
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 4, May – Juni 2006

Cite this column as follows:Richard Wiener: “Modeling a Grid of Traffic Lights -A Case Study Using
WinForms, Event Handling and Observer Pattern”, in Journal of Object Technology, vol. 5, no. 4,
Mai - June 2006, pp. 28-58 http://www.jot.fm/issues/issue_2006_05/column4

Modeling a Grid of Traffic Lights -A Case
Study Using WinForms, Event Handling
and Observer Pattern

Richard Wiener, Editor-in-Chief, JOT, Associate Professor, Department of
Computer Science, University of Colorado at Colorado Springs

The goal of this case study is to demonstrate the use of event-handling, winforms, simple
graphics and the observer pattern and show these in action in an interesting and fun
simulation.

The simulation of a traffic grid consisting of 16 lanes of cars (8 roadways with two
lanes in each roadway) controlled by 15 traffic lights forms the basis of this case study. The
traffic grid is shown in Figure 1 below.

Figure 1 – Traffic Control Grid With 16 lanes and 15 intersections

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

The quality of a computer simulation, from a scientific perspective, is based on the degree
to which the mathematical models that are used to approximate “reality” capture the
essence of that reality. The application program (simulation) must of course faithfully
implement the mathematical models that describe the behavior of the system being
simulated. For a traffic grid, the aspects of reality that must be modeled are:

1. The arrival pattern of cars into each of the 16 lanes. Here stochastic modeling is
appropriate. That is the arrivals of cars is a random phenomena governed by known
laws of statistics.

2. The car-following dynamics that determines the speed of a following-car with
respect to a leading car directly in front of it.

3. The timing pattern of the 15 traffic signals (the starting time for green, its duration,
the duration of amber and the duration of red).

1 MATHEMATICAL MODEL OF THE ARRIVAL PATTERN OF CARS
INTO THE 16 LANES

In the world of traffic control modeling, a Poisson probability distribution has long been
used to represent the arrival pattern of cars on a roadway.

One of the most important and fundamental aspects of a Poisson process is that the
number of events (arrival of cars into a given lane in this case) that occur within a specified
time interval is totally independent of the number of events that have occurred in a previous
time interval. The only factor that influences the number of events that occur within a
specified time interval is the average number of arrivals – the single parameter that
completely characterizes the Poisson distribution. This is often referred to as the
“memoryless” property of a Poisson distribution. For a more detailed look at the
mathematical properties of Poisson distribution, see
http://en.wikipedia.org/wiki/Poisson_process.

As is well known, if the probability of the number of arrivals within a specified
interval of time is given by a Poisson probability distribution function (pdf), the time
between successive arrivals (cars in a given lane in this case) is given by an exponential
probability distribution.

This exponential pdf is given by:

f(t) = •e-•t for t > 0.

The cumulative distribution function (cdf) is given by:

1 – e-•t

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 31

Here λ represents the average number of cars that arrive / second. The cdf provides the
probability that an arrival occurs within t seconds of the previous arrival. The higher the
arrival rate λ, the more likely (probability closer to 1) an arrival for a given value of t.

2 COMPUTER IMPLEMENTATION OF POISSON ARRIVAL
PROCESS

To generate an exponentially distributed interarrival time generate a uniformly distributed
random number from 0 to 1, say U (0 < U < 1). See,
http://engineering.dartmouth.edu/~eric/engs027/outlines/19DiscrEvSim.pdf#search='Simul
ating%20a%20Poisson%20process'
Solve the equation,

U = 1 – e-•t

for t.
The solution is:

t = -1 / • * ln(1 – U)

Since (1 – U) has the same distribution as U, we can simplify the result ,

t = -1 / • * ln(U)

This leads to the method,

public void SetTimeOfNextArrival(double currentTime,
 double arrivalRate) {
 timeOfNextArrival = currentTime + Math.Log(
 Constants.rnd.NextDouble()) / (-arrivalRate)
}

3 CAR FOLLOWING MODEL

The following description is quoted from the paper:
http://tomfotherby.com/Contents/Education/Project/finalReport.pdf

“The simplest mathematical car-following model is linear. This means that as long as
there’s no obstruction (another car or a red light) in front of a vehicle, it will travel at the
speed limit of k kilometres per hour.

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

If a car gets within a distance of L metres from an obstruction, it will reduce its speed
proportionally to that distance. If a car gets within a distance of l metres from an
obstruction, it will stop altogether.

Let x denote the distance in metres between two cars (measured from the front of one
to the back of another, or between the front of one car and a red light ahead).

