
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol.5, No. 2, March-April 2006

Cite this column as follows: Richard Wiener: “A Pedagogical Experiment: Introducing Students to a
First GUI Project Using C#/.NET”, in Journal of Object Technology, vol.5, no. 2, March-April 2006,
pp. 41-53 http://www.jot.fm/issues/issue_2006_03/column6

A Pedagogical Experiment: Introducing
Students to a First GUI Project Using
C#/.NET

Richard Wiener, Editor-in-Chief, JOT, Associate Professor, Department of
Computer Science, University of Colorado at Colorado Springs

1 INTRODUCTION

It can be difficult to design a first GUI-based student project that is reasonably challenging,
realistic, fun and most importantly instructive. Such a project should deal with a problem
that students can relate to in a problem domain that they all can easily understand.

My experience has shown that to be effective such a first project should involve a
reasonable amount of “hand-holding” in which students are directed to perform a series of
steps that introduces them to the construction tools and steps that help ensure their success
and provides motivation and excitement about future projects that they will be expected to
work on.

The project to be described in this paper is being presented to a group of 26 students in
a course that deals with modern software development using C#/.NET(and using a book
soon to be published with the same title “Modern Software Development Using C#/.NET”
by Richard Wiener, 711 pages, Thompson Course Technology, April, 2006. The students
are new to the C# language and the .NET framework but have prior experience with Java as
their first programming language, studied in CS 1 and CS 2. Most of the students have little
or no experience constructing a GUI application.

The technical issues that are dealt with in this first GUI project include: How to
construct a GUI that contains textbox and label components that are programmatically
controlled as well as the use of a powerful standard calendar component. Event-handling is
used and illustrated for the calendar component, an “Enter” key entry in a textbox
component, and a form-closing handler. Another major issue illustrated is the use of a
generic collection class to hold the application data coupled with object persistence that
enables the application to open and retrieve the application data and save this data before
closing the application.

The application is specified as follows. We wish to construct a GUI application that
allows a user to specify the number of calories expended using an exercise machine at

http://www.jot.fm
http://www.jot.fm/issues/issue_2006_03/column6

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

some health club for any given selected date using a standard .NET calendar component.
The GUI should show the number of calories expended for the date selected (current date
by default) as well as the previous six days from either the current date or the date selected
as well as the total number of calories for the seven days shown. The collection object used
to store the historical data should be automatically loaded when the application begins and
automatically saved when the application ends. A user interface is shown below that meets
the above specifications. Each student is free to modify the layout of this interface, if
desired, but not change the set of components that are used. When another date is selected,
all the data should be automatically updated including the labels on top of the seven non-
editable output boxes. This is shown in the second screen shot below where February 5th is
selected.

Some students might wish to layout the non-editable output text boxes that contain the
current and past six days of data vertically rather than horizontally. Students are
encouraged to experiment with different layouts using the one editable input text box and
the eight non-editable output text boxes, the other labels and the calendar component.

This paper will be used by the students to assist them in constructing their first GUI
project application. A significant amount of step-by-step help will be provided in the
details to follow in the hopes that this will motivate experimentation on the part of the
students and provide the foundation for future GUI project development in which students

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 43

will be on their own. Feedback from students working on this project will be solicited to
determine whether this approach to introducing GUI development in C#/.NET is effective
or should be abandoned.

The remaining portion of this paper is aimed at students developing their first non-
trivial GUI application and also educators and other readers who wish to eavesdrop on the
details being provided for the students as they engage in their first C#/.NET GUI project.

2 LET’S DO IT USING VISUAL STUDIO AND SOME C#
PROGRAMMING

The first step is to create a GUI project using Visual Studio (Professional Edition used for
this paper but the Express Edition works just as well).

The screen shot below shows how to get started. The name of the project,
CaloriesExpended, will become the name of the executable file (in the \bin subdirectory).
Visual Studio will create a subdirectory, CaloriesExpended\, under c:\CSharpWork\ using
the entries shown below.

The blank design form shown below will be created by Visual Studio because a
Windows Application was chosen. If you select View/Code menu item, the following
partial class will be displayed (code generated by Visual Studio):

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
namespace CaloriesExpended {
 public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }
 }
}

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 45

The name of the Form component (Form1) should be changed to CaloriesUI using the
Properties window as follows:

The form is expanded using the mouse. Each student is free to size the form as desired. The
size of the form created here is shown as 579 (width) x 398 (height) pixels.

Next the StartPosition property and Text property are modified as shown below.

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

Next using the Toolbox and dropping and dragging standard visual components onto the
CaloriesUI form, the following user interface is produced:

Each visual component should be given a meaningful name. The following table
indicates the names used for the components shown above.

