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Abstract 
Software reuse is commonly used to leverage existing assets and to reduce 
development cost and time. Reuse can be accomplished by several different 
mechanisms. This paper describes these mechanisms and proposes a classification 
framework for them. The framework has two dimensions: retest scope⎯how the reuse 
impacts the need for testing⎯and binding time⎯when the reuse is realized. By 
examining these two dimensions, we define a matrix of reuse scenarios. The reuse 
scenarios in this matrix show different characteristics of flexibility and ease of 
maintenance. Based on this classification the paper recommends using different 
mechanisms to accomplish reuse for short-lifecycle single solutions, typical business 
applications and productized (COTS) solutions. 

1 INTRODUCTION 

Software is often reused. This section describes why software is reused, and describes 
some commonalities and variations in the way reuse is practiced. 

Why is software reused? 

Different applications often have similar requirements. Rather than create entirely 
separate solutions for each application, software companies (and other software 
development organizations) use the similarity of requirements to save money. A single 
base solution is created to support multiple applications. Less code is created and less 
code is maintained. Similarity of requirements makes possible a software product line 
[Clements 02], where the majority of the requirements remain invariant across different 
products in the product line. 

Our notion of reuse is broad. It includes both the formal reuse of object code that 
does not require any customization, the opportunistic cut-and-paste reuse achieved by 
using and modifying fragments of existing solutions, and everything between these two 
extreme cases. 
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Opportunistic cut-and-paste reuse is very flexible and inexpensive in design but 
extremely costly in later maintenance, as the different codebases are maintained 
separately (see Figure 1). Formal reuse of object code is inexpensive to maintain, but 
expensive in design and (often prohibitively) inflexible, as shown in Figure 1. Between 
these two extremes are a range of reuse scenarios, addressed in this paper. We present an 
organizing framework for the solutions between these two extremes, and develop some 
criteria for choosing a solution in the framework, to provide the best compromise 
between initial flexibility and the ease of maintenance. 

 
Figure 1 - A spectrum of reuse 

Cloning 

Cut-and-paste reuse is sometimes called software cloning. Cloning is the technique of 
copying logic in the existing solution, and modifying to suit the needs of the new 
application. When software is cloned, there are two copies, the unmodified original, and 
the modified clone. Both copies must be maintained, as if they were completely different 
rather than largely the same. This increases the cost of testing, increases the cost of 
maintenance, and complicates product tracking and management. Since most of the 
benefits of reuse are in the lower cost of testing and maintenance, cloning sacrifices most 
of the economic benefits of reuse [Dikel 97]. 

Why is software cloned? Kane identifies several forces that lead to cloning [Kane 
97]: 

• Developers have access to the source code. Cloning is only possible when 
developers can access and modify source code. 

• Cloning is expedient. It is often easier to change source by "copy and modify" 
(i.e. by creating a clone) rather than by extending or generalizing the original 
source. 
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• Cloning requires less coordination. Generalizing existing components may require 
coordination not just with the component supplier, but also with other users of 
that component. 

In an extended case against cloning, Chilton [Chilton 03] explains that cloning is both a 
natural developer reaction to business needs, and a productivity drain on development 
organizations. 

Cloning has a serious impact on the economics of reuse by significantly increasing 
maintenance cost. This paper proposes a reuse classification framework that helps predict 
when software risks cloning. Our framework can also help an architect select an 
appropriate alternative mechanism with less risk of cloning. 

2 A CLASSIFICATION FRAMEWORK 

Software reuse is achieved by applying variability mechanisms. David M. Weiss and Chi 
Lai define variability in product family development as the ways in which members of a 
product family differ from each other [Weiss 99]. Jacobson [Jacobson 97] and Clements 
and Northrop [Clements 02] discuss variability mechanisms and their role in software 
reuse. 

Our framework classifies variability mechanisms according to their potential to 
cause software cloning. This classification framework is two-dimensional. The first 
dimension is testing scope: what needs to be tested⎯or tested again⎯when the reuse is 
practiced? Does the new application need to be tested? What about the base solution on 
which the new application is based; does it need to be retested? 

The second dimension is binding time: when is the variability realized? Is a new 
application generated at compile time, or does reuse customization happen via runtime 
configuration settings? 

