
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 3, Special issue: .NET Technologies 2005 Conference, 2006

Cite this article as follows: Frank Siegemund, Robert Sugar, Alain Gefflaut, Friedrich van
Megen: “Porting the .NET Compact Framework to Symbian Phones”, in Journal of Object
Technology, vol. 5, no. 3, April 2006, Special issue: .NET Technologies 2005 Conference
2005, pp. 83-106 http://www.jot.fm/issues/issue_2006_04/article4

Porting the .NET Compact Framework
to Symbian Phones

Frank Siegemund, Robert Sugar, Alain Gefflaut and Friedrich van
Megen, European Microsoft Innovation Center

Abstract
This paper presents our experiences in porting selected parts of the .NET Compact
Framework to Symbian smartphones. Our port includes support for basic services
such as threading and file access, low-level networking modules as well as Web
Services. We also present a portable .NET GUI for the Symbian platform. The paper
shows how the programming models of .NET can be efficiently mapped to the runtime
structures provided by operating systems for resource-constrained devices such as
the Symbian OS. In a detailed analysis, we compare the performance of our port to
that of Java and native code.

1 INTRODUCTION

During the last two decades, mobile phones have become almost ubiquitous. As a result
of this development, it is increasingly important for companies to offer applications for
mobile users that seamlessly interoperate with server-based business software in order
to improve customer satisfaction and service availability. The .NET Framework has
been a popular platform for creating such applications and services both on stationary
computers and Windows CE-based mobile devices. While Windows CE-based
smartphones are getting increasing attention, however, a number of phones are
currently based on the Symbian operating system. According to a recent study by
Canalys [Canalys], the Symbian OS owned 63.2 % of the mobile device OS market at
the end of the third quarter 2005.

A core problem of the Symbian OS is that application development on this
platform is considered to be difficult. Taking into account the need for companies to
offer services to a broad range of mobile users, it would therefore clearly be
advantageous to have a .NET Common Language Runtime (CLR) available on
Symbian-enabled devices. .NET developers could then reuse code instead of
reimplementing applications from the ground up in an entirely different programming
environment. Reimplementation can be especially cumbersome since commonly used
CLR/.NET features may not be natively present on different programming platforms
[Sin03] (e.g., floating point support is absent in some J2ME profiles, SOAP Web
Services support may be missing, XML and graphics programming model might
differ). These issues mean that direct code reuse is not possible, which results in

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

84 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

increased costs and is likely to introduce new program errors. Having a CLR running
on Symbian smartphones implies that developers could implement applications for this
platform using the same programming environment and tools offered by the .NET
Framework. With respect to convenience, this would be a significant step forward for
application development under Symbian.

In this paper, we present our experiences in porting selected parts of the .NET
Compact Framework to the Symbian operating system, and report on the major design
decisions that had to be made during this work. The main challenge was to map the
programming model of the .NET Compact Framework (or, more precisely, of .NET
programming languages like C#) onto the programming model provided by the
Symbian OS. Because of the considerable gap between these two models, which is a
result of the resource constraints of many Symbian-enabled devices, porting .NET
technologies to Symbian poses specific problems that are addressed in the remainder of
this paper. After having discussed these issues, the paper gives an overview of the
memory requirements of our port and provides a detailed performance analysis of basic
services such as string handling and of our GUI implementation.

In summary, the paper answers the following core questions:
• Is it feasible to have a .NET Compact Framework CLR running on resource-

constrained Symbian smartphones?
• What are the main obstacles when porting the .NET Compact Framework to

Symbian?
• Is it possible to implement a portable .NET GUI on resource-constrained

Symbian smartphones?
• What is the expected performance of carrying out .NET applications on the

targeted device platform?
The remainder of this paper is structured as follows: The following section summarizes
related work. Sect. 3 presents the current status of our port. Sect. 4 shortly reviews the
.NET Compact Framework architecture, provides information about the Symbian
operating system, and compares the hardware constraints of Symbian smartphones with
those of other .NET hardware platforms. Sect. 5 reports on our experiences and the
major design decisions we had to make while porting the .NET Compact Framework to
Symbian phones. It also shows how we dealt with the specific characteristics of
Symbian and its programming model. In Sect. 6 we evaluate our implementation, and
Sect. 7 concludes this paper.

2 RELATED WORK

The number of programming languages targeting the Common Language Infrastructure
(CLI) [CLI,MG00] has been steadily increasing over the last years. Besides the variety
of available programming languages [BKR04,Gut01, Ham03,SSM00], however, CLI-
compliant virtual execution systems are also increasingly used to facilitate application
development across different hardware platforms and operating systems. Examples for
this development are Microsoft’s Rotor and 3rd party Mono and DotGNU
implementations of the CLI [DotGNU,Mono, SNS03]. While these implementations
aim at supporting .NET on operating systems such as Unix and MacOS, the major
difference to our work is that we investigate an operating system that is explicitly

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 85

designed for resource-restricted mobile devices. As a result, constraints with respect to
the amount of available memory, computational resources, and restrictions in the
functionality provided by the operating system pose challenging new problems and
research questions that we needed to address.

There are papers (e.g., [Opera] and [Helix]) dealing with several obstacles that
arise when porting applications to the Symbian operating system. Some of the
described approaches are also applicable in the context of our work and helped us find a
direction for our project. The migration to other hardware platforms or operating
systems is recognized as one of the most difficult and error-prone processes during the
lifetime of a software product [BLWG99]. George and Wong [GW04], for example,
address the problems that arise when porting a powerful real-time operating system
such as Windows CE .NET to a different hardware platform, while Kontogiannis et al.
[KMW+98] try to automate tasks of the migration process. As for the .NET
Framework, its architectural design aims at simplifying migration to a different
hardware platform by means of the Platform Adaptation Layer [SNS03].

Because of the resource constraints of many Symbian smartphones, this paper
focuses on the .NET Compact Framework [NetCF] – which itself was designed for
mobile devices and first implemented to run on Windows CE. The .NET Compact
Framework already considers some of the typical constraints of mobile platforms but
does not deal with the unique constraints and programming models of operating
systems such as Symbian.

Most Symbian smartphones ship with a Java Virtual Machine (JVM) already
installed on the phone [RV01] (J2ME MIDP, the Java 2 Platform Micro Edition Mobile
Information Device Platform targets resource-restricted mobile devices such as mobile
phones). A .NET Compact Framework implementation for smartphones should
therefore be at least comparable to Java ME implementations with respect to provided
functionality and resource consumption [Sin03]. Nevertheless, there are major
differences between Java and .NET that make a direct comparison difficult: (1) Java
bytecode is often interpreted while the CLR primarily uses Just-in-Time (JIT)
compilation. (2) There are international standards for the CLI and C#, while there is no
such standard for Java (there is a Java Community Process, though). (3) .NET supports
many programming languages – with J# also a flavor of Java. This can make direct
comparison difficult because the advantage of language integration can imply
architectural decisions affecting the performance of the CLI. (4) The .NET Compact
Framework comes with functionality that is not natively supported by J2ME MIDP.
However, there are a range of publicly available add-ons and class libraries that support
much of this functionality also on the Java platform.

