
Vol. 5, No. 2, March–Aprile 2006

Not a Number of Floating Point Problems

Gary T. Leavens, Department of Computer Science, Iowa State University,
USA

Floating-point numbers and floating-point arithmetic contain some surprising pitfalls.
In particular, the widely-adopted IEEE 754 standard contains a number that is “not a
number,” and thus has some surprising properties. One has to be extremely careful in
writing assertions about floating point numbers, to avoid these pitfalls. This column
describes the problems and how a language might eliminate them.

That Indian bread is heavenly, isn’t it?
Yes, it’s nan of the above.

1 THE STANDARD BACKGROUND

Floating-point numbers in many modern programming languages follow the IEEE
754 standard [IEE85]. This standard has had many beneficial effects, for example
on the accuracy and portability of floating-point software, none of which are the
subject of this column.

Instead, I will discuss a set of problems that arise from the treatment of NaN,
the “not a number” value1, in floating-point operations.

The NaN value is intended to represent an “undefined” value. In particular,
it is used to represent the value of expressions such as 0.0/0.0 and log(-3.14).
The designers of the standard could have chosen to cause exceptions or to trap
such expressions in some way, and indeed it is an option in the IEEE 754 standard
to have such expressions cause exceptions or traps. However, not all programming
languages support exception handling mechanisms, and so the standard also provides
for a special NaN value, which represents such errors.

2 YOUR INTRODUCTION TO NAN PROBLEMS

Once NaN is admitted as a floating-point value, one must define how all of the
floating-point operations act on it. Operations that return floating-point numbers
are usually defined to be strict with respect to NaN arguments in the sense that
if any argument is NaN, then the result is NaN. For example, for all floating-point
numbers x, x + NaN = NaN. Strictness does not cause problems.

1 Technically there is one such NaN value for each floating-point type; for example Java has
Float.NaN and Double.NaN.

Cite this column as follows: Gary T. Leavens: Not a Number of Floating Point Problems, in
Journal of Object Technology, vol. 5, no. 2, March–Aprile 2006, pages 75–83,
http://www.jot.fm/issues/issues 2006 3/column8

http://www.jot.fm/issues/issues_2006_03/column8
http://www.jot.fm

NOT A NUMBER OF FLOATING POINT PROBLEMS

Problems arise when dealing with operators that do not return a floating-point
number. In particular, comparisons return a Boolean value, and so they cannot
be strict in the same sense as operators that return a floating-point value. So what
should the value of NaN < NaN be? There are really only three choices. Besides true
and false, the other choice would be to cause an exception or a trap. But again, since
not all programming languages support exceptions, the standard committee allowed
for such operations to return a proper Boolean value. In the case of NaN < NaN, it
seems that the obvious answer is false, and this is the IEEE 754 standard’s answer.

Indeed, the standard says that most Boolean-valued comparisons return false
when either argument (or both) is NaN. The only exception is that for all x, NaN 6= x
is true. But following the general rule, for all x, NaN = x is false, NaN < x is false,
and so are NaN ≤ x, NaN ≥ x, and NaN > x.

These decisions require specifiers to be doubly precise when dealing with floating-
point numbers.

The difficulty is that formal methods relies on mathematics, especially as em-
bodied in logic and theorem provers. Both mathematics and theorem provers give
equality a special status. Equality’s most basic attribute is that it is reflexive; that
is, for all x, x = x. However, in the words of Mark Twain [Twa95] “this rule is flung
down and danced upon” by the IEEE 754 standard, since NaN = NaN is false.

Another problem for specifiers is the violation of tricotomy. The tricotomy law
says that either x < y, x = y, or x > y; but if either x or y is NaN, then all three
of these expressions may be false. Violation of tricotomy tells us that, with NaN,
floating-point numbers are no longer totally ordered. Of course, this makes sense if
you consider NaN to be “not a number” as only the numbers are totally ordered.
The trouble is that type systems usually consider NaN to be a number.

3 YOUR AVERAGE EXAMPLE

Let’s see some practical examples of the problems caused by these particular proper-
ties of NaN. In this column I will use Java [AGH00] and the Java Modeling Language
(JML) [BCC+05, LBR06] for such examples. Java floating point follows the IEEE
754 standard, in having a NaN value with the properties of NaN described above.
Although Java has an exception handling mechanism, the built-in floating-point
operations in Java never raise exceptions, but use NaN to represent errors.

Consider a Java method that takes an array of double precision floating point
numbers and returns their average. Figure 1 gives a straightforward implementation
in Java.

