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Reasoning About Method Calls in Interface
Specifications

Ádám Darvas and Peter Müller, ETH Zurich, Switzerland

Interface specifications in languages such as Eiffel, the Java Modeling Language
(JML), and Spec# are based on side-effect free expressions of the programming lan-
guage. In particular, such specifications contain calls to side-effect free methods to
describe the program behavior without exposing implementation details. Reasoning
about such specifications requires an encoding of programming language expressions
in a program logic. This encoding is non-trivial for method calls.
In this paper, we illustrate the subtle problems any encoding of method calls in spec-
ifications has to address. We present a sound encoding that allows side-effect free
methods to create and initialize objects by explicitly modeling such modifications of
the heap.

1 INTRODUCTION

Interface specifications in languages such as Eiffel [17], the Java Modeling Language
(JML) [12], and Spec# [1] use expressions of the programming language in pre- and
postconditions, object invariants, and other assertions. In particular, specifications
are allowed to contain method calls, which are useful for two major purposes. First,
methods are a means of abstraction. They allow one to express properties of a data
structure without exposing its implementation details. Second, methods are a unit
of reuse. Using methods in specifications avoids the duplication of specifications. For
instance, using a square root method in specifications avoids repeating the properties
of square root wherever they are needed.

Expressions in specifications must be side-effect free to prevent the evaluation
of specifications from interfering with the program execution. For method calls, the
absence of side-effects is enforced by requiring methods called in specifications to be
pure. In Eiffel, JML, and Spec#, a method is considered pure if its execution does
not modify objects that are allocated in the prestate of the method—additionally,
JML requires pure methods to be deterministic. However, pure methods are allowed
to allocate and initialize new objects. We call this notion of purity weak purity.

Allowing pure methods to allocate and initialize new objects is important for
expressiveness [20, 24]. Object-oriented languages represent almost all data as ob-
jects. Therefore, methods that return strings, tuples, sequences, sets, etc. often
create objects. Moreover, methods often create and manipulate auxiliary objects,
for instance, iterators. Such methods are weakly-pure because they do not mod-
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ify objects that exist in the method prestate, but they are not entirely free from
side-effects.

Class Graph in Fig. 1 illustrates how pure methods are used in JML. The class
implements a graph with nodes and edges. Nodes are represented by natural num-
bers between 0 and the value of field nodes. An adjacency matrix, stored in field
amatrix, defines the edges between the nodes. Since these fields give the internal
representation of the graph, they are declared private. For brevity, we omit the in-
variant that expresses that the two-dimensional array is large enough for the number
of nodes.

The methods getNodes and getEdges are used as abstraction functions [10] that
describe a graph as a set of nodes and a set of edges. An edge between two nodes
is represented by an instance of class Pair. The specifications of getNodes and
getEdges are private because they are expressed in terms of private fields. Method
getEdges is weakly-pure since it creates a new Set of Pairs. Like Java’s interface
specifies, the equals method of Set implements deep comparison. This makes
getEdges useful in specifications. However, unlike Java’s interface, we assume that
method add of Set returns a new Set, that is, is a pure method.

Method addEdge is specified in terms of the pure methods. Thus, the specifica-
tion can be public as it does not expose private implementation details. Furthermore,
the use of the weakly-pure getEdges significantly shortens the specification. Note
that the ensures clause contains seven calls of pure methods or constructors, four of
which allocate and return new objects.

For verification purposes, the expressions of the specification language must be
encoded in a program logic. To handle method calls in specifications, side-effect
free methods can be encoded as mathematical functions and axioms that specify
these functions [4]. The axioms reflect the behavior of the methods as expressed by
their interface specifications. Generating these axioms is difficult for the following
reasons. First, weak purity must be modeled explicitly in the logic because object
allocation and initialization may have an effect on whether an assertion holds or
not. For instance the expression m()==m() is not trivially true if m is a weakly-pure
method because m might create and return a new object. Second, the axiomatization
of the functions has to be consistent to avoid unsound reasoning. In particular,
unsatisfiable specifications of pure methods must not lead to inconsistencies.

In this paper, we reveal the subtle problems in the encoding of pure methods
and illustrate them by examples. We present an encoding of pure methods that
handles weak purity by explicitly modeling the changes of the object store made by
pure methods. Additional proof obligations guarantee that the encoding functions of
pure methods are well-defined, that is, that their axiomatization is consistent. Our
encoding is interesting for designers of Eiffel-style interface specification languages
and for researchers working on program verifiers for programs with Eiffel-style spec-
ifications (for instance, Boogie [1], ESC/Java [11, 8], Krakatoa [16], or Jive). For
concreteness, we present our work in terms of a subset of sequential Java and JML.

60 JOURNAL OF OBJECT TECHNOLOGY VOL 05, NO. 5



1 INTRODUCTION

class Graph {

private int nodes;
private boolean[][] amatrix;

/*@ private normal_behavior
@ ensures \result == nodes;
@*/

/*@ pure @*/ public int getNodes() { return nodes; }

/*@ private normal_behavior
@ ensures (\forall int x,y;
@ 0 <= x && x <= nodes && 0 <= y && y <= nodes;
@ \result.contains(new Pair(x,y)) == amatrix[x][y]);
@*/

/*@ pure @*/ public Set getEdges() { /*...*/ }

/*@ public normal_behavior
@ requires 0 <= x && x <= getNodes()
@ && 0 <= y && y <= getNodes();
@ ensures getEdges().equals(\old(getEdges().add(new Pair(x,y))))
@ && getNodes() == \old(getNodes());
@*/

void public addEdge(int x, int y) { amatrix[x][y] = true; }

// invariant, constructors, and other methods omitted.
}

Figure 1: A JML specification using pure methods. Annotation comments start
with an at-sign (@), and at-signs at the beginning of lines are ignored. We omit
frame axioms (assignable clauses) since they are not relevant for this paper.

In particular, we omit interfaces, arrays, and static class members. Our results can
be extended to full Java and are also applicable to Eiffel and Spec#.