The company AppForge [Forge] has a product called Crossfire that aims at
enabling cross-platform application development on mobile devices using .NET
programming languages. To the best of our knowledge, .NET applications are
transformed into a device-specific custom format that is then executed on a phone.
Thus, the main difference to our work is that we aim to have a complete CLI-compliant
virtual execution system running directly on Symbian-enabled mobile phones. We also
strive for a greater integration into the .NET programming environment by exposing the
same interfaces for Web Services and GUI programming as with the .NET Compact
Framework.

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

86 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

Building efficient graphical user interfaces on top of the Symbian OS poses
challenging problems because of the resource constraints of the targeted device
platform. Compared to stationary PCs and PDAs, Symbian smartphones have relatively
small displays, often no touch screens, and relatively weak processors (cf. Sect. 4).
Hence, several design decisions have to be evaluated when realizing GUI functionality
on such a hardware platform. An interesting approach to GUI programming in the
context of .NET is outlined by Bishop and Horspool [BH04], who propose an XML-
based GUI description notation that allows programmers to abstract from much of the
low-level issues of GUI programming. Their Views GUI engine [BW05] provides an
implementation of this approach for different operating systems and adds the
functionality of the System.Windows.Forms library to Rotor. Some of these concepts
are used and extended in Mirrors [Mil05].

Rashid et al. [RTCE04] compare the performance of native Symbian code with
interpreted Java applications, and Raghavan et al. [RSL04] reports on a model-based
performance evaluation of applications on mobile devices. In the scope of our work,
test suites provided by IBM [jMocha] covering basic features such as method calls,
thread creation, and data access were used to carry out performance comparisons.

3 CURRENT STATUS

Overview

In the current version of our prototype it is possible to execute .NET Compact
Framework applications on two selected Series 60 smartphones. The Series 60 platform
from Nokia was our first target because it is the most popular User Interface (UI)
platform for Symbian phones at the moment. However, we would like to emphasize
that our design does not rely on any UI platform on top of the core Symbian OS, but
instead depends only on low-level runtime structures that are provided by the core
operating system. Consequently, only a very small subset of our project – the Symbian
application that starts the actual .NET execution engine – has to be rewritten when
porting our work to a different Symbian UI platform. Ease of portability across
different Symbian devices is important and was a major factor influencing our design
decisions because there are not only many different flavors of the Symbian OS itself
but also a range of different UI platforms on top of it (such as Series 60 or UIQ).

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 87

Figure 1: Starting .NET applications on a Symbian smartphone.

The core modules of functionality supported by the .NET Compact Framework CLR
can be classified as (1) basic services, (2) storage, (3) networking, (4) GUI, and (5)
device support [SNS03]. Our prototype for Symbian implements all main basic services
such as threads, synchronization mechanisms, timers, events and mathematical support
functionality. Regarding storage, it is possible to work with files and XML; XML can
be read from files into internal data structures, modified in memory, as well as written
back to and exchanged over Symbian’s file system. The current implementation does
also support low-level networking over the socket interface, Web requests, and Web
Services. Of central importance in our work was to keep the existing .NET
programming interfaces unchanged in order to make the development process on the
Symbian platform as easy as possible. Another result of keeping the programming
interfaces intact is that all the development tools available for the .NET Compact
Framework are still supported. For example, programmers can make use of the
established way to implement Web Services in the .NET Framework, which facilitates
Web application development. Keeping programming interfaces unchanged is also
important for the GUI implementation in our prototype because it implies that GUI
layout tools such as the Form Designer embedded into Visual Studio can be used to
design user interfaces. Because of this, our port includes a portable GUI for Symbian-
enabled devices. As the last module of functionality, the .NET Compact Framework
supports the interaction with various kinds of devices over IrDA, Bluetooth, or USB.
Our port, however, does not support these different communication interfaces so far.
Instead, Web Services operate on top of GPRS or GSM; simple messaging functionality
for sending SMS has also been implemented.

Application Development and Application Startup

Considering the wide range of supported functionality, an interesting question is how a
programmer can actually use this functionality to develop applications for Symbian
smartphones. The simple answer to this question is that application development for
Symbian smartphones does not differ from application development for Windows-
based devices. In fact, the same programming environment and tools can be used
during the development process. Typically, an application that has been written in a
language supported by the .NET Compact Framework (e.g., C#) is compiled on a

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

88 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

desktop computer using the standard compiler for this language (e.g., csc for C#). The
result of this compilation is an EXE file in the Portable Executable (PE) file format.
This file – without any modifications – is copied to a Symbian smartphone and
executed there inside the .NET virtual execution system.

There are several ways to start .NET applications on a Symbian smartphone. For
example, each .NET application can be exposed as a separate icon on the phone’s main
screen. The disadvantage of this is that an additional installation step is required when
deploying the application to create the icon. Furthermore, as the phone screen itself is
quite small, too many icons can reduce usability and make navigation difficult. Another
possible deployment path is to start applications from within a separate tool. Users
would then use this tool to browse the contents of their phone and start an application
by just clicking on it. Our choice was to follow a similar approach by starting .NET
applications from within the Web browser on Symbian smartphones. As can be seen in
Fig. 1, a user opens the Web browser from the main phone menu. Each .NET
application is then exposed as a bookmark that references a local application file. By
clicking on the bookmark, the .NET execution engine is started as an embedded
application inside the Web browser and automatically loads and runs the referenced
application file. Fig. 1 depicts the process of starting .NET applications on Symbian
smartphones based on the example of a simple text-based Web Service application.

GUI

Besides text-based applications, our prototype also supports applications with a more
sophisticated user interface. As can be seen in Fig. 2, the corresponding GUI
implementation is based on custom controls that are similar to that on Windows-based
smartphones. The reasons for this design decision are described in more detail in
Sect. 5. Currently, a range of different GUI controls are available. We support windows
and dialogs, labels, text boxes, push buttons, combo boxes, radio buttons, picture boxes,
and menus (see Fig. 2).

Figure 2: A portable .NET GUI on a Symbian smartphone.

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 89

4 ARCHITECTURE OVERVIEW

Fig. 3 gives an overview of the .NET Compact Framework architecture and its
underlying components. As can be seen, the major constituents of this general
architecture are (1) the actual hardware of the mobile device, (2) the operating system
that provides access to this hardware, (3) the runtime environment, which maps the
instructions of a (4) .NET application onto instructions of the operating system and the
underlying hardware [SNS03,MG00].

