
Vol. 5, No. 3, May–June 2006

Static Verification of Code Access Security
Policy Compliance of .NET Applications

Jan Smans, Bart Jacobs, Frank Piessens
Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Stack inspection-based sandboxing originated as a security mechanism for safely exe-
cuting partially trusted code. Today, it is widely used for the more general purpose of
supporting the principle of least privilege in component-based software development.
In this more general setting, the permissions required by a component to run properly,
or the permissions needed by other components to successfully call methods in a
given component are conceptually part of the interface specification of the component.
Hence, correct documentation of this part of the interface is essential.
In this paper, we propose formal component and method contracts for stack inspection-
based sandboxing, and we show that formal verification of these contracts is feasible
with state-of-the-art program verification tools. Our contracts are significantly more
expressive than existing type systems for stack inspection-based sandboxing.
We describe our solution in the context of the sandboxing mechanism in the .NET
Framework, called Code Access Security. Our system relies on the Spec# programming
language and its accompanying static verification tool.

1 INTRODUCTION

Stack inspection-based sandboxing originated as a security mechanism for limiting
the amount of damage that could be done by dynamically loaded untrusted code.
It was designed to support configurable sandboxes for Java applets [1]. Today, it is
widely used for the more general purpose of supporting the principle of least privilege
in component-based software development. Both C# and Java support composition
of applications from components (assemblies for C#, .jar files for Java) where each
of these components can be given different access permissions. In scenarios where an
application is composed of third-party components coming from different sources,
this support for the principle of least privilege has significant security benefits, in-
cluding increased assurance that bugs in some of the components will not lead to
critical security violations.

However, in this setting, the permissions required by a component to run prop-
erly, or the permissions needed by other components to successfully call methods in
a given component are conceptually part of the interface specification of the compo-
nent, and correct documentation of this part of the interface is essential. Neither C#
nor Java provide adequate support for the specification of these security properties
of components. This lack of specification can lead to unexpected security exceptions

Cite this document as follows: Jan Smans, Bart Jacobs, Frank Piessens: Static Verification of
Code Access Security Policy Compliance of .NET Applications, in Journal of Object Technol-
ogy, vol. 5, no. 3, May–June 2006, pages 35–58,
http://www.jot.fm/issues/issues 2006 4/article2

http://www.jot.fm/issues/issues_2006_4/article2

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

at run time [2].

In this paper, we propose formal component and method contracts for stack
inspection-based sandboxing, and we show that formal verification of these con-
tracts is feasible with state-of-the-art program verification tools. Our contracts are
significantly more expressive than existing type systems for stack inspection-based
sandboxing [3].

We will describe our solution in the context of C# and the Microsoft .NET
Common Language Runtime, because our implementation builds on the Spec# pro-
gramming system [4]. But the same approach would be feasible in Java.

The rest of this paper is structured as follows. In Section 2 we briefly review the
Spec# Programming System, Code Access Security, and the security-passing style
transformation. In Section 3, we point out the problem we wish to solve in this
paper. Next, we present our proposed solution in detail (Section 4) and discuss its
advantages and disadvantages (Section 5). Finally, we compare with related work
and conclude.

2 BACKGROUND

The Spec# Programming System

The Spec# Programming System [4] consists of three parts: an object-oriented
language called Spec#, a compiler, and a program verifier. The language Spec#
is an extension of C#. It extends C# with non-null types (for a type T , the
corresponding non-null type is denoted by T !), checked exceptions, and constructs
for writing specifications, such as object invariants and pre- and postconditions for
methods.

Our proposed system builds on Spec#’s support for writing specifications. The
Spec# compiler emits run-time checks for these specifications, and adds specifi-
cation information as metadata to the generated assembly. The Spec# Program
Verifier (sometimes referred to as Boogie) takes such an assembly with specifica-
tion metadata, and statically verifies the consistency between the implementation
and the specification. The verification is sound, but not complete. Essentially, the
verifier computes a number of first-order logic verification conditions based on an
axiomatic semantics of Spec#, and then feeds those verification conditions to a fully
automatic theorem prover. The prover can then (1) prove those conditions, showing
that implementations are consistent with specifications, or (2) come up with a coun-
terexample showing that there is an error, or (3) give up and provide no information
about the correctness of the program (i.e. the verification is incomplete).

36 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

2 BACKGROUND

Code Access Security

Code Access Security is the sandboxing mechanism of the .NET Framework. Its
goal is to limit the access code has to protected resources and operations such that
partially trusted code can be executed securely.

Code access rights are defined by means of permissions. A permission is a first-
class object that represents a right to access certain protected resources or oper-
ations. For instance, a FileIOPermission object represents the right to perform
certain operations (open, create, read, write,...) on certain files.

Permissions are assigned to components (assemblies in C#) based on evidence.
Examples of evidence include: location where the assembly was downloaded from,
or the code publisher that digitally signed the assembly. The security policy is a
configurable function that maps evidence to a set of permissions. The resulting
permission set for a given component is called the static permission set.

At run-time, every thread maintains an associated dynamic permission set or
security context that represents the actual access rights that the thread has at this
point in its execution. In the CLR, the dynamic permission set is not represented
explicitly, but is computed by stack inspection whenever necessary: it defaults to
the intersection of the static permission sets of all code that is currently on the
call stack, but trusted library code can influence the stack inspection process as
discussed below.

• Calling Demand on a permission object p, checks whether p is in the dynamic
permission set. This operation initiates a stack inspection: all frames on
the stack (from top to bottom) are checked for permissions p. If a frame is
encountered that doesn’t have this permission in its static permission set, a
SecurityException is thrown. Otherwise, Demand simply returns normally,
without any side-effects. This method is used by libraries to guard sensitive
operations from being accessed by unprivileged code.