We claim that all reuse fits in this framework, that every reuse customization done 
since software started as a commercial endeavor fits somewhere in the 2-space of our 
framework. In particular, all the variability mechanisms identified in [Jacobson97] and 
[Clements 02] map to the cells of this classification framework. 

But our intent in this paper is not to provide an exhaustive analysis of all possible 
variability mechanisms and map them to cells. Instead our intent is to explain our 
framework. To that end, we have mapped some of most significant variability 
mechanisms to illustrate the framework and show how the mapping can be done. The 
framework will help to perform predictive analysis and to select appropriate variability 
mechanisms to achieve the desired business results.

Classifications are only useful when they further and simplify analysis. Our reuse 
classification supports an analysis of cloning. Cloning can only be practiced on some 
cells of this framework. Other cells are immune to cloning. 
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Testing scope 

How can a single base solution support a variety of different application requirements? 
This question is one of the central software engineering productivity themes of the last 
fifty years. Each application should not need to reimplement all the functionality it needs, 
and instead should be able to leverage the work of others. But what is the mechanism of 
that leverage? 

Software engineering practitioners have developed many variability mechanisms to 
answer this question. Shared libraries are one mechanism, with different FORTRAN 
programs (for example) all using a common library for solving simultaneous linear 
equations. The shared library solves a common problem, and thousands of independently 
developed applications link to that library to access its base solution functionality. 

Class inheritance is another very different answer to the same productivity question 
of supporting different applications from a common base solution. A base solution is 
implemented as a class, and individual applications use subclasses that inherit the base 
solution’s functionality, using some of the methods as they are, and overriding others. 

Configurable components are yet another answer to the same question. A general 
purpose component has predefined parameters allowing it to be configured to meet the 
anticipated needs of its use. When creating an application, a software developer (or 
alternatively, a functional expert) configures the parameters. SAP, Siebel, and other large 
enterprise applications take this approach for solving the software productivity problem. 

There are other variability mechanisms as well, other ways of providing base 
solution functionality for an application: application frameworks, use case inheritance, 
generation of code for a new platform from a common base solution specification, and so 
on. We expect more variability mechanisms to be developed in the future, as software 
engineering continues to improve. 

A key question for any of these mechanisms involves testing: what needs to be 
tested? If a developer creates new application A using base solution B, does she need to 
test just A, both A and B, or neither A nor B? For example, if she creates an application 
that links to a shared library, the application must be tested, but the library will not be 
broken by this linking, and need not be retested. 

On the other hand, class inheritance often breaks the base solution. As noted by 
many, and explained best by Robert C. Martin [Martin02], inheritance is dangerous. If 
new application class A inherits from an existing base solution class B, B’s methods may 
not work when instances of A are passed instead as if they are Bs. A must be tested, and B 
must be retested. 

Runtime configuration provides examples of the third testing situation. A properly 
tested base solution B can be configured to create an application A without retesting B or 
even testing A. The testing has already been done, and no configuration of the predefined 
configuration parameters will lead to an application outside the safely tested scope. 
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Shared libraries, class inheritance, and runtime configurable components are 
examples of the only three possible answers to the question of what needs to be tested. 
Either 

a) Both the new application and the base solution need to be tested, or 
b) Only the new application needs to be tested, or 
c) Neither the new application nor the base solution need testing. 

A medical analogy provides handy names for these three situations. If both the new 
application and the base solution need to be tested, we call the relationship between them 
infectious: the new application can infect the base solution with bugs. If only the new 
application need be tested, we call the relationship between them quarantined: any 
problems are confined to the new application. And if neither need be tested, we call the 
relationship between them immune. 

Note that we are not necessarily deriding the infectious relationship, or advocating 
the immune relationship. After all, infectiousness can be a good thing: a smile can be 
infectious, as can a laugh. Rather we are classifying existing and future reuse mechanisms 
by their implication for functional testing. 

Every reuse mechanism fits one of these three testing scopes: it is either infectious, 
quarantined, or immune. The fourth possible relationship – that the new application need 
not be tested but the base solution must be – does not make sense. 

Figure 2 shows two examples of infectious relationships. On the left is traditional 
OO class inheritance. In general when Derived class is created as a subclass of Base, it 
must be tested, and Base must be retested, to be sure that it works given the existence of 
Derived. 