Figure 3: Overview of the .NET Compact Framework Architecture.

In the following, we will shortly describe these individual components before we
present our experience in porting parts of the .NET Compact Framework to Symbian.

Hardware Constraints

A crucial aspect when trying to target a different computing platform for .NET is to be
aware of the computational and functional restrictions of the underlying hardware.

In January 2006, the Symbian Web site listed 44 different Symbian OS phones, of
which 19 were distributed by Nokia, 16 were built for NTT DoCoMo’s FOMA network
(10 from Fujitsu, 4 from Mitsubishi, 1 from Motorola, and 1 from Sharp), and the
others were manufactured by companies such as Sony Ericsson or Panasonic. For 24 of
these 44 phones, for which more detailed information could be found, we looked more
closely at the technical specifications.

All of the investigated phones are built around ARM processors or variants such as
the OMAP 1510 from Texas Instruments, which itself is based on an ARM architecture.
The processor speed varies from 104 MHz for the ARM4T processor to 220 MHz for
an ARM5 CPU. The fact that ARM processors are used in Symbian smartphones has
made our port significantly easier since JIT compilers were already available for this
hardware platform – most Windows CE devices also feature ARM-based cores.

The most striking difference when comparing Symbian smartphones to Windows
CE devices is in the amount of random access memory available. According to [MR],

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

90 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

the amount of volatile memory available for applications on the Nokia 3650, the Nokia
6630, and the new Nokia N90 is 1.9 MB, 7 MB, and 21 MB, respectively. This is the
amount of free RAM after the OS has started. Early Symbian phones generally had less
than 4 MB of RAM and only the newest models feature more than 10 MB; Windows
Mobile devices have generally much more RAM than that. We suspect that the main
reason to limit volatile memory apart from cost is battery consumption. Continuous
refreshing of the memory modules can reduce standby time significantly. Hence, non-
volatile memory (most of the new phones come with an MMC card) is preferred for
storage.

 Nokia 3650 Nokia 6630 Nokia N90 iPAQ
H3650

Dell Axim
X51v

OS Symbian
OS 6.1

Symbian
OS 8.0a

Symbian
OS 8.1

Windows
Mobile

Windows
Mobile

Processor 104 MHz 220 MHz 220 MHz 206 MHz 624 MHz

RAM 1.9 MB free
of 4 MB

7 MB free
of 10 MB

21 MB free
of 48 MB

32 MB 64 MB

Display 176x208 176x208 352x416
+128x128

240x320
touch

640x480
touch

Wireless

IrDA
Bluetooth

GPRS

Bluetooth
GPRS
UMTS

IrDA
Bluetooth

GPRS
UMTS

IrDA
Bluetooth

IrDA
Bluetooth
WLAN

Table 1: Hardware characteristics of Symbian Series 60 and Windows Mobile devices

Tab. 1 depicts typical hardware characteristics of Symbian Series 60 devices on the
low-end (Nokia 3650), medium-tier (Nokia 6630) and high-end (Nokia N90, a recently
introduced smartphone). For comparison the table also contains specifications of
Windows CE-based devices. The iPAQ H3650 is one of the first iPAQs that featured a
.NET Compact Framework, while the Dell Axim is a new model. It should be noted
that other Symbian devices exist with different characteristics, such as the Ericsson
P910i with a touch screen or the more powerful Series 90-based Nokia Communicators.

As a summary, we have found that none of the hardware constraints of Symbian
smartphones should make it impossible or infeasible to port the .NET Compact
Framework to the Symbian platform. Especially the memory constraints of Symbian
smartphones, however, need to be considered when making design decisions.

Operating System

The second layer of the .NET Compact Framework architecture (cf. Fig. 3) is made up
of the operating system, in our case the Symbian OS. In many respects does the
Symbian OS considerably differ from Windows CE, which has been the standard
platform for hosting the .NET Compact Framework CLR. These differences affect

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 91

elementary features such as multitasking, error handling, file access, and networking.
They have therefore a significant impact on our goal to port the .NET Compact
Framework.

Here are some of the Symbian characteristics that so far caused most of the
problems in our project (Sect. 5 presents a more detailed description of these issues):

• A C++ dialect that redefines basic language structures
• No writable global and writable static variables allowed in DLLs
• Extensively used client/server model that, for example, implies constraints for

accessing file and networking functions
• Event-driven programming model with a focus on non-preemptive multitasking
• Symbian’s error handling and cleanup model
• Concepts from the Unix/Windows world such as environment variables as well

as several file and networking functions are missing

CLR Architecture Overview

The .NET Compact Framework CLR is made up of the following main components
[SNS03,MG00]: (1) class libraries, (2) execution engine, and (3) platform adaptation
layer (cf. Fig. 3).

The goal of the .NET Compact Framework class libraries is to provide a basic set
of classes, interfaces, and value types that constitute the foundation for developing
applications in .NET. For example, support for integers, boolean values or strings,
functionality for performing I/O, classes for handling exceptions, and methods for
collecting information about loaded classes are all included in the class libraries of the
.NET Compact Framework.

The execution engine is the core component of the CLR – it provides the
fundamental services necessary for executing managed code. While the execution
engine consists of a large number of individual components, some of its most important
parts are: (1) a just-in-time (JIT) compiler (or alternatively an interpreter), (2) a garbage
collector, and (3) a class and module loader. The decision whether to use a JIT compiler
or to immediately carry out generated instructions in an interpreter depends on the
resource constraints of a given platform. Our port is based on a JIT compiler, not on an
interpreter.

Because the design of the .NET Compact Framework anticipated operating system
portability, access to core operating services occurs through a platform adaptation layer
(PAL). The main responsibility of the PAL is to map calls from the execution engine to
functions provided by the underlying host operating system. In other words, the PAL
serves as the main mediator between the operating system (Symbian OS in our case)
and the CLR. As a result of the architectural design of the .NET Framework, the PAL is
the core component that needs to be reimplemented when porting the .NET Compact
Framework to Symbian OS.

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

92 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

5 PORTING THE .NET COMPACT FRAMEWORK

In the following, we describe our port of selected components of the .NET Compact
Framework to the Symbian platform and discuss the major design decisions that
affected our work. In order to do that, this section analyzes the characteristics of the
Symbian operating system that caused most of the problems in our project, and
proposes solutions for dealing with these issues.

We would like to point out that the result of our work is a research prototype, not a
complete and thoroughly tested product. The main focus of our project was on
evaluating whether it is feasible to port the .NET Compact Framework to Symbian
phones by means of an exploratory approach. Having said this, the port runs stable and
we were able to develop a range of neat applications based on our work.