• Calling Assert on a permission object p, marks the current (call) stack frame
as “privileged for permission p”. If such a frame is encountered during stack
inspection for permission p, Demand returns normally, without checking any
frames deeper down the call stack. Thus, asserting a permission effectively
makes the thread’s dynamic permission set grow. This operation is used by
highly trusted code to allow less trusted code to access some resource in a
well-defined, secure way.

An analysis we performed of the Rotor BCL [5], a partial, shared source implemen-
tation of the Base Class Library, has shown that other operations on permission
objects, such as Deny and PermitOnly , occur only rarely. Therefore, we omit them
in this paper.

Next to the imperative syntax discussed above, Code Access Security also sup-
ports a declarative security syntax. This declarative syntax uses .NET attributes to

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 37

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

place security information within an assembly’s metadata. For example, by placing
an attribute on a member, a programmer can instruct the run-time system to invoke
Demand on a (statically) given permission before executing the member.

Security-passing Style Transformation

Wallach’s security-passing style (SPS) transformation [6] can be used to define the
semantics of Code Access Security (and of stack inspection-based sandboxing in
general) by translating the primitive operations, such as Demand and Assert , to
the host language. The original program using Demand and Assert is transformed
in the following way (see also Figure 1):

SPS(m(x1, ..., xn) {Body}) ≡ m(x1, ..., xn, s) {
s := s ∩ static permissions;

SPS(Body)

}
SPS(o.m(a1, ..., an)) ≡ o.m(a1, ..., an, s)

SPS(p.Demand();) ≡ if (p 6∈ s) {
throw new SecurityException();

}
SPS(p.Assert();) ≡ if (p 6∈ static permissions) {

throw new SecurityException();

}
s := s ∪ {p};

Figure 1: The security-passing style transformation

1. An explicit representation of the security context is chosen. For our purposes,
the security context is best represented as a set of permissions.

2. Each method gets an additional parameter representing the caller’s dynamic
permission set. Every method invocation is updated correspondingly.

3. At the start of each method body, code is added that updates the current
security context to be the intersection of the security context of the caller and
the static permission set of the callee.

4. The primitive p.Demand() is transformed into code that checks whether p is
in the current security context and throws a SecurityException if it is not.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

3 PROBLEM STATEMENT

5. The primitive p.Assert() is transformed into code that (1) checks if p is in the
static permission set of the code calling Assert(), and (2) updates the current
security context by adding p.

In this paper, we use this transformation to define the semantics of Code Access
Security. The advantage of this approach is that these semantics are defined entirely
in terms of the semantics of the host programming language. As a consequence, we
can use the existing Spec# Program Verifier without it having to be aware of stack
inspection. Examples of an SPS transformation are provided later on in the paper.

3 PROBLEM STATEMENT

Problems of Sandboxing based on Stack Inspection

While stack inspection-based sandboxing is a usable and essential part of the security
infrastructure offered by some state-of-the-art platforms (including .NET and Java),
it has a number of well-known shortcomings. These can be summarized as follows:

1. Security operations, such as Demand and Assert , are typically part of the
implementation of a component and as such, their effect is not visible in the
interface of the component (method signatures etc): the (informal) documen-
tation has to specify under what circumstances SecurityExceptions will be
thrown. Writing and maintaining precise documentation is error-prone.

In the .NET Framework, declarative security Demands partly deal with this
problem. However, these declarative Demands do not have the same expressive
power as imperative Demands, and our analysis of the Rotor BCL has shown
that approximately 60% of all Demands are imperative.

2. Not only are security operations part of the implementation, they are scattered
throughout the BCL. Our analysis of the Rotor BCL found 183 Demands
scattered across 40 classes. This makes it very hard to see what policy the
stack inspection mechanism actually enforces.

3. Stack inspection-based sandboxing is implemented using dynamic checks, which
can have a substantial impact on performance. Moreover, as it relies on the
presence of activation records on the call stack, this security mechanism can
hinder optimizations that affect the stack.

4. Finally, stack inspection tries to protect against luring attacks, where partially
trusted code uses trusted but naive code to accomplish an attack. But stack
inspection only addresses luring attacks based on method calls from semi-
trusted to trusted code, and does not deal with other potential interactions
such as the reliance on results from untrusted code, or exceptions thrown from
such code.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 39

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

Many researches have recognized these shortcomings of sandboxing based on stack
inspection, and have proposed partial solutions [3, 10, 6, 14, 12]. We discuss these
in Section 6.

This paper builds on these existing solutions and on the Spec# specification and
verification infrastructure to propose a new solution that addresses (at least in part)
the first three disadvantages identified above. In Section 6, we also briefly indicate
how our solution could be extended to deal with the last disadvantage.

4 PROPOSED SOLUTION

In this paper, we define a formal and expressive specification formalism for the .NET
Code Access Security system, together with an approach for verifying whether a
component complies with these specifications.

To verify a component C (i.e. verify whether it could ever throw a Security-
Exception), we need (1) C’s implementation, (2) C’s specification and (3) the spec-
ifications of all referenced components. Our verification then determines whether
execution of the given component could ever cause a Demand to fail, given an en-
vironment that respects specifications. Our approach is sound but incomplete. In

Figure 2: Overview of our solution

order to be useful, it requires developers to write specifications and hence introduces
annotation overhead.

Component and method contracts

Two types of contracts will be used to specify the “sandboxing behavior” (i.e. be-
havior w.r.t. CAS) of components.