The speed v of the car is:

V = k if x >= L
0 <= v <= k; if l < x < L
0 if x <= l

In the second case, l < x < L, we’re assuming the car changes speed proportionally to
changes in distance, so that v is given by a “linear” function of x (the graph of v as a
function of x is a straight line). This means that v = mx + c for two constants m and c.
These constants can be determined from the two conditions:

1. v=0 when x=l
2. v=k when x=L;

These three numbers (k, l, and L) therefore, completely determine the traffic behavior. The
design decision to use the simplest model possible allows the project a wider scope in other
aspects, however the model suffers in realistic factors such as drivers’ reaction times, or
limits to how fast a car can brake or accelerate.”

4 COMPUTER IMPLEMENTATION OF CAR-FOLLOWING MODEL

The following method is based on the linear car-following model presented above. Some
modifications have been made.

// Designed for the first horizontal lane (left to right)
// Returns speed of car based on carAhead
private double CarFollowingModel1a(Car car, Car carAhead) {
 bool skip = false;
 if (car.Speed == 0 && car.ReleaseTime == 0) {
 car.ReleaseTime = currentTime + timeDelayFromStandstill;
 return 0.0;
 } else if (car.Speed == 0 && currentTime >= car.ReleaseTime ||
 car.Speed > 0.0) {
 car.ReleaseTime = 0.0;
 double distanceAhead = 0.0;
 double carDistanceAhead = carAhead.Position.X - car.Position.X;
 // Find the closest light and the distance of car to it
 double lightDistanceAhead = -1.0;
 int lightNumber = 4;

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 33

 for (; lightNumber >= 0; lightNumber--) {
 lightDistanceAhead = lights[lightNumber].Position.X - 20 -
 car.Position.X;
 if (lightDistanceAhead < 0 && lightNumber < 4) {
 lightNumber++;
 lightDistanceAhead = lights[lightNumber].Position.X - 20 –
 car.Position.X;
 skip = true;
 break;
 }
 }
 if (!skip && lightDistanceAhead > 0 && lightNumber < 4) {
 lightNumber++;
 }
 if (lightDistanceAhead > 0 &&
 (lights[lightNumber].Color == LightColor.red ||
 lights[lightNumber].EWYellow)) {
 distanceAhead = lightDistanceAhead < carDistanceAhead ?
 lightDistanceAhead : carDistanceAhead;
 } else {
 distanceAhead = carDistanceAhead;
 }
 if (distanceAhead >= longDistanceThreshold) {
 return car.DesiredSpeed;
 } else if (distanceAhead >= shortDistanceThreshold) {
 return car.DesiredSpeed / (longDistanceThreshold –
 shortDistanceThreshold) * distanceAhead -
 car.DesiredSpeed * shortDistanceThreshold /
 (longDistanceThreshold - shortDistanceThreshold);
 } else {
 car.ReleaseTime = 0.0;
 return 0.0;
 }
 }
 return 0.0;
}

5 THE TIMING PATTERN OF THE 15 TRAFFIC SIGNALS

There are two options that will be used to control the traffic signals. The fixed cycle option
has all 15 lights turning green at the same time, remaining green for a fixed and specified
duration, and then turning amber for a short fixed period and then turning and staying red
for a specified duration. This is typical of many intersections. The only real control is the
specification of the duration of the green and red signals in each direction.

The second option involves automatic control of each traffic signal. Here, each traffic
light operates independently of all the other traffic lights. The duration of green in the east-
west/west-east directions, assumed to carry most of the traffic volume is based on an
algorithm developed by Richard Wiener. This algorithm is given as follows:

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

For a given light that is green in the EW/WE direction:

(1) Must stay green for at least 15 seconds.
 (2) Cannot stay green for more than 90 seconds.
 (3) If the number of cars waiting in either red direction equals
 10 or more or the total number of cars in the red directions
 equals 16 or more, changes from green to red.
 (-) A platoon is a sequence of three or more cars where the
 separation from the front of one car to the front of the car
 ahead of it is equal or less than 1.5 longDistanceThreshold
 (48 feet).
 (4) After the light has been green for its minimum of 15 seconds
 (exactly 15 seconds) in the EW/WE direction:
 identify platoons upstream of the light but after the
 previoius light. Identify the last car in the most upstream
 platoon in each dirction and mark these cars. Look in both
 green directions in making this determination. When both cars
 get through the intersection, the light turns red (assuming
 that constraints 2 and 3 are met). If no platoons are
 identified in either direction upstream at 15 seconds into
 the green cycle, the green immediately turns red.
 Note: Platoon identification is performed only once at
 exactly 15 seconds into the green cycle.
 In the NS/SN direction, the light stays green for only 12
 seconds independent of traffic since the traffic flow is
 assumed to be much lighter in these directions.