C++ Dialect

The flavor of C++ that is used to implement native Symbian applications caused
several problems in our project. In particular, Symbian C++ introduces some peculiar
language features and programming models that were primarily introduced because of
the limited device capabilities of Symbian smartphones. On the other hand, it appears
that some of the restrictions and models of Symbian C++ still exist merely because of
historical reasons and because of compatibility issues [EB04]. Important differences
between Symbian C++ and standard C++ include: (1) different standard data types, (2)
missing standard libraries such as a libc, (3) a special exception handling mechanism,
and (4) a different memory management model.

First, the usage of simple data types such as int or unsigned long are not
recommended by the Symbian Software Development Kit (Symbian SDK); so types
such as TInt and TUInt32 had to be used instead. Although these naming
differences appear to be purely syntactic at first sight, they can result in hard to find
errors when porting complex software such as the .NET Compact Framework CLR.

Second, as the full libc is not supported by Symbian, a basic implementation had
to be attached to our project containing memory management (like memcmp) or C-type
string manipulation functions (such as strlen). The STL (Standard Template
Library) is also not supported in Symbian due to size limitations.

Third, the GNU C++ implementation of exception handling was not mature
enough at the design time of EPOC (the old name of Symbian), thus the Symbian
architects employed a more lightweight approach to error handling – the “trap harness”
mechanism. A function called User::Leave() corresponds to the throw directive,
while the TRAP and TRAPD macros are called instead of catch. Exception objects
were also replaced by simple error codes.

Finally, as mobile phones are switched on for long periods of time, the ability to
reclaim all unused heap cells was crucial in the design of the Symbian operating
system. Therefore, a mechanism called “two-phase-construction” is used during object
creation, and a “cleanup stack” structure makes sure that every object created on the
heap is destroyed after it has been used.

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 93

Writable Global and Writable Static Variables in DLLs

The Symbian operating system was designed with memory-constrained devices in
mind. Therefore, it tries to avoid all unnecessary allocations or wastage of main
memory. To prevent allocation of memory for writable static data in DLLs, which
would have to be allocated for each application, and to enable eXecution In Place
(XIP), DLLs that are stored in ROM are not copied to RAM when executed. As a
consequence, the programming environment does not support writable static or global
data because the segment containing these values in the DLL is not writable.

If this requirement is not a major issue when writing new applications, it becomes
a major problem when porting applications that have been designed to run on operating
systems supporting writable static data. This is the case for the original Microsoft .NET
Compact Framework, which usually runs on top of Windows class operating systems.
Two strategies can be envisaged to solve this problem. First, rewriting the libraries was
ruled out as a viable solution since the number of writable static data was too large to
enable a manual rewrite of the libraries. The second strategy, which is the one we
followed as a way to get a test version of the .NET Framework working as soon as
possible, consists in loading in RAM all DLLs used by the .NET Compact Framework
application. In order to do this, we designed and wrote a specific loader. Starting the
Framework is then realized by calling the loader. The loader is in charge of
downloading in RAM the image of the .NET Compact Framework binary, as well as all
libraries that it needs (including the writable data section). The loader also performs the
necessary relocation in order to prepare the execution. Once relocation is done, the
loader identifies the entry point defined in the .NET Compact Framework binary and
jumps to its location. Although this solution works, it is far from optimal since it can
result in a possibly high memory footprint. While this is not a problem in our feasibility
assessment, this issue would have to be addressed in a complete port of the .NET
Compact Framework.

Executing .NET Portable Executables

When a .NET application – which is usually generated using a development
environment and a compiler on a Windows-based PC system – is to be executed on a
Symbian phone, it must be assigned to our .NET Compact Framework implementation
for execution. As .NET compilers generate files in the standard .NET portable
executable file format, it is possible to distinguish any .NET application from native
Symbian applications. Luckily, the Symbian OS provides the concept of so called
Recognizers, which are used to assign certain file types to selected applications. For
example, HTML files can be associated with a Web browser, PDF files with an Acrobat
reader, etc. As this association can be based on more that just the file extension and
allows us to analyze the file to be executed, we use a special Recognizer to launch
.NET applications.

Dealing with Symbian’s Client/Server Framework

The Symbian OS introduces a range of servers to deal with system resources on behalf
of different clients. Examples of such servers are the file server, the socket server, and
the window server. Servers are usually located in a different process or at least a
different thread than the clients that want to access their services. The problem with

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

94 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

Symbian’s client/server model from the perspective of the .NET Compact Framework
is that only the client thread that creates resources for interacting with a server can use
and destroy them. This has some important implications for a port of the .NET
Framework, and especially the Platform Adaptation Layer (PAL). Imagine that there is
a .NET application consisting of two threads that both want to access a file. In this
scenario, the PAL would be responsible for mapping the file access to corresponding
operating system functions. For example, there would be a function like
PALFile_Write() that sends a request to the Symbian file server to write data to a
file. However, because only the client thread that created the connection to the file
server can actually write to a file, the two .NET threads – which are both mapped to
Symbian threads in our implementation – are not allowed to access the file. This
problem persists independently of whether both threads want to write data to the same
file or not; what matters here is only the fact that they want to access the file system. To
solve this problem, we introduced a mediator thread that handles all communication
with the file server. Symbian OS threads that represent application threads in .NET
interact with this additional thread in order to access files. For the PAL implementation,
this means that PALFile_Write() does not interact with the file server directly, but
instead issues a request to the intermediary thread that communicates with the file
server. A similar mechanism is used to handle networking and console access.

Figure 4: Implementing PAL functions on standard operating systems (left) and on Symbian (right).

Fig. 4 shows the effect of Symbian’s client/server model and its security restrictions on
the implementation of PAL functions. The left side of Fig. 4 shows how PAL functions
on standard operating systems such as Windows or Unix simply map calls from the
execution engine to the corresponding functions of the underlying operating system. In
this model, the main task of PAL functions is data marshalling so that the parameters
coming from the .NET framework are appropriately transformed into parameters for the
operating system. In contrast, efficient access to Symbian OS functions (cf. right-hand
side of Fig. 4) in the PAL requires an additional thread that sequentializes requests from
different application threads. Besides the added complexity, another problem in this
context is that many of the PAL functions must be carried out in an asynchronous way

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 95

in order to deal with potential deadlock risks introduced by the sequentializing thread.
Imagine, for example, two .NET threads that are used to write data to and retrieve data
from a Socket; one .NET thread shall be responsible for sending and the other for
receiving data. If now the receive function of the second thread is passed to the
mediating PAL thread before the send is actually performed by the first .NET thread,
and the receive call is implemented as a synchronous call (blocking), this will cause a
deadlock since the send will never be performed. Hence, PAL functions in Symbian are
not allowed to block, which again increases the complexity of the PAL implementation
on this particular operating system.