For the first type of contracts, component-level contracts, we rely on .NET’s
existing assembly-level attributes for requesting permissions. Using these attributes,

40 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

a component developer can define a minimal permission set (via RequestMinimal)
and an optional permission set (via RequestOptional). The minimal permission
set defines a lower bound on the component’s run-time static permissions, while
the optional permission set declares additional permissions that, if granted to the
component, enable additional functionality. A component will never need more
permissions than those declared in the minimal and the optional permission sets.
For example, a computer game can operate only when given the permission to
open windows (minimal permission set). But when the game also has permission
to access the file system (an optional permission), it can store high scores. In the
.NET Framework these assembly-level attributes are only used at load-time to check
whether the statically assigned permission set is valid according to these attributes.
Our approach however relies on them for providing compile-time guarantees about
the absence of unexpected run time SecurityExceptions. Since the .NET syntax for
writing these assembly-level attributes is rather verbose, we will use slightly simpler
syntax in our examples.

The second type of contract, method-level contracts, are basically Spec# pre-
conditions that specify on a per-method basis what dynamic permission sets are
expected by the method. If callers adhere to this specification, the method will
not throw any SecurityExceptions. For example, a Connect method that loads
a given URI may specify as a precondition that the security context must include
FileIOPermission if the URI points to a file and SocketPermission if the URI points
to a network resource. Note that these method-level contracts are essentially plain
Spec# preconditions where an additional variable s , referring to the caller’s dynamic
permission set, can be mentioned.

Writing component-level contracts does not incur substantial overhead, and we
believe it is reasonable to assume that every component will be specified with such
a contract. Method-level contracts on the other hand incur a substantial annotation
overhead, and it is probably not realistic to assume that all components will be
fully annotated with method contracts. However, for client code (i.e. code that
is not intended to be called from other components) it is easy to derive from the
component contract safe default method contracts: every method simply requires
that the security context includes the minimal permission set. For library code (i.e.
code that is intended to be called from other components), the annotation overhead
is probably acceptable: it is merely a precise documentation of what clients of the
code need to know about the sandboxing-related behavior of each library method.

Note that the component-level contract is a contract between a component and
its deployer, while the method-level contract is a contract between the component
and its callers. The deployer of a component should make sure the static permis-
sions of a component are a superset of the minimal permission set requested in
the component-level contract. When calling methods, clients should abide by the
method-level contract of the callee, i.e. at each call-site, the dynamic permission set
should satisfy the method-level contract of the callee.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 41

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

Verification of Sandboxing Contracts

Successful verification of a component in our approach guarantees that the compo-
nent will not throw any SecurityExceptions when (1) the minimal permission set
described by the component-level contract is a subset of the static permissions that
are assigned to it by the security policy, (2) it is only called under dynamic permis-
sion sets that satisfy its method-level contracts and (3) all external methods that
are called by the verified component respect their contracts1. Informally, successful
verification means “if the environment behaves according to its specification, the
component will not throw any SecurityExceptions”. For the verification of a com-

Figure 3: Detailed overview of our solution

ponent, we need (1) the component itself, (2) its component-level and method-level
contracts and (3) the method-level contracts of all referenced components. Verifica-
tion then proceeds in two steps:

1. The verification tool applies a security-passing style transformation to the
component. As a result of this transformation, all sandboxing primitives are
transformed into expressions of the host language (in our case Spec#): execu-
tion of the transformed component on a CAS-unaware VM would be equivalent
to executing the original component on a CAS-aware VM. Thus, the result of
the SPS-transformation is ordinary Spec# code (i.e. code without any calls
to security operations such as Demand or Assert).

2. In the second step the transformed component is input to the Spec# Pro-
gram Verifier. The latter need not be able to reason about any sandboxing
primitives, since these were all removed by the transformation. If verifica-
tion succeeds, the semantics of the SPS-transformation guarantees that in
the original component Demands will not fail (if the environment behaves
appropriately) and as a consequence, that it will not throw any unexpected
SecurityExceptions.

1How we deal with optional permission sets is discussed later in this section.

42 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

Illustrating the Basic Idea

This first example is meant to show the basic idea behind our approach. To keep
it as clear and simple as possible, we make some assumptions about the programs
we consider. First of all, we assume only one permission type is used, namely
WebPermission. Secondly, we do not consider permissions that take parameters,
so WebPermission objects have no parameters. Under these assumptions, a set of
permissions is either the empty set or the singleton containing only WebPermission.
Moreover, we do not consider optional permission sets for this example. Our example
involves two components: a library component and a client component.

The Library Component

The library component offers a class called Connector , which is shown in Fig-
ure 4. The component-level contract (first line of 4) specifies that it requires
WebPermission in its minimal permission set, i.e. the component cannot operate
without having WebPermission in its static permission set.

[Minimum := {WebPermission}]
class Connector {

Stream Connect(String url)
requires WebPermission ∈ s;

{

new WebPermission().Demand();
//create the connection

}

Stream ConnectToTrusted()
requires true;

{

new WebPermission().Assert();

return Connect(‘‘t.com’’);
}

}

Figure 4: Connector before SPS

class Connector {
Stream Connect(String url, bool s)

requires WebPermission ∈ s;
{

s := s ∩ StaticPermSet();
assert WebPermission ∈ s;
//create the connection

}

Stream ConnectToTrusted(bool s)
requires true;

{
s := s ∩ StaticPermSet();
assert WebPermission ∈ StaticPermSet();
s := s ∪ {WebPermission};
return Connect(‘‘t.com’’, s);

}
}

Figure 5: Connector after SPS

The class offers two methods: Connect and ConnectToTrusted . The former
method offers clients the possibility to connect to arbitrary URLs but guards this

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 43

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

(sensitive) operation by an access control check. The latter method, ConnectTo-
Trusted , allows any client to make connections, but only to the trusted site t.com.
Both methods specify method-level contracts. The contract of Connect specifies
that the caller’s dynamic permission set (denoted by the variable s) should contain
WebPermission in order to prevent SecurityExceptions. The contract of Connect-
ToTrusted requires true, which means that this method can be called by any client
in any context.