6 IMPLEMENTATION OF TRAFFIC SIGNAL ALGORITHM AND
OTHER SUPPORTING CLASSES

Method SensorLightControl, shown below, implements the algorithm presented in Section
5. The properties LightColor.green and LightColor.red pertain to the lights in the EW/WE
direction by default. The array, grid, contains 16 objects of type Lane.

private void SensorLightControl() {
 for (int lightNumber = 0; lightNumber < 15; lightNumber++) {
 TrafficLight light = lights[lightNumber];
 if (light.Color == LightColor.green && currentTime >=
 light.TurnedGreenEW + 90.0) {
 // Light has been green for more than 90 seconds
 light.TurnGreenNS(currentTime);
 } else if (light.Color == LightColor.green && currentTime >
 light.TurnedGreenEW + 15.0 &&
 (light.CarsWaitingNS >= 10 ||
 light.CarsWaitingSN >= 10 ||
 (light.CarsWaitingNS + light.CarsWaitingSN) >= 16)) {
 // Light has been green for more than 15 seconds and
 // sufficient queue in red direction
 light.TurnGreenNS(currentTime);

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 35

 } else if (light.Color == LightColor.green &&
 currentTime >= light.TurnedGreenEW + 15.0 &&
 !light.DelaySet) {
 if (lightNumber < 5) {
 double delay1 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[0],
 light.Position.X, Direction.EW);
 double delay2 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[1],
 light.Position.X, Direction.WE);
 light.Delay = (delay1 > delay2) ? delay1 : delay2;
 } else if (lightNumber < 10) {
 double delay1 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[12],
 light.Position.X, Direction.EW);
 double delay2 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[13],
 light.Position.X, Direction.WE);
 light.Delay = (delay1 > delay2) ? delay1 : delay2;
 } else {
 double delay1 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[14],
 light.Position.X, Direction.EW);
 double delay2 =
 ComputeTimeDelayToClearUpstreamPlatoon(grid[15],
 light.Position.X, Direction.WE);
 light.Delay = (delay1 > delay2) ? delay1 : delay2;
 }
 if (light.Delay == 0) {
 light.TurnGreenNS(currentTime);
 }
 } else if (light.Color == LightColor.green &&
 currentTime > light.TurnedGreenEW + 15.0 &&
 currentTime > light.TurnedGreenEW + + 15.0 +
 light.Delay) {
 light.TurnGreenNS(currentTime);
 }

 if (light.Color == LightColor.red &&
 currentTime >= light.TurnedGreenNS + 12.0) {
 // Light has been green for more than 12 seconds
 light.TurnGreenEW(currentTime);
 }
 }
}

Class Lane is given as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace TrafficSimulation {

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 // Models a lane of cars
 public class Lane {

 // Fields
 private List<Car> cars = new List<Car>();
 private double timeOfNextArrival;

 // Indexer
 public Car this[int index] {
 get {
 return cars[index];
 }
 }

 // Properties
 public List<Car> Cars {
 get {
 return cars;
 }
 set {
 cars = value;
 }
 }

 public double TimeOfNextArrival { // Read-only
 get {
 return timeOfNextArrival;
 }
 }

 // Commands
 public void AssignCar(Car car) {
 cars.Add(car);
 }

 public void RemoveCar() {
 cars.RemoveAt(1); // Remove first car
 }

 public void SetTimeOfNextArrival(double currentTime, double
 arrivalRate) {
 timeOfNextArrival=currentTime+
 Math.Log(Constants.rnd.NextDouble()) / (-arrivalRate);
 }

 // Queries
 public Car CarAt(int index) {
 return cars[index];
 }

 public int Size() {
 return cars.Count;
 }
 }

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 37

}

Each Lane object contains a generic List of Car objects.

Class Car is given as:
using System;
using System.Collections.Generic;
using System.Collections;
using System.Text;
using System.Drawing;
using System.Windows.Forms;
using System.Threading;

namespace TrafficSimulation {

 // Models speed function
 public delegate double CarFollowing(Car car, Car carAhead);

 public class Car {
 // Fields
 private Position position; // In ft
 private double speed; // In ft/sec
 private CarFollowing speedCurve;
 private double releaseTime; // In seconds
 private double desiredSpeed; // In ft/sec
 private double timeEntersGrid;
 private Hashtable lightsStoppedAt = new Hashtable(); // Holds
 // the positions of the lights stopped at

 public Car(Position initPosition, CarFollowing speedCurve,
 double speedLimit, double time) {
 this.speedCurve = speedCurve;
 position = initPosition;
 releaseTime = 0.0;
 desiredSpeed = (0.75 + 0.5 * Constants.rnd.NextDouble()) *
 speedLimit;
 timeEntersGrid = time;
 Thread.Sleep(5);
 }

 // Properties
 public Position Position {
 get {
 return position;
 }
 set {
 position = value;
 }
 }

 public CarFollowing SpeedCurve {
 get {
 return speedCurve;
 }

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 }

 public double Speed {
 get {
 return speed;
 }
 set {
 speed = value;
 }
 }

 public double ReleaseTime {
 get {
 return releaseTime;
 }
 set {
 releaseTime = value;
 }
 }

 public double DesiredSpeed {
 get {
 return desiredSpeed;
 }
 set {
 desiredSpeed = value;
 }
 }

 public double TimeEntersGrid {
 get {
 return timeEntersGrid;
 }
 set {
 timeEntersGrid = value;
 }
 }

 public int LightsStoppedAt {
 get {
 return lightsStoppedAt.Count;
 }
 }

 // Commands
 public void SetLightsStoppedAt(int pos) {
 lightsStoppedAt[pos] = pos;
 }
 }
}

Class Car has a field of type CarFollowing, a delegate that models the many car-following
methods that are used.