Besides pure methods, JML provides model fields [3] to express data abstraction.
In a program logic, the treatment of model fields is similar to parameterless pure
methods [19]. The value of a model field is determined by applying a mapping to the
concrete states of objects. For the set of edges in our Graph example, this mapping
would yield a new Set object, just like method getEdges. That is, model field
accesses are weakly-pure and lead to the same problems as weakly-pure methods.
In the rest of the paper, we focus on methods, but our results are also applicable to
model fields.
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The paper is structured as follows. Sec. 2 sketches the logical background used
in the rest of the paper. We illustrate the problems of weak purity and describe our
solution in Sec. 3. In Sec. 4, we formalize our encoding of specification expressions.
The axiomatization of the functions for pure methods and a soundness result are
presented in Sec. 5. In the remaining sections, we explain the benefit of value types
for the treatment of pure methods, discuss related work, and offer conclusions.

2 PRELIMINARIES

In this section, we describe the model of the object store that will be used to formal-
ize weak purity and we present the foundations of our encoding of pure methods.
Here and throughout the paper, we use the term “method” to refer to both methods
and constructors. Pure methods and constructors are treated analogously by our
encoding.

Store model

To formalize properties of the object store, we use the store model of Poetzsch-
Heffter and Müller’s program logic [23]. It is formalized in multi-sorted first order
logic with recursive datatypes.

Types and Values. Java’s types and values are modeled by the sorts Type and
Value, respectively. Sort Type contains primitive types, the type of the null refer-
ence, and class types. The reflexive, transitive subtype relation is denoted by � . A
Value is a value of a primitive type, the null reference, or a reference to an object.
The function typeof : Value → Type yields the type of a value.

Object States. Object states are modeled via locations (instance variables). For
each field of its class, an object has a location. The sort FieldId is the sort of unique
field identifiers of a program. The function loc(X, f) yields the location for field f
of the object referenced by X, or undefined if the object does not have a location
for f . Conversely, obj (L) yields a reference to the object a location L belongs to.
For brevity, we write X.f for loc(X, f) in the following.

loc : Value × FieldId → Location ∪ {undefined}
obj : Location → Value

Since the properties of these functions are not needed in this paper, we refer the
reader to [23] for their axiomatization.

Object Stores. Object stores are modeled by an abstract data type with main
sort Store and operations to read and update locations, to create new objects, and
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to test whether an object is allocated. Poetzsch-Heffter and Müller present these
functions and their axiomatization [23].

In this paper, we need the following store operations: OS〈T 〉 yields the object
store that is obtained from OS by allocating a new object of class T . new(OS , T )
yields a reference to this object. OS(L) denotes the value held by location L in store
OS. alive(X, OS) yields true if and only if object X is allocated in OS. Values of
primitive types are allocated in all stores. The sort ClassId is the sort of unique
class identifiers of a program.

〈 〉 : Store × ClassId → Store
new : Store × ClassId → Value
( ) : Store × Location → Value

alive : Value × Store → Bool

The constant symbol $ of sort Store is used to refer to the current object store
in formulas. The current object store $ can be considered as a global variable. The
prestore of a method execution is the object store immediately after the arguments
of the method are computed, but before the precondition is evaluated. Analogously,
the poststore of a method execution is the object store after the execution of the
return statement, but before the evaluation of the postcondition.

Encoding of pure methods

We encode pure methods by uninterpreted function symbols and axioms as described
in the following.

Function symbols. Functions that model pure methods take one argument for
each parameter of the method and the object store in which they are evaluated,
and yield the result of the method. (Note that a pure method used in specifications
must have a return value.) For instance, a method m with one implicit parameter
(the receiver) and one explicit parameter is modeled by the following function:

m̂ : Value × Value × Store → Value

Axiomatization. JML does not specify whether the meaning of a call to a method
m in a specification is determined by m’s specification or its implementation. For
our work on static verification, m̂ is axiomatized based on m’s specification because
(1) m may be abstract, that is, have no implementation, and (2) the meaning of an
interface specification should be defined independently of a concrete implementation.

The axiomatization of the functions for pure methods has to take into account
abrupt termination. JML’s semantics for abrupt termination considers a JML ex-
pression e to yield an arbitrary value of e’s static type if e terminates abruptly [9].
For instance, the expression 5/0 yields an arbitrary integer.
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The same semantics is used for method calls. That is, in a JML specification,
a method call that terminates abruptly is considered to yield an arbitrary value of
the method’s result type. To reflect this semantics, specification cases of a method
m that permit abrupt termination must not introduce axioms for m̂, that is, have
to leave the definition of m̂ unspecified for these cases. Consequently, we generate
axioms only for those specification cases that forbid abrupt termination. In this
paper, we use only normal behavior specification cases, but our approach can be ex-
tended to all specification cases that contain the exceptional postcondition signals

false. We present the precise axiomatization in Sec. 5.

3 WEAK PURITY—PROBLEMS AND APPROACH

In this section, we present two examples illustrating that weak purity has to be
modeled in the formalization of methods and constructors to be faithful to JML’s
semantics and to avoid unsoundness. We explain our approach to handling weak
purity.

Examples

Class Alloc in Fig. 2 declares a weakly-pure method, alloc, which is used in the
specification of method foo. If an encoding of methods assumed that pure methods
are completely side-effect free then foo’s ensures clause alloc()==alloc() would
translate to ˆalloc(this, $) = ˆalloc(this, $), which is trivially true. However, accord-
ing to the JML semantics, foo’s ensures clause does not hold because alloc returns
a fresh object (as expressed by alloc’s ensures clause). In particular, the runtime
assertion checker would evaluate foo’s ensures clause to false. This shows that an
encoding of pure methods that is faithful to the JML semantics must encode the
store changes performed by weakly-pure methods explicitly.

The second example (Fig. 3) shows that neglecting weak purity in the formal-
ization can lead to unsoundness. Class Unsound has a field f and an invariant that
requires f to be non-zero. Unsound’s constructor is declared as helper, which allows
it to return an object that does not satisfy its invariant. In fact, the f field of the
new object is initialized to zero, as stated in the constructor’s ensures clause. The
constructor is pure since it modifies only the new object.

