directly into code.

• You gain seamlessness, i.e. it is possible to use a single notation and a single set of
concepts throughout the software life cycle, from analysis and design, to
implementation and maintenance.

• You may also overcome the programmer’s usual resistance against what they feel
excessive documentation requests burdened upon them by management, an emotion
that - we should frankly admit it - is not unknown to most of us. Where does this
come from? Rather sooner than later in the design phase, experienced software
engineers tend to write down syntax fragments instead of prose, because at some
point they start to think mainly or also in programming language constructs. Using
assertions they can do just that, normally gaining a lot of benefits of both
psychological (they feel good because they write down what they can use
immediately), but also of technical kind (they save the error prone activity to translate
everything from ambiguous natural-language texts or UML diagrams to exact, but
executable specifications in a programming language). And managers should not
forget that, in addition to the just mentioned advantages, software contracts also can
provide documentation which is much more exact than just pure prose. As always, a
good mixture of the two will yield the best results.

• You can - and this is the most important of all the benefits - apply a win-win strategy
using assertion based software engineering with obvious advantages for both your
customer and you as the developer of a software system.

ABS++ : ASSERTION BASED SUBTYPING IN C++

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

Applying the ideas underlying DbC can help us a lot on the way towards correct and
reliable software:
• Writing contracts from the very beginning enforces developers to state what they are

trying to do already during design. This definitely helps doing it right!
• Assertion based programming in general, and DbC as a systematic and well defined

variant of it especially, should be regarded as built in self tests and as a permanent
online review that both help in early error detection and give the software developers
a reasonable amount of security about the correctness status of their programs.

• Contracts can, and usually should, also serve as a basis for (technical) documentation,
especially for an up-to-date description of the public interfaces.

• Contracts enable the top developers to express the intent behind their designs and
hence to leave behind a clear statement of their original concepts, reducing the risk
that further contributors or maintainers will destroy the software’s consistency and
quality.

• Contracts are a useful testing and debugging tool: (i) they save debugging time due to
the improved observability, where failures occur close to the bugs; (ii) they express
unambiguously what an author expects and what (s)he guarantees in turn. So one has
a clear statement not only of What Is (in the implementation part) but also of What
Should Be (in the assertions part). And only under such circumstances one can
definitely identify a discrepancy between the two.; and (iii) they help you in
designing and performing your tests.

My main aim was to put emphasis on the benefits of assertion based software
development, as well as to provide a basic framework for C++ to start with. As it is usual
not only for a first version, this framework is open for extensions and improvements.
Some major topics not handled are:
• a more sophisticated Anything class for saving the “old” values;
• coding conventions for enforcing a ‘result style’, i.e. the possibility to check the

calculated result of a non-void method immediately before it will be returned to the
caller;

• considerations on the integration possibilities of a rescue mechanism;
• a more explicit integration of an exception handling mechanism. This, usually,

depends on the project specific coding conventions. ABS++ can eventually be
adapted to your needs by a suitable definition of the assertAndReact and
REACT_ON_ERROR macros in Qassert.h.

• As alternative consider the adaptation of a scheme like the one below. But be aware
that properly designing an application for exception handling is a topic of its own.

void foo()
{
 assert(PreCondition);
 try {
 fooImp;
 }
 catch (const fooException fooE) {
 // rethrown to client; part of the interface
 throw;

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 103

 }
 catch (...) {
 // catch exceptions that are not part of interface;
 // they violate Postcondition
 throw PostconditionFailure();
 }
 assert(Postcondition && Check_Invariants);
}

REFERENCES
[Abrial96] J.-R. Abrial: The B-Book: Assigning Programs To Meanings, Cambridge University

Press, 1996.
[ADL] Assertion Definition Language (ADL) at http://adl.opengroup.org/
[AssertM] AssertMate at http://www.cigital.com/
[Binder99] R. Binder, The Percolation Pattern – Techniques for Implementing Design by

Contract in C++, C++ Report, May 1999, 38-44.
[Binder00] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools, Addison-

Wesley, 2000.
[BowenFM] Formal Methods Home Page at http://www.afm.sbu.ac.uk/fm/
[Chen00] Y. Chen/B.H.C. Cheng, A Semantic Foundation for Specification Matching. In G.T.

Leavens and M. Sitaraman (Eds.), Foundations of Component-Based Systems,
Cambridge Univ. Press, 2000, 91-109.

[Cook94] S. Cook/J. Daniels, Designing Object Systems: Object-Oriented Modelling With
Syntropy, Prentice Hall, 1994.

[D’Souza99] D. D’Souza/A.C. Wills, Objects, Components, and Frameworks with UML. The
Catalysis Approach, Addison Wesley, 1999.

[Escher] Perfect Developer, at http://www.eschertech.com/index.php
[Floyd67] R.W. Floyd, Assigning meaning to programs. In Proc. of Symposia in Applied

Mathematics, Mathematical aspects of computer science Vol. 19, American
Mathematical Society, 1967, 19-32.

[Gamma95] Gamma, E./Helm, R./Johnson, R./Vlissides, J., Design Patterns, Addison Wesley,
1995.

[Hoare69] C.A.R. Hoare, An axiomatic basis for computer programming, Communications of the
ACM, Oct. 1969, 576-580.