Specifying the code in Figure 1 is surprisingly difficult. Part of the difficulty
comes from the well-known approximate behavior of floating point numbers [Gol91].
Since an implementation’s algorithm may change the answer by a small amount,
and since we want to permit different algorithms, the specification should not spec-

76 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

3 YOUR AVERAGE EXAMPLE

public double average(double [] items) {

double tot = 0.0;

for (int i = 0; i < items.length; i++) { tot += items[i]; }

return tot / items.length;

}

Figure 1: The method average.

ify a single result, but a range of acceptable results. JML has some built-in conve-
nience methods for specifying such a range of results. For doubles, one can use the
class org.jmlspecs.models.JMLDouble, which has a static approximatelyEqualTo
method that tests if the difference between its first two arguments within the tol-
erance given its third argument. Using this method, one could write the following
postcondition in JML (assuming epsilon is a public static final field that is
defined elsewhere).

/*@ ensures JMLDouble.approximatelyEqualTo(

@ \result,

@ (\sum int i; 0 <= i && i < items.length; items[i])

@ / items.length,

@ epsilon);

@*/

However, given the theme of this column, we must immediately suspect whether
or not this is a sensible specification.

First, we definitely do not want epsilon to be NaN. If epsilon were NaN, then it
would make no sense to be approximately equal within epsilon, as all comparisons
to NaN are false. But it will not do to write:

//@ public invariant epsilon != NaN; // wrong!

which true for all values of epsilon, even when epsilon is NaN. This is because in
Java Double.NaN != x is true for all numbers, including Double.NaN itself. Fortu-
nately, what we want can be specified by an invariant such as the following:

//@ public invariant 0.0 < epsilon && epsilon < 0.1;

which is false when epsilon is NaN. And alternative is to use Java’s special test for
NaN values and write:

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 77

NOT A NUMBER OF FLOATING POINT PROBLEMS

//@ public invariant !Double.isNaN(epsilon);

Now we have to worry about what happens when one or more of the elements
in the array items is NaN.2 In such a case, the Java code returns NaN, which
becomes the value of \result in the postcondition. But as approximatelyEqualTo
is specified to return false when any of its arguments are NaN.3 So the specification
is violated whenever the code returns NaN, even when it “should” do so.

How can one fix this inconsistency between the code and the specification?

One technique is to specify that no element of the array items can be NaN. But
again, one has to be doubly precise. A precondition such as the following won’t do.

/*@ requires (\forall int i; 0 <= i && i < items.length;

@ items[i] != Double.NaN);

@*/

The above precondition is equivalent to true, because != returns true when either
of its operands is NaN. So one has to write something like the following.

/*@ requires (\forall int i; 0 <= i && i < items.length;

@ !Double.isNaN(items[i]));

@*/

However, even the precondition above is not enough to prevent problems. If
items is a zero-length array, then the code for average will divide by zero, resulting
in NaN. Of course, that will again lead to a violation of the postcondition. To
prevent this one needs an additional precondition, like the following.

//@ requires items.length != 0;

(Notice that there are no worries about using != for integers, since there are no
“non-integer” values in Java’s int type.)

We can also fix the inconsistency between the specification and the code in a dif-
ferent way by adding an additional “specification case.” In JML method can have
multiple specification cases, connected with the keyword “also.” Each specification
case is governed by a precondition. When the precondition in a specification case is

2 I am using a version of JML that implicitly adds preconditions to assert that each argument
of a reference type, such as items is not null [CR05].

3 Making approximatelyEqualTo return false when one of its arguments is NaN is necessary
to be consistent with the IEEE 754 standard and Java’s arithmetic.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

3 YOUR AVERAGE EXAMPLE

/*@ requires (\forall int i; 0 <= i && i < items.length;

@ !Double.isNaN(items[i]));

@ requires items.length != 0;

@ ensures JMLDouble.approximatelyEqualTo(

@ \result,

@ (\sum int i; 0 <= i && i < items.length; items[i])

@ / items.length,

@ epsilon);

@ also

@ requires (\exists int i; 0 <= i && i < items.length;

@ Double.isNaN(items[i]))

@ || items.length == 0;

@ ensures Double.isNaN(\result);

@*/

public double average(/*@ non_null @*/ double [] items) {

double tot = 0.0;

for (int i = 0; i < items.length; i++) { tot += items[i]; }

return tot / items.length;

}

Figure 2: The method average, with two specification cases. In JML specifications
are written above the method that they specify.

true, the method must satisfy that case’s postcondition. (If there are several speci-
fication cases with true preconditions, then all of the corresponding postconditions
must be satisfied. This idea of breaking up a specification into several cases is due to
Jeannette Wing [Win83] and was independently reinvented by Alan Wills [Wil94].)