There is a special case in which Base need not be retested when Derived is 
subclassed from it. If the relationship between them carefully adheres to the Liskov 
Substitution Principle⎯if Derived is not just a subclass but a subtype of Base⎯then it 
need not be tested. In fact the relationship between them in that situation is immune, not 
infectious. Discussion of the Liskov Substitution Principle is beyond the scope of this 
paper; interested readers should refer to [Liskov 88] or [Martin 96]. 
 

 
Figure 2 - Two infectious relationships 
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On the right of Figure 2 is another example of an infectious relationship, of use cases 
(requirements) instead of classes. The new use case Overriding New 
Functionality has a generalization, the existing Base Use Case. (This relationship 
was once called the uses relationship in the UML literature.) In both examples the 
existing functionality can be overridden by new functionality and, therefore, must be 
retested. 

Figure 3 shows an example of a quarantined relationship between base solution 
components and a new component. One base solution component provides a realization 
of Interface 1. The new component New Integrating Functionality depends 
on that interface, and uses the base component. It also uses a second base solution 
component Base Realization 2 in the same manner. The presence of the new 
component does not invalidate the correctness of the base solution: any possible errors or 
modified behavior introduced by the new component are quarantined there. The original 
base solution is not modified, overridden, or in any way changed. 

 
 

Figure 3 - A quarantined relationship 
 

Figure 4 shows an example of the immune relationship. A base solution aggregation of 
classes is parameterized to create a new application. Since this aggregation 
(Predefined Integration Functionality) has already been tested⎯ presumably 
with a range of possible parameters⎯new testing is not required. The entire configured 
solution is immune to errors. 
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Figure 4 - An immune relationship 
 

In practice, combinations of these three relationships are used to create a particular 
application. So a new application may parameterize a base solution in some places, use a 
base solution interface in others, and subclass from base solution classes in yet other 
places. 

Binding time 

The testing scope defines what needs to be tested when a new application is derived from 
a base solution. But when does that derivation happen? At what stage in the software 
development lifecycle does the new application start to emerge? Creating a new 
application at requirements time means that there is a common requirements model, a 
single use case model (for example) that includes both the common requirements and the 
space for the requirements for each of the individual applications. The design or source 
code that implements the individual applications may or may not be shared. Applying a 
variability mechanism at runtime means that a single running executable is customized to 
different requirements, for example by setting parameters. 

We see four distinct binding time options: 
• Requirements time. The reuse customization takes place during development of 

the use case model and specifications.  
• Design time. The reuse customization takes place during development of the 

design model and the code. At this point source code can be added or modified.  
• Implementation time. The reuse customization takes place during source 

compilation or assembly of the system from implementation components. At that 
point source code is not changed and all customization is limited to selection and 
integration of pre-designed object code components. That includes any static 
binding performed during application deployment. 

• Run time. The reuse customization happens at runtime, while the system is 
executing. Customizations either take effect immediately⎯e.g. on the next 
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transaction⎯or after system reboot or component reload. Any dynamic binding 
performed during application deployment is also categorized as runtime 
customization.  

Note that the binding time is when the actual customization takes place, not when the 
decision to customize happens. A software architect may decide to apply a runtime 
customization while the software is designed. She may even develop the design (at design 
time) in ways that make that runtime customization effective. It is still a runtime 
customization. What matters is when the actual binding takes place. 

We already examined one example of requirements time reuse, the infectious use case 
inheritance on the right side of Figure 2. Figure 5 shows another example of requirements 
time customization. In Figure 5 a use case from the base solution has parameters, and 
these parameters are configured to create three new use cases. 

 

 
 

Figure 5 – Immune relationship at requirements time 
 

We have already seen two examples of design time reuse. On the left side of Figure 2, we 
saw infectious class inheritance, at design time. And in Figure 4, we saw immune class 
parameterization, also at design time. Figure 6 shows another example. The New 
Integrating Functionality class aggregates two classes from the base solution. 
This New Integrating Functionality class is glue code, an example of the Façade 
pattern. 
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Figure 6 - Quarantined relationship at design time 
 

In Figure 3, we explained an implementation time reuse example, interface realization by 
components that served to quarantine any errors to the new component being 
implemented. Figure 7 shows another implementation time reuse example. The Base 
Realization component provides one realization of the interface. The New 
Realization component provides a second, alternative realization. If at least one of 
Base Client’s operations uses the result of execution of the interface realization 
operation then that Base Client requires retesting. 