Visual Component Name Assigned Description
MonthCalendar monthCalendar Calendar component
TextBox caloriesTextBox Input for calories on selected date
TextBox sixDays Output textbox with label “6 days ago”
TextBox fiveDays Output textbox with label “5 days ago”
TextBox fourDays Output textbox with label “4 days ago”
TextBox threeDays Output textbox with label “3 days ago”
TextBox twoDays Output textbox with label “2 days ago”
TextBox oneDay Output textbox with label “1 day ago”
TextBox today Output textbox with label “Today”
TextBox pastWeek Output textbox with label “One Week Total”
Label sixDaysAgoLbl Name of label with text “6 days ago”
Label fiveDaysAgoLbl Name of label with text “5 days ago”
Label fourDaysAgoLbl Name of label with text “4 days ago”
Label threeDaysAgoLbl Name of label with text “3 days ago”
Label twoDaysAgoLbl Name of label with text “2 days ago”
Label oneDayAgoLbl Name of label with text “1 day ago”
Label todayDate Name of label with text “Today ago”

It is highly recommended that students working on this project use the same names for the
visual components as those given in the table above in order that the code segments to be
discussed below make sense.

It is important to provide meaningful names for the seven Label components because
their Text property will be set each time a date is selected by the user or the default current
date is used. Each of the output text boxes shows the calories expended for the date given
by the label above the output text box.

The ReadOnly property of each of the output text boxes is set to true (from their
default of false). Using the visual designer, all the output text boxes can be selected at once
and then their ReadOnly property set to true.

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 47

One of the most important features of a class is its fields. They represent the information
model for the objects that are constructed from the class. There are three fields that are
defined for this class. They are shown below:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

namespace CaloriesExpended {

 public partial class CaloriesUI : Form {

 // Fields
 private DateTime date =
 new DateTime(DateTime.Now.Year,
 DateTime.Now.Month, DateTime.Now.Day);
 private DateTime selectedDate;
 private Dictionary<DateTime, int> data =
 new Dictionary<DateTime, int>();

The field date, of .NET type DateTime, captures the current year, month and day. It is
initialized at its point of declaration to the current date using the Now property. The field
selectedDate, also of type DateTime, is returned by the MonthCalendar component when
the user selects a new date. Finally the field data, of type Dictionary<DateTime, int>, uses
the generic Dictionary class with keys declared to be of type DateTime and values of type
int (System.Int32). Each entry in data contains a key/value pair with the key given by a
DateTime object and the value by the number of calories expended (represented by an int).
This collection of key/value pairs stored in data will be saved to disk when the application
exits and the form is closed and loaded from disk when the application starts.

Please note the two “using” namespaces that are added (System.IO and
System.Runtime.Serialization.Formatters.Binary).

Portions of the constructor, CaloriesUI show how to use the DateTime class in the
context of this application. Part of its implementation is:

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

 public CaloriesUI() {
 InitializeComponent();
 // Initialize data labels with last seven days
 todayDate.Text = date.Month + "/" + date.Day + "/" +
 date.Year;
 DateTime oneDayAgo = date.Subtract(new
 TimeSpan(24 * 1, 0, 0));
 oneDayAgoLbl.Text = oneDayAgo.Month + "/" +
 oneDayAgo.Day + "/" + oneDayAgo.Year;
 DateTime twoDaysAgo = date.Subtract(new
 TimeSpan(24 * 2, 0, 0));
 twoDaysAgoLbl.Text = twoDaysAgo.Month + "/" +
 twoDaysAgo.Day + "/" + twoDaysAgo.Year;
 // …
 sixDaysAgoLbl.Text = sixDaysAgo.Month + "/" +
 sixDaysAgo.Day + "/" + sixDaysAgo.Year;

 selectedDate = date;

 // Open persistent data object
 FileStream calorieDataStream =
 new FileStream("Calorie.data",
 FileMode.OpenOrCreate);
 try {
 BinaryFormatter bf = new BinaryFormatter();
 // Must restore data
 data = (Dictionary<DateTime, int>)
 bf.Deserialize(calorieDataStream);
 calorieDataStream.Close();
 } catch (Exception) {
 calorieDataStream.Close();
 }
 int oneWeekTotal = 0;
 today.Text = data.ContainsKey(selectedDate) ? "" +
 data[selectedDate] : "";
 if (today.Text != "") {
 oneWeekTotal += Convert.ToInt32(today.Text);
 }
 for (int i = 1; i <= 6; i++) {
 DateTime newDate = selectedDate.Subtract(
 new TimeSpan(24 * i, 0, 0));
 if (i == 1) {
 oneDay.Text = data.ContainsKey(newDate) ? "" +
 data[newDate] : "";
 if (oneDay.Text != "") {
 oneWeekTotal += Convert.ToInt32(oneDay.Text);
 }
 } else if (i == 2) {
 twoDays.Text = data.ContainsKey(newDate) ? "" +
 data[newDate] : "";
 if (twoDays.Text != "") {

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 49

 oneWeekTotal += Convert.ToInt32(twoDays.Text);
 }
 } else if (i == 3) {
 // …
 }
 // …
 pastWeek.Text = "" + oneWeekTotal;
 }
 }

In this constructor many useful technical details are revealed. The properties Month, Day
and Year are shown for a DateTime object. The Subtract query is shown in action along
with an instance of the .NET class TimeSpan. The use of a FileStream and
BinaryFormatter and the Deserialize method is used to retrieve a previously stored
persistent object from a file “Calorie.data” that is stored in the application’s bin\
subdirectory (by default) is shown.