Thus, in JML, we could keep the specification we have developed so far, and add
to it a specification case whose precondition allows items to contain NaN and also
allows items to be empty. The postcondition should describe what the code does
in this case, which is to return NaN. Of course we have to be doubly precise, and
use Double.isNaN instead of using == to test for NaN, but if we do this, everything
works. The result is the second specification case shown in Figure 2.

Looking at Figure 2, one immediately sees that the specification is more verbose
than the code. Most of the extra specification, however, is there to handle NaN. We
had to be quite careful about NaN in the specification, because we are necessarily
writing Boolean assertions instead of code that returns floating point numbers. The
part of the specification that is not concerned with NaN, namely the first specifi-
cation case minus its first precondition (i.e., lines 3-8 of Figure 2), is quite similar
in length to the method’s code. While the second specification case is entirely op-
tional, we cannot eliminate the first precondition in the first specification case. That
precondition is necessary to prevent inconsistencies. Thus the presence of NaN adds
an unavoidable cost to this specification.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 79

NOT A NUMBER OF FLOATING POINT PROBLEMS

It is worth pointing out that this cost is not a result of formalizing the speci-
fication. Even if we were to write an informal English description of the average

method, the presence of NaN as a value makes it necessary to state what happens
when one of the elements of items is NaN. To see this, just consider what a test
case for the average method: what is the expected result when one of the elements
is NaN?

This kind of example illustrates our experience with specifying many methods
in the Java libraries that work with floating-point numbers. Unless one considers
NaN as a special case, the specification is likely to be wrong, even if it looks right.

4 NAN OF THESE LANGUAGES

The specification problems with NaN in Java and JML result from an inconsistency
between the value space of floating-point numbers with NaN and the Booleans. This
inconsistency could be resolved in several ways.

The first is to permit a third Boolean value, NaB (which stands for “not a
Boolean”). We would define all floating-point comparisons involving NaN to return
NaB. However, this requires the definition of a three-valued logic for the Booleans.
While various consistent three-valued logics have been defined [BCJ84], they are
not popular in current programming languages or theorem provers. Furthermore,
for consistency, one would probably need to have such “not a T” values for every type
T . Consider, for example, what should be the result of the following if-expression?

(NaB ? 1 : 2)

In a language like Java, a reasonable answer might be “not-an-integer.” While three-
valued logics do not present insurmountable problems for specification languages, it
is not clear how well they would fare with users.

The second way to resolve the inconsistency would be to ban NaN from the lan-
guage. Built-in operations and user-defined methods would throw various exceptions
whenever an expression would otherwise return NaN. Besides simplifying the lan-
guage, this strategy makes the treatment of floating-point numbers consistent with
integer arithmetic. It also avoids the mathematical problems with NaN and spec-
ification problems described above. Specifiers would not have to NaN as a special
case, saving considerable overhead and eliminating a wide class of potential errors.
Programmers already are familiar with exceptions and there are well established
techniques for specifying them, including simply specifying the normal case using
a precondition [Mey97]. The only disadvantage is the possible loss of efficiency
in floating point computations. However, Hauser has argued that appropriately-
designed exception handling mechanisms can both clarify floating point code and
even improve its speed [Hau96].

80 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 CONCLUSIONS

Are their compromises between these approaches? One can imagine, as allowed
by the IEEE 754 standard, a set of switches, global parameters, or options, that
cause floating-point arithmetic to either cause exceptions or return NaN. However,
once NaN is part of the language, specifications will have to consider it, except in
programs where NaN values are prohibited. Libraries, however, would either have
to consider NaN values in their specifications or require the switches to be set in
such a way as to prohibit NaN values. This seems unsatisfactory from the point of
view of specification and somewhat ad hoc.

A better approach might be to allow NaN as a value, but not in the standard
floating-point types. Instead, there would be a separate type that included all
of the normal floating-point values and NaN. (This is analogous to the treatment
of null proposed by Fähndrich and Leino [FL03], and similar to ideas of Goguen
and Meseguer [GM87].) Applying this idea to Java would mean that double and
float would not include NaN as a value, and instead there would be two new
types, doubleWithNaN and floatWithNaN. The type double would be a subtype
of doubleWithNaN, and so assignment of double values to variables of the latter
type would be permitted without casting. However, casting would be necessary to
convert from doubleWithNaN to double, and the cast would throw an exception if
the value was NaN.

To avoid the problems with the lack of reflexive equality, the == and != operators
would not be defined on the type doubleWithNaN. There would instead be a built-
in primitive to test if a doubleWithNaN is NaN. Users and libraries could use this
primitive together with casting to construct tests, but since they would not be
using the == and != syntax, they would not cause the same kind of understanding
problems.