 

 
 

Figure 7 - Infectious relationship at implementation time 
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The fourth binding time is runtime. Figure 8 shows an example of runtime binding, a 
runtime reuse customization. A new application incorporates two existing 
components⎯Base 1 and Base 2⎯by the means of the New Integrating 
Functionality component, a glue component realizing the Façade pattern. This 
example also uses the Service Locator pattern described by Martin Fowler [Fowler 04]. 

 

 
 

Figure 8 - Quarantined relationship at runtime 
 

Figure 9 shows a different situation: a New Realization component replaces the Base 
Realization component. The Base Client need not be re-tested because it does not 
depend on the interface realization. This example also uses the Service Locator pattern. 
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Figure 9 - More quarantine relationships at runtime 

 

A framework of reuse scenarios 

Our two dimensions – testing scope and binding time – are truly independent. All twelve 
combinations are possible, and in fact are practiced every day by software professionals. 
Table 1 describes all twelve combinations. 
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 Infectious 

(Both base and new 
must be tested) 

Quarantined 

(New must be tested. Base remains 
correct) 

Immune 

(Neither base nor 
new need be tested) 

Requirements 
time 
 

A. Either specialization or 
include (with dependency 
on an included use case) 
in use case models 

B. Either include (without 
dependency on an included use case) 
or extends in use case models  

C. Parameterized use 
case models, or the 
application of an 
analysis pattern  

Design time 
 

D. Either specialization or 
extension (with 
dependency on an 
extending class) of 
existing design classes 

E. Either aggregation or extension 
(without dependency on an extending 
class) of existing design classes  

F. Parameterized 
design models, or 
applying a design 
pattern  

Implementation 
time 
 

G. Static binding of a new 
interface realization, e.g. 
new operation 
implementation (which 
affects behavior of other 
operation of the base 
component)  

H. Static aggregation of existing 
components, or static extension of 
component object code by adding 
new logic (which does not affect 
behavior of any operation of the base 
component)  

I. Static binding 
based on parameter 
value, or based on 
template instance  

Run time 

 

J. Dynamic binding of a 
new interface realization, 
e.g. new EJB 
implementation 

K. Dynamic aggregation of 
components using runtime 
component management patterns, 
e.g. Service Locator pattern, Web 
Services, ORB, etc. 

L. Dynamic binding 
based on the 
parameter value, or 
based on template 
instance  

 
Table 1 - Two dimensional classification of reuse 

 

Examples have already been given of eight of the 12 combinations as part of the 
descriptions of the testing scope and the binding times. Combinations A, C, D, E, F, G, 
H, and K were shown in Figure 2 through Figure 9. Examples of the other four are shown 
below. Figure 10 shows an example of infectiousness at runtime, in which a Base 
Client component creates and uses the Base Realization component. Then the 
Base Realization component is replaced with the New Realization component. 
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Figure 10 - Infectiousness at runtime 
 

Figure 11 shows two examples of quarantined requirements time reuse. On the left is a 
simple use case extension. The new functionality adds new behavior to the existing use 
case. On the right is a use case inclusion, where the base use case includes behavior 
already isolated out in a separate use case. 

 

 
 

Figure 11 - Quarantined at requirements time 
 

Figure 12 shows two final combinations. On the left is immunity at implementation time 
via parameterizing of existing components. On the right is immunity at runtime 
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configuration, also via component parameterization. The example on the right side uses 
the Service Locator pattern. 
 

 
 

Figure 12 - Immunity at implementation time and at runtime 
 

Reuse classification and variability mechanisms 

Our classification of reuse scenarios by testing scope and binding time is a bit novel. 
Traditionally reuse has instead been classified by variability mechanism: how is the 
variability between applications accomplished? In other words: what does a software 
professional have to do to perform reuse? For example, David M. Weiss and Chi Lai 
define variability in product family development as the ways in which members of a 
product family differ from each other [Weiss 99]. And I. Jacobson, at al [Jacobson 97] 
offer a classification of variability mechanisms, as do P. Clements and L. Northrop 
[Clements 02]. 