The constructor is called in the requires clause of method divide. According
to the JML semantics, one can assume that all objects that are alive satisfy their
invariants in the prestore of divide. If a formalization neglects the side-effects of a
weakly-pure constructor, then one can conclude that after the constructor call still
the invariants of all alive objects hold (since the store is assumed to be unchanged)
and, therefore, (new Unsound()).f evaluates to a non-zero value. By this reasoning,
one can conclude that v is different from zero, which allows one to verify that divide
does not terminate abruptly.
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class Alloc {

/*@ pure @*/ Alloc() { /* ... */ }

/*@ normal_behavior

@ ensures \fresh(\result);

@*/

/*@ pure @*/ Alloc alloc() { return new Alloc(); }

/*@ normal_behavior

@ assignable \nothing;

@ ensures alloc() == alloc();

@*/

void foo() { /* ... */ }

}

Figure 2: The weakly-pure method alloc returns a fresh object.

On the other hand, one can prove that the requires clause of the call divide(0)
in method showIt is satisfied because, by the ensures clause of the constructor,
(new Unsound()).f evaluates to zero. Therefore, method showIt verifies although
it leads to a runtime exception. This unsoundness can be avoided by modeling weak
purity in the encoding of methods.

It is important to understand that the problems illustrated above cannot simply
be fixed by disallowing test for reference equality in specifications. Such a require-
ment would rule out the specification of foo in Fig. 2, but would not solve the
soundness problem illustrated by class Unsound. Reference equality is needed for
many examples, for instance, collections of references. Using reference equality on
objects that exist already before the evaluation of a specification does not cause any
problem. It would, therefore, be overly restrictive to completely forbid it.

Modeling store changes

To avoid the problems illustrated above, we make the potential store changes by
pure methods explicit. For each pure method m, we introduce a function m̂S that
takes the same arguments as m̂ and yields the store after calling m. If m has one
explicit parameter, m̂S has the signature:

m̂S : Value × Value × Store → Store

In the following, we call these functions store functions.

A pure method is guaranteed not to modify existing objects. We say that store
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class Unsound {

int f;

/*@ invariant f != 0; @*/

/*@ private normal_behavior

@ assignable f;

@ ensures this.f == 0;

@*/

/*@ pure helper @*/ private Unsound() { f = 0; }

/*@ private normal_behavior

@ requires v == (new Unsound()).f;

@ assignable \nothing;

@*/

int divide(int v) { return 5 / v; }

int showIt() { return divide(0); }

}

Figure 3: The weakly-pure constructor does not establish the invariant of the new
object.

OS ′ is a pure successor of store OS if all objects allocated in OS are still allocated
and unchanged in OS ′. We express this property by the predicate OS E OS ′, and
define it as follows:

OS E OS ′ ≡ (∀X • alive(X, OS) ⇒ alive(X, OS ′) ) ∧
(∀L • alive(obj(L), OS) ⇒ OS(L) = OS ′(L) )

For a pure method m, m̂S(t, p, OS) is a pure successor of OS for any receiver t and
parameter p.

Examples revisited

By using the store functions for pure methods, we can encode expressions such
that each subexpression refers to the store resulting from the evaluation of the
previous subexpression. In particular, after each method call, the corresponding
store function is used in the encoding of the following subexpression.

In our first example, this encoding of the ensures clause of method foo yields
“ ˆalloc(this, $) = ˆalloc(this, ˆallocS(this, $))”. Whether this equality holds depends
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Expr ::= Expr && Expr
| Expr == Expr
| Expr + Expr
| Expr . FieldId
| Expr . MethId ( Expr )

| new ClassId( Expr )

| ParId | this | null | true | false | -1 | 0 | 1 | . . .
| \old ( Expr )

| \result

Figure 4: Specification expression subset. MethId and ParId are the sorts for
method and formal parameter names, respectively.

on the specification of method alloc. In our example, the specification of alloc

implies that the equality does not hold. This reflects the JML semantics and also
the behavior of JML’s runtime assertion checker.

Analogously, the transformation of divide’s requires clause in our second ex-
ample uses the store function for Unsound’s constructor, ˆUnsoundS: the field f is
read in store ˆUnsoundS(new($, Unsound), $〈Unsound〉) rather than $, that is, in the
store after allocating a new Unsound object in store $ and executing the constructor
on this object. The fact that all object invariants hold in the prestore of divide,
$, does not imply that the invariant of the new object holds in the modified store.
This prevents the soundness problem described above.

4 ENCODING OF SPECIFICATION EXPRESSIONS

In this section, we formalize the encoding of expressions in two steps. In the first
step, we describe the general encoding including the treatment of weak purity. In the
second step, we show how the encoding can be simplified for expressions of primitive
types.

We present the encoding for a small subset of JML that allows us to demonstrate
the most interesting aspects of weak purity. The expression syntax is given in Fig. 4.
The subset contains the operators “&&”, “==”, and “+”, field reads, method calls,
and object creation with constructor calls. Without loss of generality, we require
that methods and constructors take exactly one explicit parameter. The subset
also contains formal parameters (including this) as well as the literals null, true,
false, and integer literals. We also support JML’s \old and \result expressions.
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General encoding

We formalize the encoding of expressions by two functions. The expression trans-
former γ translates specification expressions to terms of multi-sorted first order
logic. It has the following signature:

γ : Expr × Store × Store → Term

where Expr is the sort for specification expressions as defined in Fig. 4 and Term
is the sort for first order logic terms. The first store argument of γ is the store in
which the expression is evaluated. The second store argument is used to transform
ensures clauses that contain \old expressions. It is used to pass the prestore of the
method to γ.1

Since we make the store modifications of weakly-pure expressions explicit, the
stores used to encode an expression may change from subexpression to subexpres-
sion. For instance, if the first subexpression is a call to a method m then the store
for the second subexpression is obtained by using the store function m̂S. This track-
ing of store changes is also necessary when encoding \old expressions. For instance,
consider the encoding of the ensures clause \old(alloc())==\old(alloc()), where
OS is used to refer to the prestore of the method. Analogously to the Alloc example
in Fig. 2, this encoding must not yield “ ˆalloc(this, OS) = ˆalloc(this, OS)”. That
is, the two \old expressions must not be encoded using the same store. Instead, the
store function ˆallocS has to be used for the encoding of the second subexpression.