Dealing with Symbian’s Focus on Cooperative Multitasking

In the desktop domain, preemptive multitasking replaced cooperative multitasking
years ago when resources became cheaper and PC-like systems much more
computationally powerful. Furthermore, using preemptive multitasking for different
computations that need to be carried out concurrently is much easier from a
programmer’s point of view than having to deal with the burden to split a long-running
task into subtasks in order to guarantee responsiveness [BRH90,JSM91]. However,
although the Symbian operating system supports preemptive multitasking, switching
between different preemptive threads is considered very expensive and programmers
are strongly encouraged to use cooperative multitasking instead [EB04,Har03]. To
support programmers in handling cooperative multitasking, Symbian introduced the
concept of Active Objects as a programming paradigm. Together with a so-called
Active Scheduler, Active Objects are supposed to facilitate the programming of non-
preemptive concurrent tasks.

However, cooperative multitasking using Active Objects has still the disadvantage
that if there is a long-running calculation, it only will give control to another task if it is
finished. As this might severely reduce the responsiveness of a user interface, for
example, books on Symbian programming [EB04,Har03] strongly suggest manually
splitting long-running tasks into smaller subtasks that can faster pass on control to other
subtasks, thereby improving the overall responsiveness of the system. Unfortunately,
this does not map well with the notion of threads in .NET because threads in .NET are
generally viewed as being preemptively scheduled. To deal with this issue in a port of
the .NET Compact Framework there are several theoretical solutions:

(1) If there is a thread in .NET, it is possible to generate a preemptively scheduled
thread in the Symbian operating system and accept the effect on system performance
this does imply. (2) When the execution engine requests a new thread to be created for
a thread in a .NET application, a new Active Object could be created that handles the
associated task. However, this would mean that we would need a mechanism to
automatically find a location in the code where this active object can pass on control to
a different task. Finding a place where this can be done requires at least the help from
the JIT compiler or special statements in the .NET code that would have to be used by a
programmer. (3) Another important issue with threads is that Symbian’s client/server
model (see previous subsection) forces us to introduce preemptively scheduled threads
on the operating system layer to sequentialize access to servers (the file server, for
example). In order to reduce the number of low-level Symbian threads, it is possible to
use a single sequentializing thread for all different servers. The downside of this,
however, is that a .NET thread that wants to output a string on the console might need

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

96 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

to wait for a different .NET thread that wants to do file access. Whether this can be
accepted depends mainly on the concrete .NET application. In the current state of our
port, .NET threads are directly mapped to preemptively scheduled threads on the
Symbian operating system layer.

GUI

Symbian allows access to the GUI at several layers. The OS itself provides a common
graphics server that provides the main window, basic drawing functions, and event
handling mechanisms. Direct screen access is also possible. On top of that there are
several phone-specific graphics libraries, the most common being the AVKON library
built for Series 60 phones.

Four distinct approaches were identified that can be followed when implementing
the GUI:

• Using a portable graphics library to create a System.Windows.Forms-compliant
GUI for Symbian smartphones. The main advantage of this approach is that by
using a portable graphics library the .NET GUI interface does not rely on the
specific user interface platform of a particular smartphone model.
Consequently, the GUI can be easily deployed on different Symbian phone
models such as Series 60 devices and Ericsson phones. On the other hand, the
look-and-feel is different from native Symbian applications, which might
reduce usability.

• Mapping .NET user interface calls to AVKON or alternative UI libraries. This
would be the most convenient solution, but there are significant differences
between the two APIs. Major problems include the creation of resource files
that the Symbian GUI framework relies on and several threading issues that
prevent multiple threads from accessing the same control or controls from
having a parent-child window relationship.

• Providing access for device-specific GUI libraries such as AVKON. This would
place the burden of dealing with a device-specific library on the .NET
developer, but proxy objects and helper functions could assist her during the
process. A major problem of this approach is also that a GUI application cannot
be deployed on other devices supporting the .NET Compact Framework, such
as Windows-based smartphones.

• XML-based GUI abstractions. It is possible to create an abstraction for interface
designers at a higher level [APP99]. In the Views GUI engine [BH05,Mil05],
for example, an XML-based notation simplifies the implementation of user
interfaces in Rotor across different operating systems.

Considering the above alternatives, the major design decision when implementing a
.NET GUI for Symbian smartphones is whether to base the user interface upon the
controls provided by the underlying operating system or not. As already mentioned in
Sect. 3, we have decided to remain in full control of the drawing process by using
custom controls that are similar to the ones on Windows-based smartphones. The main
advantage of this approach is that we increase the portability of GUI applications across
different .NET platforms because we can expose the standard APIs of
System.Windows.Forms to application programmers. An important implication of this
is that all the standard programming tools that are available for .NET application
development – as for example the Form Designer that is integrated into Visual Studio –

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 97

can be used for application development on Symbian as well. I.e., an application
developer can graphically arrange the GUI controls she needs in her program as well as
implement the standard delegates that are assigned to GUI events using the tools
integrated into Visual Studio. Afterwards she can then deploy the resulting application
without any modifications on a Windows- as well as on a Symbian-based smartphone.

As mentioned above, a potential problem with our approach is reduced usability
because of performance issues and because the controls of .NET applications differ
from the ones provided by native smartphone applications. With respect to
performance, Sect. 6 shows that our implementation provides very good
responsiveness. In fact, in our demo applications there is no apparent difference in
performance to native GUI applications. A problem that remains is that our GUI
controls differ from those of Series 60 and UIQ. On the other hand, Windows-like
controls expose a very good usability, and many phone owners know how to handle
Windows-like controls from their PCs at home or at work. We therefore think that GUI
applications implemented using System.Windows.Forms provide an easy to handle user
interface for owners of Symbian smartphones.

6 EVALUATION

The purpose of this section is to provide a detailed performance evaluation of our
implementation. The evaluation consists of four main parts: (1) an overview of the
memory requirements of our port, (2) a performance analysis of basic services such as
method calls in comparison to a Java Virtual Machine, (3) an analysis of the
performance penalties caused by Symbian's programming model, and (4) a
performance analysis of our GUI implementation in comparison to native drawing
primitives.

We have to emphasize that the results shown here assess only the performance and
memory requirements of our port. This port was done as a means to evaluate the
feasibility of porting the .NET CF to Symbian devices. Hence, the following figures
should not be used as a general comparison between Java and .NET (for example,
[Sin03] provides a technical comparison of the different virtual execution systems).