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 39

The field lightsStopped at is of type Hashtable since duplicates are not allowed in the
Hashtable collection.

When a car is constructed its desired speed is computed by,

desiredSpeed = (0.75 + 0.5 * Constants.rnd.NextDouble()) *
 speedLimit;

The desired speed is uniformly distributed from 75 percent to 125 percent the speed limit.
The variance of desired speed is what leads to the formation of platoons.

Class TrafficLight is given as follows:
using System;
using System.Collections.Generic;
using System.Text;
using System.Drawing;

namespace TrafficSimulation {

 public enum LightColor { red, green }; // In east-west direction
 public class TrafficLight {

 // Fields
 private LightColor color = LightColor.green;
 private Position position;
 private double redDuration; // Seconds
 private double greenDuration; // Seconds
 private double yellowDuration = 4.0; // Seconds
 private bool ewYellow;
 private bool nsYellow;
 private double timeTurnsRed = 1000000.0;
 private double timeTurnsGreen = 0.0;
 private int carsWaitingEW, carsWaitingWE, carsWaitingNS,
 carsWaitingSN;
 private double turnedGreenEW = 0.0; // Used only for
 automatic
 // light control
 private double turnedGreenNS = 1000000; // Used only for
 // automatic light
 control
 private double delay; // Based on upstream platoon
 private bool delaySet;

 public TrafficLight(Position pos) {
 position = pos;
 TurnGreenEW(0.0);
 }

 public void TurnGreenEW(double time) {
 turnedGreenEW = time;
 turnedGreenNS = 100000;
 color = LightColor.green;
 nsYellow = false;
 ewYellow = false;

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 delay = 0.0;
 delaySet = false;
 }

 public void TurnGreenNS(double time) {
 turnedGreenNS = time;
 turnedGreenEW = 100000;
 color = LightColor.red;
 nsYellow = false;
 ewYellow = false;
 delay = 0.0;
 delaySet = false;
 }

 // Properties
 public LightColor Color {
 get {
 return color;
 }
 set {
 color = value;
 }
 }

 public Position Position {
 get {
 return position;
 }
 }

 public double RedDuration {
 get {
 return redDuration;
 }
 set {
 redDuration = value;
 }
 }

 public double GreenDuration {
 get {
 return greenDuration;
 }
 set {
 greenDuration = value;
 }
 }

 public double YellowDuration {
 get {
 return yellowDuration;
 }
 set {
 yellowDuration = value;

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 41

 }
 }

 public double TimeTurnsRed {
 get {
 return timeTurnsRed;
 }
 set {
 timeTurnsRed = value;
 }
 }

 public double TimeTurnsGreen {
 get {
 return timeTurnsGreen;
 }
 set {
 timeTurnsGreen = value;
 }
 }

 public bool EWYellow {
 get {
 return ewYellow;
 }
 set {
 ewYellow = value;
 }
 }

 public bool NSYellow {
 get {
 return nsYellow;
 }
 set {
 nsYellow = value;
 }
 }

 public int CarsWaitingEW {
 get {
 return carsWaitingEW;
 }
 set {
 carsWaitingEW = value;
 }
 }

 public int CarsWaitingWE {
 get {
 return carsWaitingWE;
 }
 set {
 carsWaitingWE = value;
 }
 }

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 public int CarsWaitingNS {
 get {
 return carsWaitingNS;
 }
 set {
 carsWaitingNS = value;
 }
 }

 public int CarsWaitingSN {
 get {
 return carsWaitingSN;
 }
 set {
 carsWaitingSN = value;
 }
 }

 public double TurnedGreenEW {
 get {
 return turnedGreenEW;
 }
 set {
 turnedGreenEW = value;
 }
 }

 public double TurnedGreenNS {
 get {
 return turnedGreenNS;
 }
 set {
 turnedGreenNS = value;
 }
 }

 public double Delay {
 get {
 return delay;
 }
 set {
 delay = value;
 delaySet = true;
 }
 }

 public bool DelaySet {
 get {
 return delaySet;
 }
 }
 }
}

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 43

Class Simulation comprises the core of the simulation model. It is over 1000 lines of code
and therefore too voluminous to include in its entirety. Only portions of this important class
are presented.