To formalize store changes, we use a function ω that yields the stores after the
evaluation of an expression. It takes the same parameters as γ and returns two
stores referring to the (possibly modified) pre- and poststores after the evaluation
of the expression:

ω : Expr × Store × Store → Store × Store

The inductive definitions of γ and ω are presented in Fig. 5. Most cases of
the definition are straightforward. We explain the most interesting cases in the
following.

The function γ encodes a call to method m as a function application of m̂. The
successor store of a method call is expressed using the store function m̂S as explained
earlier. The evaluation of \old expressions in the actual parameters of the call to m
potentially modifies the method’s prestore. The ω function for method calls changes
the second store component of its result accordingly.

Constructor calls are encoded similarly to method calls. The receiver parameter
of the function application is the newly created object and the store parameter is
the store after the object allocation.

1Since γ works on syntactic entities, it would be more accurate to say that it takes two terms
of sort Store rather than two stores. We do not make this distinction here for simplicity.
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An expression \old( E ) is encoded by applying γ recursively to expression
E. To express that E is evaluated in the prestore of the method, the second store
argument of γ is passed as first store argument to the recursive γ application. The
ω function expresses that the store changes made by an \old expression effect only
the prestore, that is, the second store of the resulting tuple.

Examples and discussion

To illustrate our encoding of pure methods, we revisit the Graph example from Fig. 1
and encode the most interesting assertion, namely the ensures clause of addEdge.
We show the result of the following application of the expression transformer γ:

γ(getEdges().equals(\old(getEdges().add(new Pair(x,y)))) &&

getNodes() == \old(getNodes()), OS ′, OS)

OS and OS ′ denote the stores before and after the execution of addEdge, re-
spectively. In the presentation of the encoding, we use the following abbreviations:

G′ = ˆgetEdges(this,OS′)
G = ˆgetEdges(this,OS)
P = ˆPair(new( ˆgetEdgesS(this,OS), Pair), x, y, ˆgetEdgesS(this,OS)〈Pair〉)
PS = ˆPairS(new( ˆgetEdgesS(this,OS), Pair), x, y, ˆgetEdgesS(this,OS)〈Pair〉)

G′ and G denote the results of the pure method getEdges executed in stores OS ′

and OS, respectively. P denotes the result of the Pair constructor. Since the call of
this constructor occurs within an \old expression, it is evaluated in the store that
is obtained by executing getEdges in addEdge’s prestore, OS, and after allocating
a new Pair object. These changes of the store are reflected in the last argument
of the application of the function for the pure constructor, ˆPair. PS denotes the
store after the execution of this constructor. Using these abbreviations, we get the
following encoding of addEdge’s ensures clause:

ˆequals( G′, ˆadd(G, P, PS), ˆgetEdgesS(this, OS ′) ) ∧
ˆgetNodes( this, ˆequalsS(G′, ˆadd(G, P, PS), ˆgetEdgesS(this, OS ′)) ) =
ˆgetNodes(this, ˆaddS(G, P, PS))

The equals method is executed in the poststore of the first call to getEdges.
Analogously, getNodes is executed in the poststore of equals. Note that the second
call to getNodes is executed in the poststore of add because this call occurs within
an \old expression, and the preceding store change to the prestore was made by the
execution of method add, which also occurs within \old.

This example shows that our encoding makes all changes of the object store
explicit. This solves the problems described in Sec. 3. However, the example also
reveals several problems of the encoding presented so far:
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Conjunction, Equality, Addition

γ(E op F,OS′, OS) = γ(E,OS′, OS) FOL(op) γ(F, ω(E,OS′, OS))

ω(E op F,OS′, OS) = ω(F, ω(E,OS′, OS))

where op is one of &&, ==, or +, and FOL(&&) = “∧”, FOL(==) = “=”, FOL(+) = “+”.

Field Read γ(E.f, OS′, OS) = ω1(E,OS′, OS)(γ(E,OS′, OS).f)

ω(E.f, OS′, OS) = ω(E,OS′, OS)

Method Call

γ(E.m(F), OS′, OS) = m̂( γ(E,OS′, OS),
γ(F, ω(E,OS′, OS)),
ω1(F, ω(E,OS′, OS)) )

ω(E.m(F), OS′, OS) = ( m̂S( γ(E,OS′, OS),
γ(F, ω(E,OS′, OS)),
ω1(F, ω(E,OS′, OS)) ),

ω2(F, ω(E,OS′, OS)) )

Object Creation

γ(new C(E), OS′, OS) = Ĉ( new(ω1(E,OS′, OS), C),
γ(E,OS′, OS),
ω1(E,OS′, OS)〈C〉 )

ω(new C(E), OS′, OS) = ( ĈS( new(ω1(E,OS′, OS), C),
γ(E,OS′, OS),
ω1(E,OS′, OS)〈C〉 ),

ω2(E,OS′, OS) )

Formal Parameter
γ(v, OS′, OS) = v

ω(v, OS′, OS) = (OS′, OS)

Constant
γ(c, OS′, OS) = c

ω(c, OS′, OS) = (OS′, OS)

where c can be one of this, null, integer literal or boolean constant.

Old Expression γ(\old(E), OS′, OS) = γ(E,OS,OS)

ω(\old(E), OS′, OS) = (OS′, ω1(E,OS,OS))

Result Expression
γ(\result, OS′, OS) = resV

ω(\result, OS′, OS) = (OS′, OS)

Figure 5: Definition of functions γ and ω. We use ω1 and ω2 to denote the first and
second store component of the result of ω, respectively. resV is a special program
variable to represent the result value of a method.
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1. The application of a store function for each method or constructor call bloats
the resulting formula, which makes it difficult to read and reason about.

2. Due to the store functions, commutativity of operators gets lost. For instance,
the expressions m()==n() and n()==m() are encoded by different formulas.

3. The store functions make it difficult to match specifications. For instance, if
clients of method addEdge are interested in the second conjunct of the ensures
clause, but not in the first one, they still have to deal with the store changes
potentially made by the first conjunct because the corresponding store func-
tions appear in the encoding of the second conjunct.