To verify the correctness of Connector versus its specification, we first apply an
SPS transformation. The result of this transformation is shown in Figure 5.

• An extra parameter s, representing the caller’s dynamic permission set, is
added to every method declaration and is inserted at every call site. We
use booleans to represent these sets: false represents {}, true represents
{WebPermission}.

• A per-component, static method StaticPermSet is introduced (omitted from
Figure 5). The postcondition of StaticPermSet specifies that it returns a
permission set which is equal to or larger than the minimal permission set as
described by the component-level contract. For this example, the contract of
StaticPermSet specifies it returns a superset of {WebPermission}, because the
minimal permission set contains WebPermission.

• At the beginning of every method the dynamic permission set is updated to
reflect the addition of a new activation record to the call stack. The new
dynamic permission set is the intersection of the old dynamic permission set
and the set of static permissions assigned to the callee.

Note that we do not have to revert the dynamic permission set to its former
value when the method returns, since only a copy of the dynamic permission
set is passed on at each call site.

• Every p.Demand is transformed into a Spec# assert statement2. Every assert
statement implies a proof obligation for the program verifier which we invoke
on the transformed program. In this case the verifier has to prove that s will
always contain WebPermission.

• Each p.Assert is transformed into two operations. First of all, because Assert
can only be applied to a permission p when p is in the caller’s (i.e. the caller
of Assert) static permission set, we add a proof obligation for the program
verifier: the static permission set should contain WebPermission (this can
easily be proven since StaticPermSet returns a superset of {WebPermission}).
Secondly, Assert adds the given permission to the dynamic permission set, so
s is updated accordingly.

2Keep in mind the difference between Assert and assert. Assert is a method which can be
invoked on permission objects, while assert is a Spec# program statement, declaring that some
property always holds at a certain point during execution and implying a proof obligation for the
program verifier.

44 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

After applying the transformation, we input the transformed program to the
Spec# program verifier. This program verifier checks (amongst other things) that
preconditions hold at every call site and that every assert statement will succeed at
run time. If the transformed program verifies, the original program will not throw
any SecurityExceptions when executed within an environment that complies with
all given specifications.

The Client Component

The client component contains a class called ConnectorClient , shown in Figure 6.
ConnectorClient is a client of Connector because the former class calls methods of
the latter. The component-level contract for the client component specifies that it
can operate without having any static permissions. Note that we have intentionally
chosen a faulty example to show how verification can detect errors in components.
ConnectorClient offers two methods: Spy and SendDataToTrusted . The former

[Minimum := {}]
class ConnectorClient {

Connector ! c;
void Spy()

{

Stream st := c.Connect(‘‘s.com’’);
//send confidential data

}

void SendDataToTrusted()

{

Stream st := c.ConnectToTrusted();
//send data to trusted host

}
}

Figure 6: client before SPS

class ConnectorClient {
Connector ! c;
void Spy(bool s)

requires {} ⊆ s;
{

s := s ∩ StaticPermSet();
Stream st := c.Connect(‘‘s.com’’, s);
//send confidential data

}

void SendDataToTrusted(bool s)
requires {} ⊆ s;

{
s := s ∩ StaticPermSet();
Stream st := c.ConnectToTrusted(s);
//send data to trusted host

}
}

Figure 7: client after SPS

method tries to send confidential data to a spyware server (something we wish to
prevent and detect statically), while the latter sends data to t.com, a trusted host.
Only trusted code should be able to send (possibly confidential) data to arbitrary
hosts. Observe that both methods make use of a Connector object.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

For client components, we cannot (always) expect developers to write method-
level contracts. Instead, we simply infer (overly conservative) method contracts from
the component-level contract. More specifically, each method gets a precondition
requiring the caller’s dynamic permission set to include the declared minimum per-
mission set. Because the minimum permission set for the client component of our
example is the empty set, the precondition requires the caller’s dynamic permission
set to be at least the empty set, which is equivalent to saying that the precondition
requires nothing.

Again, to verify ConnectorClient , we first apply an SPS transformation to it. The
result of this transformation is shown in Figure 7. Note that for the client component
the postcondition of StaticPermSet states that the method can return any superset
of the empty set (i.e. any permission set). After applying the transformation, we
input the resulting program to the Spec# Program Verifier. Its output is as follows:

• The verifier detects that Spy violates the precondition of Connect . This indi-
cates that a SecurityException may be thrown by Spy . The component-level
contract is inconsistent with the implementation of Spy .

• The static verifier proves that SendDataToTrusted will never throw a Security-
Exception because it does not violate a precondition or assert.

Optional Permission Sets and the Test Operation

Besides a minimal required permission set, a component-level contract may also
define an optional permission set. In doing so, the component declares that it does
not require any optional permissions in order to execute, but it can offer additional
functionality when granted these additional permissions.

In order to benefit from additional (optional) permissions, components should
be able to check at run time which access rights they (or more precisely, their
threads) currently have. In other words, they should be able to query the dynamic
permission set to verify whether it contains a certain permission. In the existing
Code Access Security system, SecurityExceptions are considered to be normal ex-
ceptions. Hence, applications typically check for optional permissions by tentatively
performing the sensitive operation within a try-catch-block. The solution we propose
however considers SecurityExceptions to be program errors, so tentatively perform-
ing an operation that may fail is ruled out. As such, our approach is not entirely
backward compatible because existing programs that test for optional permissions
by tentatively performing the operation are considered invalid in our approach.