Portions of Class Simulation
using System;
using System.Collections.Generic;
using System.Text;
using System.Drawing;
using System.Threading;
using System.Windows.Forms;

namespace TrafficSimulation {

 public enum Direction { EW, WE, NS, SN };

 public class Simulation {

 // Instance used to communicate with UI class
 public delegate void UpdateView(Lane[] lanes, double time,
 double systemTimeEW, int carsProcessedEW,
 double systemTimeNS, int carsProcessedNS,
 int lightsStoppedAtEW,
 int lightsStopeedAtNS);

 // Fields
 private Lane[] grid = new Lane[16];
 private Thread runThread;
 private double widthGrid = 3276.0;
 private double heightGrid = 2100.0;
 private bool stopSimulation = false;
 private double timeBetweenTicks = 0.25; // seconds
 private double timeDelayFromStandstill = 0.75; // seconds
 private double currentTime = 0.0; // seconds
 private double speedLimit = 44.0; // ft / sec
 private double longDistanceThreshold = 36;
 private double shortDistanceThreshold = 22;
 private double arrivalRateEW = 0.2; // cars / sec
 private double arrivalRateNS = 0.1;
 private double arrivalRateWE = 0.3;
 private double arrivalRateSN = 0.05;
 private TrafficLight[] lights = new TrafficLight[15];
 private int carsProcessedEW = 0;
 private double totalTimeInSystemEW = 0.0;
 private int carsProcessedNS = 0;
 private double totalTimeInSystemNS = 0.0;
 private int lightsStoppedEW = 0;
 private int lightsStoppedNS = 0;
 private double greenDuration;
 private double redDuration;
 private bool autoLightControl = false;
 private CarFollowing[] carFollowingModel =
 new CarFollowing[16];
 private Direction[] directionOfFlow = new Direction[16];
 private double [] position = new double[16];

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 // Events
 private event UpdateView updateMethod;

 // Constructor
 public Simulation() {
 Initialize();
 }

 // Properties
 public TrafficLight this[int index] {
 get {
 return lights[index];
 }
 }

 // Other properties not shown here

 // Commands
 public void RegisterView(UpdateView update) {
 updateMethod += new UpdateView(update);
 }

 public void SetLightDuration() {
 for (int i = 0; i < 15; i++) {
 lights[i].RedDuration = redDuration;
 lights[i].GreenDuration = greenDuration;
 }
 }

 public void ResetSimulationStatistics() {
 totalTimeInSystemEW = 0.0;
 totalTimeInSystemNS = 0.0;
 carsProcessedEW = 0;
 carsProcessedNS = 0;
 lightsStoppedEW = 0;
 lightsStoppedNS = 0;
 currentTime = 0.0;
 Initialize();
 }

 public void StopSimulation() {
 stopSimulation = true;
 }

 public void StartSimulation() {
 runThread = new Thread(new ThreadStart(Run));
 runThread.Start();
 }

 public void Run() {
 // Notify the UI
 updateMethod(grid, currentTime, totalTimeInSystemEW,

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 45

 carsProcessedEW,
 totalTimeInSystemNS, carsProcessedNS,
 lightsStoppedEW, lightsStoppedNS);
 while (!stopSimulation) {
 Thread.Sleep((int)(1000 * timeBetweenTicks));
 currentTime += timeBetweenTicks;
 UpdateCarsWaiting();

 if (!autoLightControl) {
 FixedLightControl();
 } else {
 SensorLightControl();
 }

 for (int i = 0; i < 16; i++) {
 SetSpeedAndPositionOfCars(grid[i],
 carFollowingModel[i], directionOfFlow[i],
 position[i]);
 }
 // Notify the UI
 updateMethod(grid, currentTime, totalTimeInSystemEW,
 carsProcessedEW,
 totalTimeInSystemNS, carsProcessedNS,
 lightsStoppedEW, lightsStoppedNS);
 }
 }

 public void Initialize() {
 // Construct an array of method instances
 carFollowingModel[0] = CarFollowingModel1a;
 carFollowingModel[1] = CarFollowingModel2a;
 carFollowingModel[2] = CarFollowingModel3a;
 carFollowingModel[3] = CarFollowingModel4a;
 carFollowingModel[4] = CarFollowingModel3b;
 carFollowingModel[5] = CarFollowingModel4b;
 carFollowingModel[6] = CarFollowingModel3c;
 carFollowingModel[7] = CarFollowingModel4c;
 carFollowingModel[8] = CarFollowingModel3d;
 carFollowingModel[9] = CarFollowingModel4d;
 carFollowingModel[10] = CarFollowingModel3e;
 carFollowingModel[11] = CarFollowingModel4e;
 carFollowingModel[12] = CarFollowingModel1b;
 carFollowingModel[13] = CarFollowingModel2b;
 carFollowingModel[14] = CarFollowingModel1c;
 carFollowingModel[15] = CarFollowingModel2c;

 directionOfFlow[0] = Direction.EW;
 directionOfFlow[1] = Direction.WE;
 for (int i = 2; i <= 10; i += 2) {
 directionOfFlow[i] = Direction.NS;
 }
 for (int i = 3; i <= 11; i += 2) {
 directionOfFlow[i] = Direction.SN;
 }
 for (int i = 12; i <= 14; i += 2) {
 directionOfFlow[i] = Direction.EW;