We cannot avoid these complications in the most general setting such as the prob-
lem cases shown in Sec. 3. However, in many practical cases, the store changes made
by weakly-pure methods are not observable by succeeding subexpressions and need,
therefore, not be modeled explicitly. For instance, the second conjunct of addEdge’s
ensures clause cannot refer to values of subexpressions of the first conjunct. There-
fore, the value of the second conjunct is independent of the store changes potentially
made by the first conjunct. In the next subsection, we use this observation to sim-
plify the encoding of expressions.

Simplified encoding

The simplification we make is based on the observation that the evaluation of a
subexpression E of a primitive type cannot create observable store changes for a
successor subexpression F . In such cases, it is possible to transform F as if E was
strongly-pure, that is, for the transformation of F we can omit the store functions
for E and “roll back” to the original pre- and poststores.

In our small expression syntax, the simplification is applicable to conjunction
and addition because their operands are of primitive types. The simplification can
also be applied to equality in case the operands are of a primitive type. Furthermore,
we do not have to track the store changes made by methods with primitive result
types, because objects created by such methods cannot be referred to by subsequent
subexpressions.

To formalize this simplification, we only have to adapt the definition of γ (Fig. 5)
for binary operators and the definition of ω for calls to methods with primitive result
types. For conjunction, addition, and equality on primitive types, the γ function
need not carry over the store changes made by expression E when transforming the
successor expression F (op and FOL are as in Fig. 5):

γ(E op F, OS ′, OS) = γ(E, OS ′, OS) FOL(op) γ(F, OS ′, OS)

For calls to a method m with a primitive result type, the ω function need neither
carry over the store changes made by the parameter expressions (E and F ) nor by
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the method itself. Neither of these store changes can be observed by subsequent
expressions:

ω(E.m(F), OS ′, OS) = (OS ′, OS)

For instance, if m is an integer method then the evaluation of n() in the expression
m(new Pair(x,y)) == n() cannot refer to the new Pair object, but only to m’s
result value.

Applying the simplified encoding to the ensures clause of method addEdges yields
the following formula:

ˆequals(G′, ˆadd(G, P, PS), ˆgetEdgesS(this, OS ′)) ∧
ˆgetNodes(this, OS ′) = ˆgetNodes(this, OS)

The simplification addresses the complications discussed in the previous subsection:

1. The resulting encoding is significantly simpler than the general encoding, even
for the ensures clause of addEdges, which contains nested method calls with
non-primitive result types. The effect is even larger for simpler specifications.

2. Since the simplified encoding omits the store functions when operators are
applied to expressions of primitive types, commutativity is preserved in these
cases. For instance, the expressions m()==n() and n()==m() are now encoded
by equivalent formulas if m and n are boolean or integer methods.

3. Since the simplified encoding rolls back to the original stores at each boolean
connective, matching of specifications is no longer a problem. In the addEdge

example, the store changes of the first conjunct are ignored in the encoding
of the second conjunct, which makes it simple to match the second conjunct
with other assertions.

In order to see how frequently the simplified encoding actually applies in practice,
we studied the Dutch Internet voting tally system that was specified and verified
using JML and ESC/Java2 [11]. To our knowledge, that is the largest open-source
system that has been specified with JML. We found that 42 per cent (77 out of 182)
of all pure methods have primitive result type. This result shows that the simplified
encoding makes a difference for practical examples.

5 AXIOMATIZATION

The expression transformer γ encodes method calls as function applications and
models weak purity by store functions. In this section we present the axiomatization
of the functions for pure methods. The axiomatization has to be done with care
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because inconsistent axioms can lead to unsound reasoning. Consistency has to be
preserved even if the specifications of pure methods are not satisfiable.

As pointed out in Sec. 2, the axiomatization of the functions m̂ and m̂S for
a method m is based on m’s normal behavior specification cases. Let m be a
method declared in class C that takes one explicit parameter, par. We define the
predicate PREC

m,i(OS) to denote the conjunction of (1) the requires clause of m’s
i-th normal behavior specification case, reqC

m,i, evaluated in store OS and (2) the
predicate INV(OS), which expresses that all allocated objects satisfy their invariants
in store OS. Conjunct (1) is obtained by applying γ to reqC

m,i. The first store
argument for the encoding of the precondition is OS. The second store argument is
arbitrary (denoted by ) because preconditions must not contain \old expressions.
Conjunct (2) is omitted if m is a helper method.

PREC
m,i(OS) ≡ γ(reqC

m,i, OS, ) ∧ INV(OS)

Analogously, we define POSTC
m,i(OS ′, OS) to denote the conjunction of (1) the

ensures clause of m’s i-th normal behavior specification case, ensC
m,i, evaluated in

prestore OS and poststore OS ′ and (2) the predicate INV(OS ′) (unless m is a helper
method):

POSTC
m,i(OS ′, OS) ≡ γ(ensC

m,i, OS ′, OS) ∧ INV(OS ′)

The index i ranges over all normal behavior specification cases for m in C,
including specifications inherited from C’s superclasses, which ensures behavioral
subtyping [5].

In the axiomatization of m̂ and m̂S we express that if the arguments of a call to
method m satisfy m’s precondition then the following properties hold:

1. The result value r of m satisfies m’s postcondition.

2. The result value r of m is alive in m’s poststore OS ′.

3. The poststore OS ′ of m is a pure successor of the store that is obtained by
evaluating the \old expressions of m’s ensures clause in m’s prestore OS. This
intermediate store is obtained by ω2(ensC

m,i, , OS).

Property 1 describes the result of m. Property 2 is guaranteed by the semantics
of Java. Property 3 is necessary to guarantee that the objects created during the
evaluation of \old expressions are considered to be alive when the postcondition
of m is evaluated. These objects are not alive in m’s prestore. The corresponding
property for objects created during the evaluation of the precondition is not needed
because it is not possible to refer to these objects from the postcondition. That is,
these store changes can safely be ignored. Note that the definition of ω guarantees
that ω2(ensC

m,i, , OS) is a pure successor of OS and, since E is transitive, OS ′ is a

VOL 05, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 73



REASONING ABOUT METHOD CALLS IN INTERFACE SPECIFICATIONS

pure successor of OS. The three properties are formalized by the following predicate:

specC
m(t, p, OS, r, OS ′) ≡∧

i

(PREC
m,i(OS)[t/this, p/par] ⇒ POSTC

m,i(OS ′, OS)[t/this, p/par, r/resV ] ∧

alive(r, OS ′) ∧

ω2(ensC
m,i, , OS) E OS ′

where t, p, and OS are the receiver, the explicit parameter, and the prestore of the
execution of m; r is the result value and OS ′ is the poststore of m. e[x/y] denotes
the term e with all free occurrences of y substituted by x.