To enable components to query the dynamic permission set in our solution,
we propose introducing a new security operation called Test . Invoking Test on a
permission p returns true when p is part of the dynamic permission set; otherwise
it returns false. A sensitive operation which requires some optional permission p,
will then typically be placed within an if statement with condition p.Test(). The

46 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

introduction of a new security operation also implies adding an additional rule to
the SPS transformation:

p.Test() ≡ p ∈ s

As a sanity check for Test , we could verify that only permissions included in the
union of the minimal and optional permission set are tested.

We illustrate the use of optional permission sets and the Test-operation by means
of another example. Consider a new library component containing a single class
called ConnectorExt (see Figure 8), which is an extension of the ConnectorLibrary
of Figure 4. The component-level contract indicates that it can execute without

[Minimum := {}]
[Optional = {WebPermission}]
class ConnectorExt : Connector
{

Stream TryConnect(String url)

{

if (new WebPermission().Test()) {
return base.Connect(url);

}
return null;

}
}

Figure 8: LibraryExt before SPS

class ConnectorExt : Connector
{

Stream TryConnect(String url,
bool s)

requires {} ⊆ s;
{

s := s ∩ StaticPermSet();
if (WebPermission ∈ s) {

return base.Connect(url, s);
}
return null;

}
}

Figure 9: LibraryExt after SPS

having any permissions (minimal permission set), but that it may be able to offer
additional functionality when given the WebPermission (optional permission set).

ConnectorExt extends its superclass with a single method called TryConnect .
If sufficient permissions are present in the dynamic permission, this method will
return a connection to the given URL; otherwise, it will return null. For checking
whether the required WebPermission is present, the implementation relies on the
Test primitive. Verification of this component will succeed, because the verifier can
assume the dynamic permission set contains WebPermission in the body of the if
statement.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

A Full Example

For programs using a single, atomic permission, it suffices to represent permission
sets by means of boolean variables. However, when considering programs with
multiple, parameterized permissions, (1) a more expressive encoding for permission
sets has to be chosen and (2) a precise specification of each parameterized permission
is needed, in order for the program verifier to be able to reason about them. Our
approach is as follows:

• The .NET Framework offers a class PermissionSet whose objects represent sets
of permissions. We will rely on a slightly modified version of PermissionSet
(see Figure 12) to represent static and dynamic permission sets.

• Every permission class in the .NET Framework must implement interface
IPermission (see Figure 11). In order for static verification to be possible,
the methods IsSubsetOf , Union and Intersect defined in this interface and the
method Equals inherited from Object , must be precisely specified for each per-
mission type. As for PermissionSet , we rely on a slightly modified definition
of .NET’s IPermission (see Figure 11).

Figure 10 shows the SPS transformation for our approach, defined in terms of
methods on IPermission and PermissionSet objects.

SPS(m(x1, ..., xn){Body}) = m(x1, ..., xn, s) {
s := s.Intersect(StaticPermSet());
SPS(Body)
}

SPS(o.m(a1, ..., an)) = o.m(a1, ..., an, s.Copy())
SPS(p.Demand();) = assert s.Contains(p);

SPS(p.Assert();) = assert StaticPermSet().Contains(p);
s := s.AddPermission(p);

SPS(p.Test()) = s.Contains(p)
...

Figure 10: The security-passing style transformation, defined in terms of
IPermission and PermissionSet methods

In the remainder of this section, we define two library components: Toaster -
Services .dll and ToasterUtil .dll. The former component contains a class Toaster ,
offering toasting services to clients and a permission class ToasterPermission, which
is used by Toaster to prevent its sensitive operations from being used by untrusted
components. The latter component, ToasterUtil .dll, is a client of the former.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

Note that the example used in this section is based on one described in [7].

interface IPermission {
[Pure] bool IsSubsetOf (IPermission! other)

requires other.GetType() = GetType();

[Pure] IPermission! Intersect(IPermission! other)
requires other.GetType() = GetType();
ensures result.GetType() = GetType();

[Pure] IPermission! Union(IPermission! other)
requires other.GetType() = GetType();
ensures result.GetType() = GetType();

}

Figure 11: The interface IPermission (partial)

class PermissionSet {
[Pure] bool ContainsPermissionOf (Type! t);

[Pure] IPermission! GetPermission(Type! t);
requires this.ContainsPermissionOf (t);
ensures result.GetType() = t;

[Pure] bool IsSubsetOf (PermissionSet ! other);
ensures result =

forall{Type! t; this.ContainsPermissionOf (t) =⇒
other.ContainsPermissionOf (t)∧
this.GetPermission(t).Equals(other.GetPermission(t))};

}

Figure 12: The interface of class PermissionSet (partial)

ToasterPermission

Figure 13 shows (part of3) the interface of class ToasterPermission. Its objects
represent the right to perform certain operations on toasters. Conceptually, every

3The specifications shown in this paper are only partial and are just meant to give a flavor of
what the full specifications look like. We refer to our website [9] for the full specifications.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 49

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

ToasterPermission has two flags (boolean parameters): information and eject . The
former flag indicates whether the permission entails the right to retrieve informa-
tion about toasters, while the latter determines whether it allows for the ejection
of bread. In addition, it also has a numeric parameter, toastLevel , ranging from
Uncooked to Burnt and indicating the maximum level of toastedness at which bread
may be ejected. Notice how the precise behavior of the constructor and the meth-
ods IsSubsetOf , Intersect , Union and Equals has been documented by means of
Spec#-postconditions. In addition, IsSubsetOf , Intersect and Union also inherit
the specifications defined at the level of IPermission.

class ToasterPermission : IPermission{
[Pure] bool Information();
[Pure] bool Eject();
[Pure] Level ToastLevel();

[Pure] ToasterPermission(bool information, bool eject, Level level)
ensures this.Information() = information;
ensures this.Eject() = eject;
ensures this.ToastLevel() = level;

[Pure] bool IsSubsetOf (IPermission! other)
ensures result =

(Information() =⇒ ((ToasterPermission)other).Information() ∧
Eject() =⇒ ((ToasterPermission)other).Eject() ∧
ToastLevel() ≤ ((ToasterPermission)other).ToastLevel());

}

Figure 13: The class ToasterPermission (partial) defined in ToasterServices .dll

Note that it is important for the soundness of our approach that (like for other
classes) the implementation of ToasterPermission complies with its specification.
This is verified as part of verification of ToasterServices .dll. In general, before
relying on a certain permission type, an administrator should check whether the
given permission complies with the intented semantics for permissions.