Memory Requirements

Sect. 3 reviewed the hardware characteristics of today’s Symbian smartphones and
identified the low amount of available memory as one of the main constraints of this
device platform. While certain methods can be used to reduce the amount of RAM
required by a virtual execution system, the amount of non-volatile memory necessary to
host our current implementation is as follows:

First, the size of the non-managed part of the virtual execution system is 1.6 MB.
This includes the JIT compiler, the garbage collector, and the entire PAL
implementation. The 1.6 MB also includes most of the GUI code. (Note that our figures
are only valid for our port; they do not apply for the commercially available .NET
Compact Framework.) If no GUI is required, the corresponding DLL is of course not
needed on the actual device. It should also be kept in mind that the performance of the
GUI on resource-constrained device platforms is of central importance, so that most of

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

98 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

the GUI functionality has to be implemented in native code. Consequently, the
System.Windows.Forms managed code library primarily contains mappings to the
portable windowing toolkit and the underlying graphics library. It is also noteworthy
that because of Symbian’s DLL model (no writable static variables) native code can be
designed in such a way that only a small amount of the 1.6 MB has to be loaded into
RAM. In our current prototype, however, all of the 1.6 MB is loaded into RAM when a
.NET application is executed on a Symbian smartphone.

Second, the size for managed code libraries is the same as on the standard .NET
Compact Framework for Windows, except for the GUI libraries System.Drawing and
System.Windows.Forms. The reason for this is that – except for the GUI – we could
leave all managed code untouched. In fact, this was one of our main design goals
because it ensures that we expose exactly the same programming model on Symbian
devices as on Windows smartphones. The amount of memory for managed code
libraries depends on the desired functionality. To get a text-based application up and
running together with file and networking functionality requires 882 KB of managed
libraries. These libraries are loaded into RAM in our implementation. The managed
GUI libraries take another 90 KB at the moment (remember that most of the GUI
functionality is in native code). The biggest chunk of memory is required by the
managed code XML library, which is 1.16 MB in size. This library is necessary for
Web Services support.

In summary, our current implementation requires 3.7 MB of flash memory for all
the functionality we have discussed in this paper. Regarding the size of flash memory
on newer smartphone models, this should not be a problem. Newer phone models also
have ever more sophisticated cameras integrated, and therefore an increasing demand
for flash memory to store pictures and applications. In this context, 3.7 MB of flash for
a virtual execution system including managed libraries seems reasonable. In the current
version of our framework, all necessary libraries are loaded into RAM, which is a waste
of resources. Consequently, although 3.7 MB is a very small size for an execution
engine it still leaves much room for improvements. This is a work item that we want to
address in the future.

Performance Analysis of Basic Services

In the following, we compare the time necessary to execute .NET code on our platform
with the time needed to execute corresponding Java code on Symbian smartphones. As
it would be difficult to interpret the runtime characteristics of complete applications
written for .NET and Java – due to the different algorithms and optimizations Java and
.NET runtimes might use – our approach is instead based on micro-benchmarking.
Micro-benchmarks are simple programs (usually loops) targeting a single functionality
such as memory allocation or thread synchronization. Because of the simplicity of the
underlying programs, porting the benchmarks to both Java MIDP and .NET is relatively
simple.

In order to carry out the evaluation, we chose a suite of micro-benchmarks
originally written by IBM to measure the performance of simple Java operations in a
standard Java Virtual Machine (JVM) environment [jMocha]. These benchmarks
originally targeted the desktop versions of Java and thus are using APIs that are not
available on a Symbian smartphone. Therefore, we selected relevant tests from this
benchmarking suite and adapted them so that they could be executed by the JVMs

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 99

installed on our Symbian smartphones. As a result, benchmarks for the reflection
interface of Java were omitted as well as tests targeting file access functions (file access
is not supported on the smartphone JVMs used in our tests).

The other major change in the benchmarks dealt with timing issues. Instead of
dynamically calculating the number of iterations of a test, we hard-coded the number of
iterations for each benchmark based on the duration of a test. This was done because it
simplifies porting of the test framework to C#, and because it ensures that all tests are
carried out the same amount of times on different devices. For the above reasons, test
results measured with the selected benchmark suite on another hardware platform
cannot be directly compared to the results presented in this paper.

Java .NET Compact Framework
Test Parameter

Phone A Phone B Phone A Phone B PDA

1. MemReadLatency 4, 512 1578 141 219 110 122

 8, 256 1547 125 219 109 121

2. Method Calling internal, sync 4094 579 19703 32390 12843

 internal, nosync 2719 203 125 62 330

 external, nosync 2703 219 172 79 394

3. Spawn Threads 1000 422 1437 21937 15062 2579

4. AllObjectConstruct small, 2 gens 219 31 63 94 61

5. StringCompare 128 2500 328 531 250 217

 512 9187 1157 2047 984 854

6. CopyArray 1024, simple 3890 328 250 375 389

 1024, system 203 250 531 687 69

7. InitArray 1024, unrolled 1547 250 31 234 166

 1024, simple 3438 235 16 250 271

8. SumArray 512,simple 187 16 531 0 15

 512,unrolled 94 16 2047 0 12

Table 2: Time for running benchmarks (in ms).

Tab. 2 shows the results of running the tests. The first micro-benchmark in our
evaluation measures memory read latency by accessing the elements of arrays. The test
varies the size of the arrays as well as the patterns in which elements are read [jMocha].
The second micro-benchmark measures the efficiency of calling a single method. The
test distinguishes between calling a plain and a synchronized method. The third micro-
benchmark deals with thread creation. This test sequentially creates threads and waits
for them to start. Since the Symbian documentation in many places warns against the
overhead involved when creating threads we were especially curious how well our
implementation behaves compared to the Java thread implementation. The fourth

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

100 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

micro-benchmark measures the time necessary to create new objects and the overhead
caused by inheritance. In particular, it tests the creation of small objects derived over
two generations. To some degree, this test also illustrates the performance of the
memory subsystem. The fifth micro-benchmark measures the performance of
comparing strings. The last three tests concentrate on measuring the performance of
general array handling operations (e.g., initialization and copying). Both Java and C#
provide support for a system-level array copy function a programmer should use for
performance reasons. The CopyArray test therefore has two versions, one using the
system-level function, the other using a naive copy of the array using a loop. While this
might result in a performance penalty for a runtime that interprets code, we do not
expect a big performance hit when code is generated by a JIT compiler. Similarly, the
InitArray and SumArray micro-benchmarks provide two versions, one using a
simple loop, the other using unrolling to limit the cost of the loop overhead.

The first column of Tab. 2 shows the name of the micro-benchmark. The second
lists the parameters used to run the micro-benchmark. Columns three and four show the
results, in milliseconds, of the Java micro-benchmarks when executing them on the
JVMs that were already installed on the smartphones used for our experiments. The
next three columns show the results when carrying out the benchmarks in a .NET
Compact Framework runtime. As can be seen in the table, we have used two different
phones (Phone A and Phone B) and a standard PDA in our experiments. Phone A runs
Symbian OS version 6.1, has 3 MB available memory, and a 104 MHz processor, while
Phone B runs Symbian OS version 8.0a, and has 10 MB of available memory and a 220
MHz processor. The PDA is a T-Mobile MDA II running PocketPC 2003. Although not
directly comparable, the results obtained with the PDA are useful to find out whether
performance differences between Java and .NET are a problem of our PAL
implementation or shared between .NET runtimes on different platforms.