The property we are ultimately interested in is the following:

(∀ t, p, OS • specC
m(t, p, OS, m̂(t, p, OS), m̂S(t, p, OS)) )

By passing m̂(t, p, OS) for r, each occurrence of \result in m’s ensures clause is
replaced by m̂(t, p, OS). That is, m̂ is constrained by the specification of m’s result.
Passing m̂S(t, p, OS) for OS ′ accounts for the potential store changes performed by
the weakly-pure method m. This prevents one in particular from trivially proving
possibly invalid assertions such as “alloc() == \old(alloc())” even if the pre- and
poststore is identical.

However, we do not simply state the above property as an axiom because such a
naive axiomatization can easily lead to unsoundness, as we explain in the following.

Consistency

Soundness requires that the axiomatization of functions m̂ and m̂S is consistent,
that is, that there are functions that satisfy the axioms. Inconsistencies occur when
unsatisfiable specifications are turned into axioms in a naive way. An unsatisfiable
specification of a pure method m is not necessarily detected when m’s implementa-
tion is verified. Partial correctness logics allow one to verify m w.r.t. an unsatisfiable
specification if m’s implementation does not terminate. Moreover, if the inconsistent
axiomatization of the functions for method m allows one to derive false, one can
prove anything, even that m’s implementation satisfies an unsatisfiable specification.
In this subsection, we show how the inconsistencies can be avoided for non-recursive
specifications. Recursion is addressed in the next subsection.

With the naive axiomatization described above, method wrong in Fig. 6 leads to
the following axiom (we omit the conjunct INV(OS) for simplicity):

(∀ t, OS • ˆwrong(t, OS) = 0 ∧ ˆwrong(t, OS) = 1 ∧
alive( ˆwrong(t, OS), ˆwrongS(t, OS)) ∧ OS E ˆwrongS(t, OS) )

Since wrong’s specification is not satisfiable, the axiom is equivalent to false (as
ˆwrong(t, OS) = 0 = 1). The axiom for a method m is part of the background
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abstract class Inconsistent {

/*@ normal_behavior

@ ensures \result == 0 &&

@ \result == 1;

@*/

/*@ pure @*/ abstract int wrong();

/*@ normal_behavior

@ assignable \nothing;

@ ensures \result == 6 + wrong() &&

@ \result == 5 + wrong();

@*/

int bar() { return 6; }

}

Figure 6: The specification of wrong is not satisfiable.

theory used to verify methods that use m in their specification. If this background
theory is inconsistent, the reasoning is potentially unsound. For instance, the above
axiom is part of the background theory used to verify method bar and allows one
to verify bar, although its specification is obviously not satisfiable. Note that this
unsoundness occurs even though wrong is not called from bar’s implementation.

In practice, unsatisfiable specifications are far less obvious than in the example of
method wrong, because they typically involve several normal behavior specification
cases including inherited specifications. A verification technique has to ensure that
unsatisfiable specifications do not lead to unsound reasoning.

To eliminate this source of unsoundness, we use axioms that are weaker than
the naive axiomatization above. These axioms require one to prove, by giving a
witness, that the specification of a pure method m is satisfiable in order to assume
the properties of m̂ and m̂S. That is, the axioms for m̂ and m̂S are guarded by the
following antecedent:

(∃ r, OS ′ • specC
m(t, p, OS, r, OS ′) )

The existence of a witness has to be proven in order to employ the corresponding
axiom. For method wrong, one cannot give a witness r that satisfies r = 0 ∧ r = 1.
Therefore, the antecedent of the corresponding axiom is false, and the axiom is void.
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class Cycle {

/*@ normal_behavior

@ ensures \result == direct() +1;

@*/

/*@ pure @*/ int direct() { return 5; }

}

Figure 7: The recursive specification is not satisfiable by a pure method.

Recursive specifications

Recursive specifications occur when a method is either directly or indirectly spec-
ified in terms of itself. Class Cycle in Fig. 7 shows an example where a recursive
specification leads to an inconsistent axiom.

Method direct is specified in terms of itself. The specification is clearly not
satisfiable by a pure method. However, one can give witnesses r and OS ′ that satisfy
the specification, namely by choosing r = γ(direct()+1, OS, ) and OS ′ = OS.
By providing this witness, the axiomatization enables one to derive ˆdirect(t, OS) =

ˆdirect(t, OS) + 1 and, thereby, false.

JML allows directly-recursive specifications of pure methods if the recursion is
well-founded [12]. To describe a termination argument for the recursion, methods
can be annotated with a measured by clause. This clause specifies an integer ex-
pression that must always be at least zero. The measure for recursive calls in the
specification must strictly decrease [21].

We follow JML’s rules for recursive specifications of pure methods. That is,
we permit direct recursion in the ensures clauses of a pure method, provided that
an appropriate measured by clause is satisfied. However, we do not allow indirect
recursion as well as recursion in requires clauses, measured by clauses, and \old

expressions. We also disallow method calls in invariants. Invariants can be regarded
as a conjunct of each pre- and postcondition. Since invariants have to hold for all
allocated objects [22], they introduce a form of recursive specification that is not
decreasing according to the measure.

To simplify the formalization and, in particular, the soundness proof, we impose
two further requirements: (1) All measured by clauses in the specification of a pure
method m are identical. That is, it is not allowed to use different measured by
clauses in different specification cases. This restriction corresponds to the measures
used in theorem provers [21], but is not required by JML. (2) For each encoding of
an ensures clause ensC

m,i, we require that each occurrence of m̂ in γ(ensC
m,i, OS ′, OS)

takes OS ′ as store argument. This restriction allows us not to track store changes
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class Factorial {

/*@ normal_behavior

@ requires 0 <= i && i < 2;

@ ensures \result == 1;

@ also

@ normal_behavior

@ requires 2 <= i;

@ ensures \result == i * factorial(i-1);

@ measured_by i;

@*/

/*@ pure @*/ int factorial(int i) { /* ... */ }

}

Figure 8: The measured by clause allows one to prove that the recursive specification
of method factorial is well-defined.

in the formalization of measured by clauses. It is met by all practical examples we
have considered so far, but disallows recursive calls where the actual parameters are
in turn method calls.