[Hoare73] C.A.R. Hoare, Hints on Programming Language Design, Stanford University Artificial
Intelligence memo AIM224/STAN-CS-73-403. Reprinted in [Hoare89], 193-214.

[Hoare89] C.A.R. Hoare/C.B. Jones (Eds.), Essays in Computing Science (reprints of Hoare's
papers), Prentice Hall, 1989.

[Jass] Jass at http://semantik.informatik.uni-oldenburg.de/~jass/
[Karaorman99] Karaorman, M./U. Hölzle/J. Bruno, jContractor: A Reflective Java Library to

Support Design By Contract, in: Proceedings of Meta-Level Architectures and
Reflection, 2nd International Conference, Reflection '99. Saint-Malo, France.
Lecture Notes in Computer Science #1616, Springer Verlag, 1999, pp. 175-196.

http://adl.opengroup.org/
http://www.cigital.com/
http://www.afm.sbu.ac.uk/fm/
http://www.eschertech.com/index.php
http://semantik.informatik.uni-oldenburg.de/%7Ejass/

ABS++ : ASSERTION BASED SUBTYPING IN C++

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

 [Kramer98] R. Kramer, iContract - The JavaTM Design by ContractTM (formerly available at
http://www.reliable-systems.com/tools/iContract/iContract.htm)

[Liskov88] Liskov, B., Data Abstraction and Hierarchy, SIGPLAN Notices 23(5), May 1988.
[Liskov94] Liskov, B./Wing, J.M., A behavioral notion of subtyping, ACM Transactions on

Programming Languages 16, 1811-1841, November 1994.
[Liu04] Liu, Shaoying, Formal Engineering for Industrial Software Development. Using the

SOFL Method, Springer, 2004
[Maley00] Maley, D. Mind the Gap – Formalising the Development of Scientific Software. Ph.D.

Theses, Queen’s University of Belfast, March 2000.
[Mannion98] Mannion,M./Philips,R., Prevention Is Better Than A Cure, JavaTM Report,

September 1998, 23-36.
[Marin96] Marin, M.A., Effective use of Assertions in C++, ACM SIGPLAN Notices, Nov. 1996

(also available at
http://www.cs.rpi.edu/~wiseb/sigplan/issues/ctb9611.ps).

[Meyer92] Meyer, B., Applying “Design by Contract”, IEEE Computer 25(10), 40-51, October
1992.

[Meyer97] Meyer, B., Object oriented software construction, 2nd Ed., Prentice Hall, 1997.
[Mitchell02] Mitchell, R./McKim, J., Design by Contract, by Example, Addison-Wesley, 2002.
[Mueller94] Mueller, H.M., Powerful Assertions for C++, C/C++ Users Journal, October 1994,

pp. 21-37
[Payne97] Payne, J.E./Alexander, R.T./Hutchinson, C.D., Design-for-Testability for Object-

Oriented Software, Object Magazine, July 1997, pp. 35-43.
[Payne98] Payne, J.E./Schatz, M.A./Schmid, M.N., Implementing Assertions for Java, Dr.

Dobb’s Journal, January 1998 (also available at
http://www.ddj.com/ddj/1998/1998_01/payn/payn.htm)

[Plösch02] Plösch, R., Evaluation of Assertion Support for the Java Programming Language,
Journal of Object Technology, vol. 1, no. 3, special issue: TOOLS USA 2002
proceedings, 2002, pp. 5-17.

[Plösch04] Plösch, R., Contracts, Scenarios and Prototypes. An Integrated Approach to High
Quality Software, Springer, 2004

[Porat95] Porat,S./Fertig, P., Class assertions in C++, J. of Object-Oriented Programming, May
1995, pp. 30-37.

[Rist95] Rist, R./Terwillinger, R., Object-Oriented Programming in Eiffel, Prentice Hall, 1995.
[Toth05] Toth, H., On theory and practice of Assertion Based Software Development, in Journal

of Object Technology, vol. 4, no. 2, March-April 2005, pp. 109-129,
http://www.jot.fm/issues/issue_2005_03/article2

[Walden95] Walden, K./Nerson, J.-M., Seamless Object-Oriented Software Architecture. Analysis
and design of reliable systems, Prentice Hall, 1995 (see http://www.bon-
method.com)

[Welch98] Welch,D./Strong, S., An Exception-Based Assertion Mechanism for C++, J. of
Object-Oriented Programming, July/August 1998, pp. 50-60

http://www.reliable-systems.com/tools/iContract/iContract.htm
http://www.cs.rpi.edu/%7Ewiseb/sigplan/issues/ctb9611.ps
http://www.ddj.com/ddj/1998/1998_01/payn/payn.htm
http://www.jot.fm/issues/issue_2005_03/article2
http://www.bon-method.com/
http://www.bon-method.com/

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 105

About the author
Herbert Toth is a senior software engineer in the Program and System Engineering
Department of SIEMENS AG Austria. He holds a diploma degree in computer science
from the Technical University, and a Ph.D. degree in mathematical logic from the
University, both in Vienna. During the eighties and nineties his research interests led to
some publications on the foundations of fuzzy set theory. He can be reached at
mailto:herbert.toth@siemens.com.

mailto:herbert.toth@siemens.com