The same treatment could also be applied to other built-in comparison opera-
tors. That is, the operations <, <=, >, and >= would not be available for the type
doubleWithNaN. Again, users could construct their own operations to do compar-
isons and such operations could be put in libraries, however the lack of a standard
syntax would give users a clue that the tricotomy law might not hold.

It would be interesting to flesh out these approaches, implement them, and then
compare them from many points of view, including efficiency, reliability of floating-
point code, and ease and clarity of specification.

5 CONCLUSIONS

When writing specifications for methods involving floating-point numbers, specifiers
have to be doubly careful. In particular, they must always consider the possibility
of NaN as a value, and the peculiar ways in which comparisons work in the presence
of NaN. While specification language features such as the ability to write multiple
specification cases can help clarify the intended specification, language designers
could completely eliminate these problems. A simple and consistent approach is to

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 81

NOT A NUMBER OF FLOATING POINT PROBLEMS

throw exceptions instead of using NaN.

If it is desired to keep NaN as a value, the type system could be adjusted to avoid
some of its pitfalls. While the resulting type system is more complex, specifications
would be considerably simplified for many common cases. This might ultimately
help programmers and lead to more reliable languages.

ACKNOWLEDGMENTS

Thanks to the JML community for their work on JML and its tools. This work was
supported in part by NSF grants CCF-0428078, and CCF-0429567.

REFERENCES

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language Third Edition. Addison-Wesley, Reading, MA, 2000.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. International Journal on Software Tools for
Technology Transfer (STTT), 7(3):212–232, June 2005.

[BCJ84] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering unde-
finedness in program proofs. Acta Informatica, 21(3):251–269, October
1984.

[CR05] Patrice Chalin and Frèdèric Rioux. Non-null references by default in the
java modeling language. In Proceedings of the Workshop on the Spec-
ification and Verification of Component-Based Systems (SAVCBS’05),
volume 31(2) of ACM Software Engineering Notes. ACM, 2005.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-
null types in an object-oriented langauge. In OOPSLA ’03: Proceedings
of the 18th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, volume 38(11) of ACM SIGPLAN
Notices, pages 302–312, New York, NY, November 2003. ACM.

[GM87] Joseph A. Goguen and Jose Meseguer. Order-sorted algebra solves
the constructor-selector, multiple representation and coercion problems.
Technical Report CSLI-87-92, Center for the Study of Language and In-
formation, March 1987. Appears in Second Annual Symposium on Logic
in Computer Science, Ithaca, NY, June, 1987, pages 18-29.

[Gol91] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, March
1991.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 CONCLUSIONS

[Hau96] John R. Hauser. Handling floating-point exceptions in numeric programs.
ACM Transactions on Programming Languages and Systems, 18(2):139–
174, 1996.

[IEE85] IEEE Standards Committee 754. IEEE Standard for binary floating-point
arithmetic, ANSI/IEEE Standard 754-1985. Institute of Electrical and
Electronics Engineers, New York, 1985. Reprinted in ACM SIGPLAN
Notices, 22(2):9-25, 1987.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06-rev29, Iowa State University, Department of Computer Sci-
ence, January 2006. To appear in ACM SIGSOFT Software Engineering
Notes.

[LH94] K. Lano and H. Haughton, editors. Object-Oriented Specification Case
Studies. The Object-Oriented Series. Prentice Hall, New York, NY, 1994.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall,
New York, NY, second edition, 1997.

[Twa95] Mark Twain. Fenimore Cooper’s Literary Offenses, 1895. Reprinted
in Twain: Collected Tales, Sketches, Speeches, and Essays: Volume 2:
1891-1910, pages 180-192 (Penguin Putman Inc., 1992).

[Wil94] Alan Wills. Refinement in Fresco. In Lano and Houghton [LH94], chap-
ter 9, pages 184–201.

[Win83] Jeannette Marie Wing. A two-tiered approach to specifying programs.
Technical Report TR-299, Massachusetts Institute of Technology, Labo-
ratory for Computer Science, 1983.

ABOUT THE AUTHORS

Gary T. Leavens is a professor of computer science at Iowa State University in
Ames, Iowa. He has taught there since receiving his Ph.D. from MIT in 1989. His re-
search interests include programming and specification language design and seman-
tics, program verification, and formal methods, with an emphasis on the object-
oriented and aspect-oriented paradigms. His email is leavens@cs.iastate.edu. See
also http://www.cs.iastate.edu/ leavens/.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 83

mailto:leavens@cs.iastate.edu
http://www.cs.iastate.edu/~leavens/