As a general result, the speed of our port of the .NET Compact Framework is
comparable to the corresponding Java implementation on Phone B and sometimes
significantly faster on Phone A. A likely reason for this is that the JVM on Phone A
seems to use an interpreter, while Phone B comes with a JIT. In two occasions,
however, our port of the .NET Compact Framework is much slower than the Java
runtime on the same device. These cases correspond to tests calling synchronized
methods (we are 4.8 times slower on Phone A) and spawning threads (we are 52 times
slower on Phone A).

In case of synchronized methods, the Java implementation of a synchronized
method call takes twice as long as calling a method that is not synchronized. It is
remarkable, however, that this is much faster than the time needed in our port, where
calling locked methods is 157 times slower than an unsynchronized method call on
Phone A. We expected calls to a synchronized method to be only slightly slower
compared to the unsynchronized version. Furthermore, since there is no real
concurrency involved (as only one thread in this test calls the functions), we did not
expect a major difference. Our first assumption was that our implementation of the
corresponding PAL functions is responsible for the poor performance. Comparing this
to the tests running on the PDA, however, revealed that the real reason might partially
reside in the implementation of the Compact Framework itself. This is because even on
the PDA locked code runs 39 times slower than a function not using the lock
statement. Spawning a thread is also considerably slower in our Symbian .NET

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 101

Compact Framework implementation than in the Java implementation. These problems
have been solved in newer releases of the .NET Compact Framework.

Performance Impact of Symbian Constraints

In Sect. 5 we discussed the implications of Symbian’s programming model on the
implementation of CLI-compliant virtual execution systems. One of the core problems
in this context was that additional threads had to be introduced in the PAL in order to
sequentialize requests from different .NET application threads. As the usage of
preemptively scheduled threads in Symbian is strongly discouraged, we evaluated the
impact of additional threads in the PAL (cf. Fig. 5 and Fig. 6). As a result it can be said
that the performance penalty caused by the sequentializing PAL thread depends on the
complexity of the .NET function that has to be mapped to the underlying operating
system. If its complexity is high, the performance penalty is acceptable because the
overhead caused by additional thread switches is small compared to the time needed to
carry out the actual function. For average operations, however, the performance penalty
can be significant. Fig. 5 shows this for a function that puts the cursor to a specified
location on the console window. If the requests from the execution engine are passed
through the additional thread (upper curve in Fig. 5) this causes a performance penalty
of around 20 %.

0

2000

4000

6000

8000

10000

12000

14000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Repetitions

Ti
m

e
in

 m
s

With PAL thread
Without PAL thread

Figure 5: Performance penalty of sequentializing PAL threads.

As the usage of preemptively scheduled threads seems to be problematic in Symbian,
another experiment was carried out in which we tried to measure the impact of
preemptively scheduled threads. In the experiment we created up to 31 threads that
repeatedly called a single function, and measured the performance of carrying out
100’000 function calls. The operating system distributed these calls equally so that each
thread issued approximately the same amount of calls. In the case of 10 threads, each
thread would invoke the function around 10’000 times. As can be seen in Fig. 6, the
amount of threads does indeed have a significant impact, which is different from a

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

102 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

Windows environment. On the emulator, for example, which runs in a Windows
environment, the curve is flat. The impact of threading on system performance can be
quite different between operating systems [ZY98]. Fig. 6 does also compare the
performance difference between native and managed threads. As expected, managed
threads (see upper curve in Fig. 6) cause a nearly constant performance overhead.

Figure 6: Performance difference between managed and native threads.

GUI Performance

A main problem of many GUI implementations that do not rely on the GUI controls
provided by an underlying operating system is bad performance and insufficient
responsiveness. As our GUI model is based on a portable graphics library and
windowing toolkit (and does not use Symbian controls), this subsection is devoted to
analyzing the performance of our portable .NET GUI for Symbian smartphones.

Generating a portable UI on a smartphone is a two-step process. First, the controls
and other UI elements are drawn to an off-screen bitmap. In a second step, the off-
screen bitmap must be copied to the smartphone’s screen. Both of these processes take
place in unmanaged code. In order to evaluate the performance of the drawing process
itself, Fig. 7 compares Symbian’s DrawLine function with the implementation in our
portable graphics library. As can be seen, both implementations are comparable. The
performance penalty of the Symbian DrawLine function is probably a result of
Symbian’s client/server model. The result of this is that drawing a line would internally
require interaction with a Symbian server that is responsible for drawing. This
assumption is supported by the fact that the performance of more complicated Symbian
drawing functions (rectangles, text, etc.) is usually better than our implementation.
Nevertheless, the .NET GUI implementation for Symbian smartphones has a very good
performance.

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Length of lines (in pixels/10)

Ti
m

e
in

 m
s

Portable DrawLine function Symbian DrawLine function

Figure 7: Performance of the DrawLine function in Symbian and in our portable graphics library.

Fig. 8 compares different methods for copying the generated off-screen bitmap to
the phone’s display. Not surprisingly, this process is very time consuming if the off-
screen bitmap is copied bit by bit to the display using Symbian’s plot function (see
left bar in Fig. 8). When considering the internal format in which Symbian is storing
bitmap data – no conversion between different data formats is then necessary – the
transfer to the phone’s display can be very fast. According to our measurements this
takes about 5 ms. We were also interested in the difference between direct screen
access and drawing to a Symbian window. As can be seen in Fig. 8, the difference
between both approaches is negligible so that we draw to a Symbian window in our
implementation instead of using direct screen access. This has certain advantages with
respect to event handling.

0

100

200

300

400

500

600

Symbian plot BitBlt with
conversion

BitBlt without
conversion

Window

Ti
m

e
pe

r r
ed

ra
w

 in
 m

s

Figure 8: Copying the off-screen bitmap to the smartphone display.

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

104 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

7 CONCLUSION

This paper evaluated the feasibility of porting the .NET Compact Framework to
Symbian smartphones. Our analysis shows that the specifics of the Symbian OS and the
resource constraints of today’s smartphones make porting difficult but not impossible.
The gap between the programming model of .NET and that of Symbian – e.g. its focus
on cooperative multitasking and its local client/server model – were the main obstacles
in our project. Our work also proves it possible to realize a portable .NET GUI on
Symbian smartphones that conforms to System.Windows.Forms and offers good
responsiveness. Last but not least, we verified that the performance of carrying out
.NET applications on Symbian is comparable to that of Java applications.

8 ACKNOWLEDGMENTS

We would like to thank Gerd Rausch for helping us with the implementation. We thank
Wolfgang Manousek, Mark Gilbert, and Ivo Salmre for their helpful comments and
their continuous support throughout this project. We also would like to thank the
Microsoft .NET Compact Framework team and the anonymous JOT reviewers.