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 }
 for (int i = 13; i <= 15; i += 2) {
 directionOfFlow[i] = Direction.WE;
 }

 lights[0] = new TrafficLight(new Position(528, 400));
 lights[1] = new TrafficLight(new Position(1056, 400));
 lights[2] = new TrafficLight(new Position(1584, 400));
 lights[3] = new TrafficLight(new Position(2112, 400));
 lights[4] = new TrafficLight(new Position(2640, 400));

 lights[5] = new TrafficLight(new Position(528, 1000));
 lights[6] = new TrafficLight(new Position(1056, 1000));
 lights[7] = new TrafficLight(new Position(1584, 1000));
 lights[8] = new TrafficLight(new Position(2112, 1000));
 lights[9] = new TrafficLight(new Position(2640, 1000));

 lights[10] = new TrafficLight(new Position(528, 1600));
 lights[11] = new TrafficLight(new Position(1056, 1600));
 lights[12] = new TrafficLight(new Position(1584, 1600));
 lights[13] = new TrafficLight(new Position(2112, 1600));
 lights[14] = new TrafficLight(new Position(2640, 1600));

 position[0] = lights[0].Position.Y - 45.0;
 position[1] = position[0] - 30.0;
 position[2] = lights[0].Position.X + 15.0;
 position[3] = position[2] + 30.0;
 position[4] = lights[1].Position.X + 15.0;
 position[5] = position[4] + 30.0;
 position[6] = lights[2].Position.X + 15.0;
 position[7] = position[6] + 30.0;
 position[8] = lights[3].Position.X + 15.0;
 position[9] = position[8] + 30.0;
 position[10] = lights[4].Position.X + 15.0;
 position[11] = position[10] + 30.0;
 position[12] = lights[6].Position.Y - 45.0;
 position[13] = position[12] - 30.0;
 position[14] = lights[11].Position.Y - 45.0;
 position[15] = position[14] - 30.0;
 grid = new Lane[16];

 for (int i = 0; i < 16; i++) {
 grid[i] = new Lane();
 }

 for (int i = 0; i < 16; i++) {
 CreateLaneAndAssignFirstCar(grid[i],
 directionOfFlow[i], carFollowingModel[i],
 position[i]);
 }
 }

 private void SetSpeedAndPositionOfCars(Lane lane, CarFollowing
 carFollowingModel, Direction direction, double position) {
 if (direction == Direction.EW) {

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 47

 if (currentTime >= lane.TimeOfNextArrival) {
 lane.AssignCar(new Car(new Position(0, position),
 new CarFollowing(carFollowingModel),
 speedLimit, currentTime));
 lane.SetTimeOfNextArrival(currentTime,
 arrivalRateEW);
 }
 // Set the speed of all the cars in the lane
 for (int index = 1; index < lane.Size(); index++) {
 lane[index].Speed =
 lane[index].SpeedCurve(lane[index],
 lane[index - 1]);
 }
 // Set the position of all the cars in the lane
 for (int index = 1; index < lane.Size(); index++) {
 double changeInXPosition =
 (int)lane[index].Speed * timeBetweenTicks;
 double oldXPosition = lane[index].Position.X;
 lane[index].Position =
 new Position(oldXPosition + changeInXPosition,
 position);
 if (lane[index].Position.X > widthGrid) {
 totalTimeInSystemEW += currentTime –
 lane[index].TimeEntersGrid;
 carsProcessedEW++;
 lightsStoppedEW += lane[index].LightsStoppedAt;
 lane.RemoveCar();
 }
 }
 } else if (direction == Direction.WE) {
 // No further details shown

 }
 }

 // No further details shown
}

The GUI is constructed using Visual Studio .NET 2005 using simple and frequently used
components. Key input parameters are available for the user to modify with useful default
values supplied. Output is presented as the simulation evolves.

A screen shot of the GUI and the simulation in action is shown below.