The requirement of well-founded recursion can be formalized as follows. Assume
method m in class C takes one explicit parameter, par. mbm(t, p, OS) denotes the
result of applying γ to the measured by expression of method m—with t and p
substituted for this and par, respectively—, OS, and an arbitrary store. We add
another antecedent to the axioms for m̂ and m̂S that requires one to prove for each
recursive call o.m(q) in a normal behavior specification case for m in C that the
corresponding measure is non-negative and decreasing. We formalize this by the
following measure condition:

PREC
m,i(OS) ⇒ 0 ≤ mbm(o, q, OS) < mbm(this, par, OS)

We use wfnC
m(OS) to denote the conjunction of the measure conditions for each

recursive call to m in an ensures clause for m in class C.

The measure condition rules out the specification of method direct. Since the
recursive call takes exactly the same parameter, this, it is not possible to give a
decreasing measure.

The factorial method in Fig. 8 illustrates the use of measured by clauses. The
measure condition for this specification can be proved easily. The requires clause of
the second specification case, 2 ≤ i, implies that the measure, i, is non-negative
and decreasing (0 ≤ i− 1 < i).

For recursive methods that traverse object structures, ownership [6] can be used
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to describe measures. More specifically, we can use the height of an object in the
ownership hierarchy as a measure. For instance, the equals method of a binary tree
can be specified recursively, provided that the children of a tree node are owned by
the parent node.

Summary

To summarize the previous subsections, we present the axiom for a pure method m
in class C with one explicit parameter par. To use the properties of m̂ and m̂S, one
has to show that: (1) the arguments of these functions are allocated and that the
receiver object t is a non-null instance of the enclosing class; (2) the specification
of m is satisfiable (by giving a witness); (3) each recursion in m’s specification is
well-founded (by giving a measure). These three conditions are the antecedents of
the axiom for m:

(∀ t, p, OS • alive(t, OS) ∧ alive(p, OS) ∧ t 6= null ∧ typeof (t) � C ∧
(∃ r, OS ′ • specC

m(t, p, OS, r, OS ′) ) ∧
wfnC

m(OS)

⇒
specC

m(t, p, OS, m̂(t, p, OS), m̂S(t, p, OS)) )

Soundness

In this subsection, we show that the axiomatization of the functions for pure methods
is consistent. That is, we prove the following theorem:

Theorem. Let P be a specified program where pure methods are not used mu-
tually in their specifications. There is a model for the axioms generated from the
specifications of P’s pure methods.

We prove this theorem in two steps. In Step 1, we prove an auxiliary lemma that
there is a model for each individual axiom. In Step 2, we prove the theorem.

Step 1: Individual axioms.

We prove the following auxiliary lemma:

Lemma. Let P be a specified program where pure methods are not used mutually
in their specifications. Let m be a pure method declared in a class C of P, where
the functions for all methods other than m that are used in m’s specification are
well-defined. Then there is a model for the axiom generated for m and C.

Proof of lemma. We recursively define m̂(t, p, OS) and m̂S(t, p, OS) as fol-
lows. Let ∆ be the set of all indices i such that PREC

m,i(OS)[t/this, p/par] holds.
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Now m̂(t, p, OS) and m̂S(t, p, OS) are defined to yield any values r, OS ′ such that
POSTC

m,i(OS ′, OS)[t/this, p/par, r/resV ] holds for all i ∈ ∆.

This definition of m̂ and m̂S is well-defined for the following reasons: (1) Any
potential recursion is well-founded. For direct recursion, this is guaranteed by the
antecedent wfnC

m(OS) of the axiom and the fact that OS ′ is a pure successor of
OS, which implies that the measure yields the same result in both stores. Indirect
recursion is not allowed. (2) There actually are values r and OS ′ to be chosen, which
follows from the antecedent of the axiom that requires the existence of a witness.

Step 2: Theorem.

We define a depends graph as follows: (1) The nodes of the graph are the pure
methods of P. (2) There is an edge from node m to node n if a normal behavior
specification case of method m mentions method n. By the restrictions explained
in Sec. 5, we know that the depends graph is acyclic except for direct cycles of just
one node.

The proof of the theorem runs by induction on the depth of a method m in the
depends graph. The induction hypothesis is that there are well-defined functions
m̂ and m̂S for each method m with a depth up to N . These functions satisfy the
axioms for all methods with a depth up to N . The induction base (N = 0, that is,
the leaves of the graph) and the induction step are proved by the same arguments,
which we present in the following.

Let m be a pure method with depth N that takes one explicit parameter and is
declared in class C, and consider any non-null C object t, value p, and store OS.
We show that there are values r, OS ′ for m̂(t, p, OS) and m̂S(t, p, OS) that satisfy
the axioms for m. The axioms for another method n with depth less or equal N do
not mention m̂ and m̂S because n is not specified in terms of m. Therefore, these
axioms are satisfied independently of the definition of m̂ and m̂S. For the axioms
for m, we continue as follows.

The axiom for each subclass S of C that is not a superclass of t’s dynamic
type holds trivially because typeof (t)�S does not hold. Since we do not consider
interfaces, we can assume single subtyping. Therefore, it remains to show that there
are values that satisfy the axioms for the superclasses of t’s dynamic type.

Let σ be the set of all superclasses D of t’s dynamic type (typeof (t)�D�C)
such that (∃ r, OS ′ • specD

m(t, p, OS, r, OS ′) ) holds. For superclasses of t’s dynamic
type that are not in σ, the axiom is trivially satisfied. In particular, if σ is empty,
the proof is completed.

If σ is not empty, let T be the smallest class in σ w.r.t. the subclass relation.
We define m̂(t, p, OS) and m̂S(t, p, OS) such that they satisfy the axiom for m in T .
According to the auxiliary lemma, such values exist.