Toaster

In addition to a permission class, ToasterServices .dll also contains the class Toaster
(see Figure 14). The component-level contract for ToasterServices .dll specifies that
the library itself should have full access to toasting operations.

Because only highly trusted code (i.e. code having the appropriate ToasterPermissions)
should be allowed to interact with Toaster objects, its methods are guarded by an
access control check, i.e. the invocation of a Demand on a ToasterPermission object.

50 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

4 PROPOSED SOLUTION

[assembly : Minimum := {new ToasterPermission(true, true, Level.Burnt)}]
class Toaster {

bool ContainsBread()
requires s.Contains(new ToasterPermission(true, false, Level.Uncooked));

{
new ToasterPermission(true, false, Level.Uncooked).Demand();
...

}

void EjectBread(Level level)
requires s.Contains(new ToasterPermission(false, true, level));

{
new ToasterPermission(false, true, level).Demand();
...

}
}

Figure 14: The class Toaster (partial) defined in ToasterServices .dll

The permissions required by the methods of class Toaster in order to complete suc-
cessfully are apparent from their contracts. For example, the method-level contract
of ContainsBread clearly states that this method should not be invoked without
permission to retrieve toaster information (ToasterPermission with the information
flag set to true). Note that the method-level contracts can refer to variables whose
value is only determined at run time. For instance, the specification of EjectBread
mentions the method parameter level .

ToasterUtil .dll: a library on top of ToasterServices .dll

Finally, we define another library component ToasterUtil .dll (a client of Toaster -
Services .dll) with a single class ToasterClient (see Figure 15). The component-level
contract indicates the static permission set should include full ToasterPermission
and full WindowPermission. Furthermore, it declares that ToasterUtil .dll can pro-
vide additional functionality (in this case persistent logging) when given FileIO-
Permission.

ToasterClient offers a single method called PerformOperation, which performs
different actions depending on the value of the parameter op. If the requested oper-
ation is Display, some information about the toaster is displayed within a window;
if the operation is Eject, the bread is ejected from the toaster. Notice that depend-
ing on the value of op, different dynamic permission sets are required from callers.
This is clearly shown in the interface by the conditional preconditions. Using the
Test-operation, PerformOperation also tries to write log entries whenever possible

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 51

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

[assembly : Minimum := {new ToasterPermission(true, true, Level.Burnt),
new WindowPermission()}]

[assembly : Optional := {new FileIOPermission()}]
class ToasterClient {

Toaster ! t;

void PerformOperation(Operation op)
requires (op = Operation.Display)

=⇒ s.Contains(new WindowPermission())∧
s.Contains(new ToasterPermission(true, false, Level.Uncooked));

requires (op = Operation.Eject)
=⇒ s.Contains(new ToasterPermission(false, true, Level.Burnt));

{
if (op = Operation.Display) {

bool c := toaster.ContainsBread();
//display info in GUI

}

if (op = Operation.Eject) { toaster.Eject(Level.Burnt); }

if (new FileIOPermission().Test()) { //write a log entry }
}

}

Figure 15: The class ToasterClient (partial) defined in ToasterUtil .dll

(i.e. whenever FileIOPermission is part of the dynamic permission set).

Summary

We introduced two types of sandboxing contracts: component-level contracts that
specify a minimal and possibly an optional static permission set on the one hand and
method-level contracts that describe what dynamic permission sets are expected by
the implementation of the corresponding method on the other hand.

When a component complies with its sandboxing contract, it is guaranteed not
to throw any SecurityExceptions, assuming that (1) the minimal permission set de-
scribed by the component-level contract is a subset of the static permissions that are
assigned to it by the security policy, (2) it is only called under dynamic permission
sets that satisfy its method-level contracts and (3) all methods that are called by the
verified component respect their contracts. Verifying whether a component complies
with its sandboxing contract takes two steps. First a security-passing style trans-
formation is applied to the component and secondly this transformed component is

52 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

5 DISCUSSION

input to the Spec# Program Verifier. If the verifier can prove the correctness of the
transformed program, the semantics of the SPS-transformation guarantee that the
original component will not throw unexpected SecurityExceptions.

We also proposed a new security operation called Test . Using this operation,
components can determine whether the dynamic permission set contains a certain
permission and adapt their behavior accordingly.

5 DISCUSSION

Experiences with the Spec# Program Verifier

On our website [9], we have a working prototype of our solution and show how some
examples (including the ones given in this paper) can be verified.

However, in order to verify some examples, we had to extend the Spec# Program
Verifier with (amongst other things) sound support for using pure methods and
object creation in specifications as discussed in [8]. On our website, we describe in
detail which extensions we made to the static verifier.

The Spec# specification formalism has proven to be very expressive and enabled
us to write very precise method level contracts. However, we only verified relatively
small examples. Whether verification scales to larger examples, remains an issue for
future work.