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

Portions of class TrafficLightsUI are presented below.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using System.IO;

namespace TrafficSimulation {

 public partial class TrafficLightsUI : Form {

 // Fields

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 49

 private Graphics panelGraphics;
 private Simulation simulation;
 private int feetPerPixel = 3;
 private StreamWriter logFile = new StreamWriter(
 new FileStream("Stats.txt", FileMode.Create,
 FileAccess.Write));
 private double time;

 public TrafficLightsUI() {
 InitializeComponent();
 panelGraphics = panel.CreateGraphics();
 simulation = new Simulation();
 simulation.RegisterView(Update);
 Control.CheckForIllegalCrossThreadCalls = false;
 }

 public void Update(Lane[] lanes, double time,
 double systemTimeEW, int carsEW,
 double systemTimeNS, int carsNS,
 int stoppedEW,
 int stoppedNS) {
 this.time = time;
 if (!sensorsCheckBox.Checked && (int)time == 600) {
 // Change the light duration every 10 minutes
 WriteStatistics();
 double redDur = simulation.RedDuration;
 double greenDur = simulation.GreenDuration;
 simulation.ResetSimulationStatistics();
 simulation.RedDuration = redDur - 5.0;
 if (simulation.RedDuration <= 5.0) {
 simulation.StopSimulation();
 MessageBox.Show("Simulation has ended.");
 Application.Exit();
 }
 simulation.GreenDuration = greenDur + 5.0;
 simulation.SetLightDuration();
 redDuration.Text = "" + simulation.RedDuration;
 greenDuration.Text = "" + simulation.GreenDuration;
 averageWaitTimeEW.Text = "";
 averageWaitTimeNS.Text = "";
 overallAverage.Text = "";
 carsProcessedEW.Text = "";
 carsProcessedNS.Text = "";
 lightsStoppedEW.Text = "";
 lightsStoppedNS.Text = "";
 return;

 }
 if (carsEW > 0) {
 carsProcessedEW.Text = "" + carsEW;
 averageWaitTimeEW.Text = String.Format("{0:f}",
 systemTimeEW / carsEW);
 lightsStoppedEW.Text = String.Format("{0:f}", (double)
 stoppedEW / carsEW);
 }
 if (carsNS > 0) {

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

 carsProcessedNS.Text = "" + carsNS;
 averageWaitTimeNS.Text = String.Format("{0:f}",
 systemTimeNS / carsNS);
 lightsStoppedNS.Text = String.Format("{0:f}",
 (double) stoppedNS / carsNS);
 }
 if (carsEW + carsNS > 0) {
 overallAverage.Text = String.Format("{0:f}",
 (systemTimeEW + systemTimeNS) / (carsEW + carsNS));
 }

 int currentTime = (int) time;
 int minutes = currentTime / 60;
 int seconds = currentTime - 60 * minutes;
 timeLbl.Text = "Time: " + currentTime + " (" +
 minutes + " min " + seconds + " sec)";

 for (int i = 0; i < 16; i++) {
 DisplayLanes(lanes[i], simulation.DirectionOfFlow[i]);
 }

 // Display traffic lights
 for (int light = 0; light < 15; light++) {
 DisplayLight(light);
 }
 }

 private void DisplayLanes(Lane lane, Direction direction) {
 if (direction == Direction.EW ||
 direction == Direction.WE) {
 List<Car> cars = lane.Cars;
 Car c = cars[0];
 panelGraphics.FillRectangle(new
 SolidBrush(Color.White), 0, (int)(c.Position.Y /
 feetPerPixel), panel.Width, 3);
 foreach (Car car in cars) {
 panelGraphics.DrawRectangle(new Pen(Color.Black),
 (int)(car.Position.X / feetPerPixel),
 (int)(car.Position.Y / feetPerPixel), 5, 2);
 }
 } else {
 List<Car> cars = lane.Cars;
 Car c = cars[0];
 panelGraphics.FillRectangle(new
 SolidBrush(Color.White),
 (int)(c.Position.X / feetPerPixel), 0, 3,
 panel.Height);
 foreach (Car car in cars) {
 panelGraphics.DrawRectangle(new Pen(Color.Black),
 (int)(car.Position.X / feetPerPixel),
 (int)(car.Position.Y / feetPerPixel), 2, 5);
 }
 }
 }

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 51

 // No further details shown

White rectangular slivers are used to surgically erase all cars traveling either EW/WE or
NS/SN. By not erasing the traffic lane lines and middle-of-lane dashed line, the simulation
proceeds without flicker.

The Simulation class determines when and what is displayed in the TrafficLightUI
class. The Update method of TrafficLightUI is registered with the simulation object held by
the UI class. This is a classic use of the Observer Pattern. In this case the UI class is
updated after each clock tick (every 0.1 seconds by default). The current position of each
car is depicted to scale on the UI panel that is used to support
Simulation Results
Some simulation results are shown below. The grid operates much more efficiently when
each light is controlled independently using the traffic control algorithm designed by the
author. Simulation statistics are shown for various fixed light cycles and the variable cycle.
Clearly the variable cycle automatic control is significantly more effective.