The segment of code,

oneDay.Text = data.ContainsKey(newDate) ? "" +
 data[newDate] : "";
if (oneDay.Text != "") {
 oneWeekTotal += Convert.ToInt32(oneDay.Text);
}

shows how the Dictionary object data is tested to see whether it contains the key newDate.
If so the Text property of the output TextBox oneDay is assigned to "" + data[newDate], if
not the Text property is assigned to an empty string.

An event handler for the MonthCalendar component is created by selecting the
monthCalendar component, selecting the event-handling properties using the lightning bolt
tab and double clicking in the DateSelected row to produce the handler shown below:

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

The skeletal structure of the monthCalendar_DateSelected handler is automatically
generated by Visual Studio as follows:

private void monthCalendar_DateSelected(object sender,
 DateRangeEventArgs e) {
}

Whenever the user selects a new date using the MonthCalendar component, this event
handler is triggered. Portions of this event handler are presented below:

private void monthCalendar_DateSelected(object sender,
 DateRangeEventArgs e) {
 selectedDate =
 new DateTime(e.Start.Year, e.Start.Month, e.Start.Day);
 if (data.ContainsKey(selectedDate)) {
 caloriesTextBox.Text = "" + data[selectedDate];
 } else {
 caloriesTextBox.Text = "";
 }
 todayDate.Text = selectedDate.Month + "/" +
 selectedDate.Day + "/" + selectedDate.Year;
 DateTime oneDayAgo = selectedDate.Subtract(
 new TimeSpan(24 * 1, 0, 0));
 oneDayAgoLbl.Text = oneDayAgo.Month + "/" + oneDayAgo.Day +
 "/" + oneDayAgo.Year;
 // …
 this.ComputeAndFillAllOutputBoxes();
}

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 51

The private method ComputeAndFillAllOutputBoxes() uses the field data as well as the
selectedDate field computed from the parameter, e, of type DateRangeEventArgs, as shown
above, to populate all the output text boxes with information. Each student working on this
project must write the complete implementation of this important method.

An event handler that is triggered when the user types the “Enter” key after providing
input into the TextBox beneath the label “Calories Expended on Selected Date” must be
provided.

After selecting this input Textbox component and clicking the lightning bolt tab (for
event handlers), the KeyDown handler is double-clicked producing the handler shown
below:

The skeletal structure of the KeyDown handler is automatically created by Visual Studio.

The completed event-handler is shown in its entirety below:

private void caloriesTextBox_KeyDown(object sender, KeyEventArgs
 e) {
 if (e.KeyCode == Keys.Enter) {
 try {
 String inputString = caloriesTextBox.Text.Trim();
 int inputValue = Convert.ToInt32(inputString);
 data[selectedDate] = inputValue;
 ComputeAndFillAllOutputBoxes();
 } catch (Exception) {
 MessageBox.Show(// Outputs a modal dialog box
 "Must enter an integer in the calories expended
 box.");
 }
 }
}

The KeyEventArgs parameter, e, and its KeyCode property is used to determine whether the
value typed by the user equals Keys.Enter. If so, the input entered by the user is converted
to an int and used to assign to the dictionary data using,

data[selectedDate] = inputValue;

A PEDAGOGICAL EXPERIMENT: INTRODUCING STUDENTS TO A FIRST GUI PROJECT USING C#/.NET

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 5. NO. 2

The final event handler is associated with closing the form when the user clicks the “x” in
the upper-right portion of the window containing the user interface.

If the Form object is selected and the tab moved again to the lightning bolt icon
(event-handling properties), the FormClosing property must be double-clicked producing
the handler shown below.

The complete event-handler that shows how to write the data object (of type
Dictionary<DateTime, int> to persistent storage is given.

private void CaloriesUI_FormClosing(object sender,
 FormClosingEventArgs e) {
 // Must save persistent data object
 FileStream calorieDataStream = new
 FileStream("Calorie.data", FileMode.OpenOrCreate);
 BinaryFormatter bf = new BinaryFormatter();
 bf.Serialize(calorieDataStream, data);
 calorieDataStream.Close();
}

3 NOW DO IT

It is now the responsibility of students who have been assigned the task of implementing
this application to do it.

In the next issue of JOT I will report how my students did on this first GUI project and
whether the pedagogical approach suggested here has merit.

I welcome comments from other educators and students working on this project
(rsw@runbox.com).

mailto:rsw@runbox.com

VOL. 5. NO. 2 OURNAL OF OBJECT TECHNOLOGY 53

About the author
Richard Wiener is Associate Professor of Computer Science at the
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object
Oriented Programming. In addition to University work, Dr. Wiener has
authored or co-authored 21 books and works actively as a consultant and
software contractor whenever the possibility arises. His latest book, to be
published by Course Technology in late 2005, is entitled Modern

Software Development Using C#/.NET.