Applicability to Java

Although our solution has been worked out in the context of the .NET Code Access
Security system, we believe it is also applicable to Java stack inspection. The Java
machinery for sandboxing differs slightly from the one used in .NET. First of all,
different permission-types are independent from each other in .NET, whereas in
Java permission objects of different types are not unrelated, as one permission can
imply a permission of another type. For example, AllPermission objects imply
every other permission. By carefully specifying Implies for every permission-type
(this definition will be similar to our definition of IsSubsetOf), we believe this can
be solved in a straightforward way. Secondly, Java uses doPriviliged instead of
Assert to add permissions to the dynamic permission set. doPriviliged adds all
permissions granted to the callee to the dynamic permissions set, whereas Assert
just adds a single, specific permission (or permission set). Since Java’s doPrivileged
is essentially a simplification of .NET’s Assert (doPrivileged can be emulated using
the appropriate Assert statements), we think this difference will not lead to any
problems.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

Inheritance

A method level contract states the permissions required by a certain method. As
such a contract is essentially a precondition, it can only be weakened at the subclass
level (in line with Liskovs substitution principle), meaning that an overriding method
cannot require more permissions than its corresponding base class method.

While this may seem problematic at first, our analysis of the BCL has shown
that situations where the set of required permissions depends on dynamic binding
occur only rarely. Many security sensitive methods cannot be overwritten since they
are static or sealed (this includes constructors) or since their class is defined as static
or sealed. Examples are the classes File and Dns or the method Assembly .Load .

Static Checking to Increase Performance

Successful verification of a component guarantees that this component will not
throw any SecurityExceptions when (1) the minimal permission set described by
the component-level contract is a subset of the static permissions that are assigned
to it by the security policy, (2) it is only called under a dynamic permission set
that satisfies its method-level contracts and (3) all methods that are called by the
verified component respect their contracts. If all components within a VM verify,
we know that no Demand will ever result in a SecurityException and that it is safe
to turn off run-time checking. In other words, instead of starting a stack inspection,
Demand immediately returns normally. For applications that rely heavily on Code
Access Security, the performance gains can be considerable. Note that for the Test
operations a stack walk is still required, so in-lining is restricted.

6 RELATED WORK

Static analysis of stack inspection has been discussed extensively in the literature.

In this paper, we extend our earlier work on contracts for stack inspection [11]
by distinguishing between component-level and method-level contracts and by in-
troducing the new security operation Test .

Pottier, Skalka and Smith [3] developed a security typing system and showed
that in a program that passes their type checker, no Demand ever fails at run time.
Our preconditions are more expressive, and consequently less conservative, than
their typing system. As opposed to [3], our analysis is path-sensitive, meaning that
it takes branches within method implementations into account when verifying the
correctness of a method. For instance, for

if (C) { new DnsPermission().Demand(); }

Pottier does not take the condition C into account, and their type checker deduces an

54 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

6 RELATED WORK

overly conservative type that requires DnsPermission to be in the dynamic permis-
sion set, regardless of C . Furthermore, while our approach can handle parameterized
permissions, [3] considers permissions to be atomic: a piece of code either has the
permission , or does not have the permission at all. For some types of permissions,
such as FileIOPermission, this is too restrictive. For instance, consider the following
permission:

new FileIOPermission(‘‘/tmp’’).Demand();

Our approach allows client code that only has permission to access to the temporary
directory, to call methods containing this statement. Atomic-permission approaches
would reject such programs. However, the increased expressiveness of our approach
comes at a price: [3] can algorithmically infer the type (i.e. the contract) of each
method, while we require programmers to write preconditions. Moreover, to ben-
efit from the path sensitivity of our approach, one potentially needs specification
and verification of the functional correctness of code on the path to a permission
Demand .

In [10], Abadi and Fournet present an extension of the traditional stack inspec-
tion system, which not only prevents luring attacks based on method calls, but
also deals with other possible interactions, such as reliance on results generated by
untrusted code. More specifically, they propose a system where the dynamic per-
mission set depends not only on the rights of code currently on the call stack, but on
rights of all code that has ever been executed. We believe our solution can easily be
extended in order to support the approach presented by Abadi and Fournet. First
of all, the definition of the SPS-transformation needs to be changed slightly since
calling a method permanently influences the dynamic permission set at the call-site.
We propose adding an extra out-parameter to every method which returns the up-
dated dynamic permission set. Secondly, we also need postconditions that constrain
the value returned by this out-parameter, in order for modular, static verification
to be possible.

A similar idea for validating security properties of programs by relying on general
purpose program verifiers is discussed in [13]. For verifying whether a certain security
property holds, they proceed in three steps. First, annotations corresponding to the
property are generated, secondly these annotations are propagated throughout the
program and finally they input the fully annotated program to a program verifier.
Their technique for propagating annotations is path insensitive. Nonetheless, we are
currently investigating whether using their propagation algorithm could allow us to
trade off some of the completeness of our approach for a reduction in annotation
overhead.

In [12], Besson, Blanc, Fournet and Gordon propose a technique for analyzing the
security of libraries for systems that rely on stack inspection for access control. Their
tool generates a permission-sensitive call graph, given a library and a description of
the permissions granted to unknown client code. This graph can then be queried to
detect anomalous or insecure control flow in the library.

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

Koved, Pistoia and Kershenbaum [2] present a technique for computing the set
of required access rights at each program point. Their technique uses a context-
sensitive, flow sensitive, interprocedural data flow analysis. We are currently inves-
tigating this technique for automatically inferring the permission preconditions at
each program point. However, because of path insensitivity, this technique is overly
conservative.

The security-passing style transformation used in this paper was first proposed
by Wallach et al. In [8], they show how at least in some cases the performance of
stack inspection can be improved by applying this transformation.

7 CONCLUSION AND FUTURE WORK

We proposed formal contracts for stack inspection-based sandboxing. A component
declares minimal and optional static permissions needed by the component imple-
mentation, and each method exposed by the component declares the precondition on
the dynamic security context that ensures that the method implementation will not
throw security exceptions. We worked out our solution in the context of Spec# and
the .NET Code Access Security system and showed that the contracts are verifiable
using the Spec# Program Verifier.