It remains to show that these values satisfy the axioms for all classes in σ. Since T
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is the smallest class in σ, each member S of σ is a superclass of T . Specification inher-
itance guarantees that the subclass specification is stronger than the superclass spec-
ification: specT

m ⇒ specS
m. Therefore, r and OS ′ also satisfy specS

m(t, p, OS, r, OS ′).
�

Note that this soundness proof assumes single subtyping. With multiple subtyp-
ing (that is, interfaces), there can exist superinterfaces of typeof (t) that are neither
sub- nor supertypes of the class T . The axioms for these interfaces can lead to
inconsistencies. This source of unsoundness can be avoided by generating a proof
obligation for each type with several supertypes to show that the inherited specifi-
cations are satisfiable.

6 A PLEA FOR VALUE TYPES

In the previous sections we have shown that weak purity can be handled in a sound
way. However, the resulting formulas are complicated. We have also shown that the
encoding of specification expressions can be simplified significantly for expressions
of primitive types. Further simplifications are possible in programming languages
that provide non-primitive value types such as expanded types in Eiffel or structs
in C#. Since instances of value types do not have an identity, value types qualify
for the same simplifications as primitive types.

Eiffel’s and C#’s value types are rather restricted because it is not possible to
implement recursive data structures as value types. However, Spec# offers built-
in value types for sets and sequences. The existence of such value types enables
a dramatic simplification of the encoding of pure methods. It seems practical to
completely prevent pure methods from returning new reference type objects. Data
abstraction can still be expressed using (built-in) value types.

If pure methods must not return new reference type objects, they are effectively
strongly-pure. With this requirement, specification expressions can be encoded with-
out using store functions for pure methods or the ω function. Another possibility is
to explicitly specify methods as weakly-pure or strongly-pure to simplify the encod-
ing of the latter.

To check how frequently value types are used in specifications, we counted the
number of pure methods with result type String in the Internet voting tally system
[11]. Although strings are not value types in Java and C#, their immutability and
the semantics of equality on strings in C# [7] suggest that strings behave very much
like value types.

We found that strings are returned by 34 per cent (63 out of 182) of the pure
methods. In fact, only 5 per cent (9 out of 182) of the pure methods have a reference
result type different from String and are actually used in specifications. This result
underlines the importance of supporting value types for specification purposes. It
also shows that the model library of a specification language should consist of value
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types or should use value type semantics.

7 RELATED WORK

According to our knowledge, our work is the first encoding of methods that addresses
abrupt termination, weak purity, and consistency.

The work closest to ours is that of Cok [4], which also uses axiomatized functions
to model pure methods. However, his formalization does not handle weak purity
and does not prevent inconsistent axiomatizations and, therefore, unsoundness. For
specification cases other than normal behavior, Cok uses signals clauses to generate
axioms, which leads to a stronger axiomatization than ours, but in general requires
strong purity for soundness. Cok’s approach has been implemented in ESC/Java2
[11]. We have verified all unsound examples presented in this paper with ESC/Java2.
ESC/Java [8] does not permit method calls in specifications.

For pure methods with restricted ensures clauses, the Krakatoa tool [16] gen-
erates function definitions rather than axioms. Marché et al. do not discuss the
requirements that are necessary to ensure that these functions are well-defined.
They do not consider weak purity either.

Model fields are similar to parameterless methods. Model fields are specification-
only fields whose values are typically not looked up in the store when accessing
them, but are determined by applying mappings to the concrete states of objects.
In general, such mappings may be based on weakly-pure methods, thus a sound
handling of model fields has to cope with the problems of weak purity.

Breunesse and Poll [2] address the consistency problem for model fields. They
propose two solutions. Like ours, their first solution uses existential quantification to
ensure that the representation relation of a model field is satisfiable. However, their
encoding yields false for every JML expression e that contains a model field whose
representation cannot be satisfied, even if e is a tautology. The second solution
transforms model fields into pure methods. This solution requires a sound encoding
for methods, which we presented in this paper. Breunesse and Poll do not address
weak purity and recursive specifications.

Work by Leino and Nelson [13, 15], and Müller [19] provides a sound and modular
handling of model fields using different techniques. However, neither of the two
approaches allows representation functions for model fields to include method calls,
thus preventing the need of handling side-effects.

Recent work by Leino and Müller [14] extends the Boogie methodology to handle
model fields in a sound, modular, and practical way. One of the main novelties of
the approach is that the values of model fields are stored in the heap, just like the
values of ordinary fields. The representation functions are only applied at certain
well-defined points of the program to compute the values to be stored. Therefore,
reading a model field does not have side-effects because the representation function
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is not applied. For instance for a model field m, m == m yields true, even if the
representation for m allocates a new object. Leino and Müller’s approach handles
weak purity for model fields, but not for general method and constuctor calls in
specifications.

Naumann [20] proposes a notion of purity that is more liberal than JML’s weak
purity and allows certain modifications of existing objects, for instance, updates of
encapsulated caches. Extending our approach to this notion of purity is possible by
weakening the E relation such that modifications of invisible fields are permitted.

8 CONCLUSIONS

In this paper, we presented a formalization of pure methods that allows one to
reason about method calls in JML specifications. Pure methods are encoded by
uninterpreted function symbols and axioms. This encoding can be expressed in a
variety of logics. The axiomatization of the functions handles weak purity and is
consistent, even if the JML specification is not satisfiable.

Our encoding can also be applied to JML’s model fields [3], which face the same
problems as pure methods because computing the value of a model field may involve
the allocation and initialization of objects.

The main restriction of our approach is that method calls are disallowed in
invariants as pointed out in Sec. 5. As part of future work, we will investigate ways
to relax this restriction.

Our main conclusion from the work presented here is that value types simplify
the treatment of pure methods dramatically. Our recommendation for language
designers is to provide at least built-in value types such as the sets and sequences
in Spec#. Because of the observations described in this paper, the Boogie program
verifier requires pure methods not to return references to newly allocated objects,
which allows Boogie to use a simplified encoding of pure methods. As future work,
we plan to implement our results also in Jive [18] based on a core model library of
value types.
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