60 second cycle
Time: 600 (10 min 0 sec)
EW Green: 30 seconds EW Red: 30 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 376
EW/WE Av Wait Time: 152.87
NS/SN Cars Processed: 386
NS/SN Av Wait Time: 90.97
Lights Stopped At (EW): 2.46
Lights Stopped At (NS): 1.56
Overall wait time for car in system: 121.51

Time: 600 (10 min 0 sec)
EW Green: 35 seconds EW Red: 25 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 424
EW/WE Av Wait Time: 137.29
NS/SN Cars Processed: 430
NS/SN Av Wait Time: 100.96
Lights Stopped At (EW): 2.15
Lights Stopped At (NS): 1.74
Overall wait time for car in system: 119.00

Time: 600 (10 min 0 sec)
EW Green: 40 seconds EW Red: 20 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 466
EW/WE Av Wait Time: 113.23
NS/SN Cars Processed: 327
NS/SN Av Wait Time: 140.55
Lights Stopped At (EW): 1.66
Lights Stopped At (NS): 2.43
Overall wait time for car in system: 124.50

Time: 600 (10 min 0 sec)
EW Green: 45 seconds EW Red: 15 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 471
EW/WE Av Wait Time: 103.74
NS/SN Cars Processed: 315
NS/SN Av Wait Time: 164.51

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 53

Lights Stopped At (EW): 1.43
Lights Stopped At (NS): 2.88
Overall wait time for car in system: 128.09

Time: 600 (10 min 0 sec)
EW Green: 50 seconds EW Red: 10 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 491
EW/WE Av Wait Time: 96.97
NS/SN Cars Processed: 299
NS/SN Av Wait Time: 180.75
Lights Stopped At (EW): 1.26
Lights Stopped At (NS): 2.97
Overall wait time for car in system: 128.68

Time: 600 (10 min 0 sec)
EW Green: 50 seconds EW Red: 10 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 491
EW/WE Av Wait Time: 96.97
NS/SN Cars Processed: 299
NS/SN Av Wait Time: 180.75
Lights Stopped At (EW): 1.26
Lights Stopped At (NS): 2.97
Overall wait time for car in system: 128.68

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

40 second cycle

Time: 600 (10 min 0 sec)
EW Green: 20 seconds EW Red: 20 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 386
EW/WE Av Wait Time: 157.04
NS/SN Cars Processed: 369
NS/SN Av Wait Time: 93.90
Lights Stopped At (EW): 3.55
Lights Stopped At (NS): 2.18
Overall wait time for car in system: 126.18

Time: 600 (10 min 0 sec)
EW Green: 25 seconds EW Red: 15 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 435
EW/WE Av Wait Time: 116.00
NS/SN Cars Processed: 354
NS/SN Av Wait Time: 114.09
Lights Stopped At (EW): 2.48
Lights Stopped At (NS): 2.77
Overall wait time for car in system: 115.14

Time: 600 (10 min 0 sec)
EW Green: 30 seconds EW Red: 10 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1

VOL. 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 55

NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 427
EW/WE Av Wait Time: 105.62
NS/SN Cars Processed: 355
NS/SN Av Wait Time: 119.80
Lights Stopped At (EW): 2.18
Lights Stopped At (NS): 2.90
Overall wait time for car in system: 112.05

30 second cycle

Time: 600 (10 min 0 sec)
EW Green: 15 seconds EW Red: 15 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 536
EW/WE Av Wait Time: 157.50
NS/SN Cars Processed: 1015
NS/SN Av Wait Time: 90.32
Lights Stopped At (EW): 4.71
Lights Stopped At (NS): 2.70
Overall wait time for car in system: 113.54

Time: 600 (10 min 0 sec)
EW Green: 20 seconds EW Red: 10 seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 550
EW/WE Av Wait Time: 125.14

MODELING A GRID OF TRAFFIC LIGHTS – A CASE STUDY USING WINFORMS, EVENT

HANDLING AND OBSERVER PATTERN

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 4

NS/SN Cars Processed: 964
NS/SN Av Wait Time: 106.95
Lights Stopped At (EW): 3.44
Lights Stopped At (NS): 2.94
Overall wait time for car in system: 113.55

Automatic Signal Control

Time: 5798 (96 min 38 sec)
EW Green: Automatic seconds EW Red: Automatic seconds
EW Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.2
WE Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
NS Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.1
SN Av Arrival Rate: System.Windows.Forms.TextBox, Text: 0.05
EW/WE Cars Processed: 5177
EW/WE Av Wait Time: 93.75
NS/SN Cars Processed: 4380
NS/SN Av Wait Time: 73.53
Lights Stopped At (EW): 1.34
Lights Stopped At (NS): 1.84
Overall wait time for car in system: 84.48

About the author
Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 22 books and works actively as a consultant and
software contractor whenever the possibility arises. His latest book, just
published by Thompson, Course Technology in April 2006, is entitled

Modern Software Development Using C#/.NET.