Future Work

As we have presented it, our solution is rather verbose and requires quite a lot of
annotation overhead. We’d like to explore ways to automatically infer some of the
sandboxing contracts in order to reduce this overhead. An analysis of the use of Code
Access Security in the Rotor BCL has shown that most occurrences of permission
demands are instances of the following pattern: a method validates its parameters,
creates an appropriate permission object possibly based on method parameters,
demands the permission and subsequently asserts sufficient permissions to make
sure the rest of the method execution will not throw further SecurityExceptions.
For methods that follow this pattern, inferring appropriate method-level contracts
is fairly easy. In particular, if the Demand is specified declaratively (40% of the
Demands in de BCL are declarative), inferring the corresponding precondition is
trivial. So there is hope that annotation overhead can be kept small. The hardest
cases are probably methods that do not themselves demand or assert permissions,
but instead call other methods that do so. A full assessment of the feasibility of
inferring method-level contracts is future work.

To deal with the fourth disadvantage listed in section 3, we could extend our
solution to specify and verify history-based access control instead of standard stack
inspection. As described in section 6, we would need to extend the method-level
contract to also include a postcondition specifying the effect of a method on the secu-
rity context. And secondly, next to an extra in parameter, the SPS-transformation

56 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

7 CONCLUSION AND FUTURE WORK

also needs to add to each method an additional out-parameter, returning the secu-
rity context after completion of the method. It is not clear to us yet whether the
additional annotation overhead of writing postconditions in method-level contracts
would be workable in practice.

Acknowledgements The authors would like to thank Wolfram Schulte and Erik
Poll for their comments and feedback on an early draft of this paper. We would also
like to thank the reviewers of .NET Technologies ’05 for their useful comments and
feedback.

REFERENCES

[1] Drew Dean, Edward W. Felten, Dan S. Wallach and Dirk Balfanz. Java
Security: Web Browsers and Beyond. Technical Report 566-97, Depart-
ment of Computer Science, Princeton University, February 1997

[2] Larry Koved, Marco Pistoia and Aaron Kershenbaum. Access Rights
Analysis for Java. In Proceedings of the 17th Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2002

[3] Francois Pottier, Christian Skalka and Scott Smith. A Systematic Ap-
proach to Static Access Control. ACM Transactions on Programming
Languages and Systems, volume 27, number 2, 2005

[4] Mike Barnett, K. Rustan M. Leino and Wolfram Schulte. The Spec#
Programming System: An Overview. In CASSIS 2004, LNCS vol. 3362,
Springer, 2004

[5] David Stutz, Ted Neward and Geoff Shilling. Shared Source CLI Essen-
tials. O’Reilly, 2003

[6] Dan S. Wallach, Andrew W. Appel and Edward W. Felten. SAFKASI: A
security mechanism for language-based systems. ACM Transactions on
Software Engineering and Methodology, volume 9, number 4, 2000

[7] Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi Martin,
Kevin T. Price. .NET Framework Security. Addison wesley, 2002

[8] Adam Darvas and Peter Müller. Reasoning about Method Calls in JML
Specifications. Formal Techniques for Java-like Programs, 2005

[9] Jan Smans, Bart Jacobs and Frank Piessens.
www.cs.kuleuven.ac.be/∼jans/casverify, February 2006

VOL 5, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 57

STATIC VERIFICATION OF CODE ACCESS SECURITY POLICY COMPLIANCE OF .NET APPLICATIONS

[10] Martin Abadi and Cédric Fournet. Access Control based on Execution
History. In Proceedings of the 10th Annual Network and Distributed
System Symposium (NDSS’03), 2003

[11] Jan Smans, Bart Jacobs and Frank Piessens. Static Verification of Code
Access Security Policy Compliance of .NET Applications. In Proceedings
of the Third International Conference on .NET Technologies, 2005

[12] Frederic Besson, Tomasz Blanc, Cédric Fournet and Andrew Gordon,
From Stack Inspection to Access Control: A Security Analysis for Li-
braries, 17th IEEE Computer Security Foundations Workshop, 2004

[13] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman and Jean-
Louis Lanet. Enforcing High-level Security Properties for Applets, Smart
Card Research and Advanced Applications (CARDIS), 2004

[14] Cédric Fournet and Anrew Gordon. Stack Inspection: theory and vari-
ants. Symposium on Principles of Programming Languages, 2002

ABOUT THE AUTHORS

Jan Smans is PhD student at the Katholieke Universiteit Leu-
ven in Belgium and is a Research Assistant of the Fund for Sci-
entific Research - Flanders (Belgium) (F.W.O.-Vlaanderen). His
main research interest is in specification and verification of secu-
rity properties of object-oriented programs. He can be reached at
jan.smans@cs.kuleuven.be.

Bart Jacobs is PhD student at the Katholieke Universiteit Leu-
ven in Belgium and is a Research Assistant of the Fund for Sci-
entific Research - Flanders (Belgium) (F.W.O.-Vlaanderen). His
main research interest is in specification and verification of concur-
rent and/or security-critical, object-oriented programs. He can be
reached at bart.jacobs@cs.kuleuven.be.

Frank Piessens is a professor at the Department of Computer Sci-
ence of the Katholieke Universiteit Leuven in Belgium. His research
interests are in security aspects of software, including security in op-
erating systems and middleware, security architectures, application
security, secure programming languages, Java and .NET security,
and software interfaces to security technologies. He can be reached
at frank.piessens@cs.kuleuven.be

58 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 3

mailto:jan.smans@cs.kuleuven.be
mailto:bart.jacobs@cs.kuleuven.be
mailto:frank.piessens@cs.kuleuven.be