REFERENCES

[AP99] Abrams, M.; Phanouriou, C.; Batongbacal, L.; Williams, S.; Shuster, J.:
“UIML: An Appliance-Independent XML User Interface Language”, 8th
International World Wide Web Conference, Toronto, Canada, May 1999.

[BH04] Bishop, J.; Horspool, N.: “Developing Principles of GUI Programming using
Views”, 35th SIGCSE Technical Symposium on Computer Science
Education, pp. 373-377, Norfolk, USA, March 2004.

[BKR04] Benton, N.; Kennedy, A.; Russo, C.: “Adventures in Interoperability: The
SML.NET Experience”, 6th International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, pp. 215-226, August
2004.

[BLWG99] Bisbal, J.; Lawless, D.; Wu, B.; Grimson, J.: “Legacy Information Systems:
Issues and Directions”, IEEE Software, vol. 16, no. 5, pp. 103-111, 1999.

[BRH90] Baruah, S.; Rosier, E.; Howell, R.: “Algorithms and complexity concerning
the preemptive scheduling of periodic, real-time tasks on one processor”,
Journal on Real-Time Systems, vol. 2, no. 4, pp. 301-324, November 1990.

[BW05] Bishop, J.; Worrall, B.: “Towards platform interoperability: retargeting a GUI
library on .NET”, 3rd International Conference on .NET Technologies,
Plzen, Czech Republic, May 2005.

[DotGNU] The DotGNU project, http://www.dotgnu.org.

[Canalys] Analysis for the high-tech industry, http://www.canalys.com.

VOL. 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 105

[CLI] ECMA and ISO/IEC C# and Common Language Infrastructure Standards,
http://msdn.microsoft.com/netframework/ecma/.

[EB04] Edwards, L.; Barker, R.: Developing Series 60 Applications, A Guide for
Symbian OS C++ Developers, Addison-Wesley, 2004.

[Forge] AppForge, http://www.appforge.com.

[Gut01] Gutknecht, J.: “Active Oberon for .NET: An Exercise in Object Model
Mapping”, First Workshop on Multi-Language Infrastructure and
Interoperability, September 2001.

[GW04] George, M.; Wong, W.: “Windows CE for a Reconfigurable System-on-a-
Chip Processor”, International Conference on Field-Programmable
Technology 2004, pp. 201-208, December 2004.

[Ham03] Hamilton, J.: “Language Integration in the Common Language Runtime”,
ACM SIGPLAN Notices, vol. 38, no. 2, pp. 19-28, February 2003.

[Har03] Harrison, R.: Symbian OS C++ for Mobile Phones, Wiley & Sons, 2003.

[Helix] Wright, G.: “The Symbian porting project on HelixCommunity.org”,
https://symbian.helixcommunity.org.

[jMocha] The jMocha Microbenchmark Framework and Suite for Java, http://www-
124.ibm.com/developerworks/oss/jmocha/index.html.

[JSM91] Jeffay, K.; Stanat, D.; Martel, C.: “On non-preemptive scheduling of periodic
and sporadic tasks”, 12th Real-Time Systems Symposium, pp. 129-139,
December 1991.

[MG00] Meijer, E.; Gough, J.: “Technical Overview of the Common Language
Runtime”, Microsoft white paper, 2000.

[Mil05] Miller, D.: “Mirrors: a system for GUIs using reflection in .NET 2.0”,
Technical Report, University of Pretoria, South Africa, September 2005.

[Mono] The Mono project, http://www.mono-project.com.

[MR] Mobile Review Web site, http://www.mobile-review.com.

[NetCF] The Microsoft .NET Compact Framework,
http://msdn.microsoft.com/smartclient/understanding/netcf/.

[Opera] Porting Opera to EPOC,
http://www.symbian.com/developer/techlib/papers/khopera/opera%5Fkeith
hollis.htm.

[RSL04] Raghavan, G.; Salomaki A.; Lencevicius, R.: “Model Based Estimation and
Verification of Mobile Device Performance”, Fourth ACM International
Conference on Embedded Software (EMSOFT ’04), Pisa, Italy, pp. 34-43,
September 2004.

[RTCE04] Rashid, O.; Thompson, R.; Coulton, P.; Edwards, R.: “A Comparative Study
of Mobile Application Development in Symbian and J2ME using Example
of a Live Football Results Service Operating over GPRS”, IEEE

PORTING THE :NET COMPACT FRAMEWORK TO SYMBIAN PHONES

106 JOURNAL OF OBJECT TECHNOLOGY VOL.5, NO. 3

International Symposium on Consumer Electronics, Reading, UK, pp. 203-
207, September 2004.

[RV01] Riggs, R.; Vandenbrink, M.: Programming for Wireless Devices with the Java
2 Platform Micro Edition, Addison-Wesley, 2001.

[Sin03] Singer, J.: “JVM versus CLR: a comparative study”, 2nd International
Conference on Principles and Practice of Programming in Java, pp. 167-
169, Kilkenny City, Ireland, June 2003.

[SNS03] Stutz, D.; Neward, T.; Shilling, G.: Shared Source CLI Essentials, O’Reilly,
2003.

[SSM00] Simon, R.; Stapf, E.; Meyer, B.: “Full Eiffel on the .NET Framework”,
Microsoft Developer Network, July 2002.

[ZY98] Zabatta, F.; Ying, K.: “A Thread Performance Comparison: Windows NT and
Solaris on a Symmetric Multiprocessor”, 2nd USENIX Windows NT
Symposium, Seattle, WA, 1998.

About the authors
Frank Siegemund received a PhD degree in Computer Science from
ETH Zurich and is currently a software design engineer at the
European Microsoft Innovation Center. His research interests lie in
the areas of virtual execution systems for mobile and embedded
devices, wireless communication protocols, and handheld computing.
He can be reached at franksie@microsoft.com.

Robert Sugar holds a Master’s Degree in Computer Science from the
Budapest University of Technology and Economics. Currently he is a
PhD candidate in Computer Science and works as a software design
engineer in the European Microsoft Innovation Center. He can be
reached at rsugar@microsoft.com.

Alain Gefflaut is a software design engineer at the European
Microsoft Innovation Center. His research interests are in the areas of
networking protocols, mobile devices and operating systems. He
holds a PhD and a Master’s degree, both in Computer Science, from
the University of Rennes in France. He can be reached at
alaingef@microsoft.com.

Friedrich van Megen graduated as a Diplom-Informatiker from the
University of Kaiserslautern. He joined the European Microsoft
Innovation Center as a software design engineer. His research
interests include mobile devices and context-aware computing. He can
be reached at fmegen@microsoft.com.