Table 2 shows how some of the most common variability mechanisms⎯inheritance, 
extension, aggregation, inheritance realization⎯fit within our reuse classification 
framework. Some mechanisms like use case inheritance fit cleanly in a single cell. Others 
like interface inheritance spread across multiple cells. 
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Table 2 - Variability mechanisms within the classification framework 

 

How customization affects cloning and flexibility 

All infectious customization⎯everything in the first column in Table 1 or Table 2⎯is 
prone to cloning. Infectious reuse scenarios always cause tight coupling between the base 
and the new code. Furthermore infectious reuse scenarios assume that the object code for 
software artifact is modified. That causes branching of the software versions. As a result, 
the maintenance team deals with multiple baselines of software artifacts. Even worse: 
different artifacts branch at different time so maintaining traceability becomes very 
complex and costly. It is extremely difficult to customize via inheritance and maintain a 
single codebase. 
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By contrast, all types of immune customization⎯the third column in Table 2⎯are 
resistant to cloning because all customization decision points are predefined and the same 
baseline of software artifacts is used without regard to what configuration option is 
chosen. 

But that resistance comes at a cost. The cost of the resistance to cloning that 
immunity provides is a lack of flexibility. A configurable package only supports the 
behaviors that are possible with the configuration parameters. Inheritance provides great 
flexibility; if you do not like the base solution behavior, create a subclass with the 
behavior you want. But with configuration, all decision points are predefined. 

The middle column⎯the quarantined solutions⎯present a happy medium between 
the two extremes without the flaws of either. 

Techniques for implementing quarantined solutions 

There are several techniques for implementing the quarantine testing scope. The choice of 
technique depends on the binding time when the extension is realized. 

A requirements time quarantine⎯cell B in Table 1⎯is typically implemented with 
the use case <<extend>> association, as shown on the left side of Figure 11. One use 
case adds some additional functionality to an existing use case in the base solution. The 
<<include>> association among use cases can be an alternative if the include 
association is used in a quarantined manner. A quarantined include does not change the 
state of the base use case, and so the behavior of the base is unchanged. When control is 
returned to the base use case, the same behavior occurs in the rest of the base as if the 
included use case had never been executed. 

Design time quarantine⎯cell E in Table 1⎯is often desirable, but traditionally has 
been difficult to achieve. Until recently there was no easy way to accomplish that as an 
extension, other than refactoring the whole against the new needs. But aspect-oriented 
approach promises to solve that problem. Jacobson, in his visionary paper [Jacobson 03] 
cites aspect-oriented software development as the missing link in modern software 
engineering, achieving true use case traceable modularity of the implementation 
components. A complimentary paper in the same journal [Pawlak 04] further elaborated 
on AO, especially on the pointcut construct, a key mechanism to allow extension without 
any provision in the existing solution. 

Implementation time quarantine⎯cell H in Table 1⎯can be achieved with an 
interface in the base solution that is implemented in the extending component (see Figure 
3). The Base Client component is dependent only on the extending component 
interface (not on interface implementation) in a quarantined manner. 

Runtime quarantine⎯cell K in Table 1⎯can be achieved by using runtime 
component management patterns. These patterns eliminate dependency of the base 
calling component on the implementation of the called components. These patterns 
include Fowler’s Inversion of Control or Service Locator patterns [Fowler 04], Web-
Services, Object Request Brokers, and others. 
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All the above techniques are useful techniques for supporting a quarantining of the 
base solution against the danger of a new extension. Quarantine test scope in turn 
provides a reasonable compromise between flexibility and maintenance. 

3 CONCLUSION 

All software reuse can be classified into twelve distinct scenarios using a 2-dimensional 
matrix where one dimension is the testing scope (e.g. infectious, quarantined, and 
immune) and the other is binding time (e.g. requirements time, design time, 
implementation time and runtime) 

The infectious scenarios provide the most flexibility in creating new solutions; 
however they are prone to produce tight coupling between base and new solution and 
creating cloned software. Therefore these scenarios are not recommended for 
customization, especially for the large-scale initiatives, like software product lines. 
Infectious scenarios can be beneficial for a short lifecycle single solution that does not 
require maintenance. 

The immune scenarios are clone proof, however, they are expensive to build and 
limit a great deal of flexibility. Therefore, these scenarios are recommended only for 
solutions that need to be customized in large quantities, like COTS products. 

The quarantine scenarios represent a compromise between flexibility and protection 
from cloning. Therefore, these scenarios are recommended for most cases of non-COTS 
software customization. Depending on the binding time the use case extend and 
quarantined include relationships, aspect-oriented methods and languages, Façade, 
Inversion of Control and Service Locator patterns are the major techniques to support 
quarantine scenarios. 
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