
Vol. 6, No. 2, March�April 2006

Implementing Object-Z with Perfect Devel-
oper

Brian Stevens, Department of Information Systems, Defence College of Man-
agement and Technology, Cran�eld University, Shrivenham, Swindon. SN6 8LA.
UK

Object oriented development is the methodology of choice for a wide range of ap-
plications but those developing critical systems have stayed with techniques with a
mathematical basis. Object-Z is a formal speci�cation language that has attempted
to bring the bene�ts of an object oriented approach to critical systems. However, it
lacks an obvious route to implementation. This paper describes how Object-Z may be
implemented using Perfect Developer, an OO language that supports veri�cation and
validation.

1 INTRODUCTION

Object oriented (OO) software design has become the methodology of choice for a
large number of software engineers and along with this the graphical notation of the
Uni�ed Modelling Language (UML)[1] has become the de facto industry standard
for OO software design. Unfortunately these graphical notations are not suitable
for capturing the potentially complex and subtle restrictions that apply to critical
systems and to help resolve this the Object Constraint Language(OCL)[2] has been
incorporated into the UML standard. OCL allows for the precise speci�cation of a
range of invariants and pre and post conditions on object methods.

Whilst commercial software development has adopted the OO paradigm whole
heartedly, those developing critical systems have prefered to stay with proven method-
ologies and languages and have re�ned the mathematics behind proving software.
One attempt at embracing both worlds is the Object-Z speci�cation language[3].
Object-Z is a formal speci�cation language that was developed at the University
of Queensland and is a derivative of the state based formal speci�cation language
Z[4]. Although Object-Z provides a mechanism for the precise and unambigous
speci�cation of an OO software model it is lacking the tool support to enable imple-
mentation whilst maintaining veri�cation of the re�nement steps. Some attempts
have been made to formalise the implementation of Object-Z models in Ei�el via
the BON methodology[5]. This paper takes a di�erent approach and demonstrates
how an Object-Z speci�cation can be expressed in Perfect [6] and re�ned towards an
implementation whilst maintaining the ability to prove the speci�cation and imple-
mentation formally.

Cite this document as follows: Brian Stevens: Implementing Object-Z with Perfect Developer,
in Journal of Object Technology, vol. 6, no. 2, March�April 2006, pages 189�202,
http://www.jot.fm/issues/issues 2006 03/article4

http://www.jot.fm/issues/issues_2006_03/article4

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

2 BACKGROUND

Object-Z

Object-Z was developed in the late 1980s as a collaboration between the Software
Validation and Research Centre (University of Queensland, Australia) and the Over-
seas Telecommunications Corporation (OTC) of Australia as an enhancement of the
Z language by adding structure to it. Object-Z provides OO constructs such as
classes, attributes, methods and inheritance etc. whilst maintaining formal seman-
tics. Tool support is provided via a type checker and graphical editor. The well
used Credit Card example from [7] is illustrated in Figure 1.

Perfect Developer

Perfect Developer is a formal speci�cation and implementation tool aimed at soft-
ware development and software engineers without a strong mathematical back-
ground. It provides a notation for state based speci�cation that can be directly
input from a conventional keyboard and makes use of plain english (e.g. ∀ is
forall). Perfect Developer has been designed to provide

� object oriented design;

� automated reasoning;

� automatic code generation.

It extends the Ei�el concept of Design By Contract to one of Veri�ed Design By
Contract and provides C++ or Java code ready to compile.

The Perfect language is described in [6] and the basic structure of a Perfect class
is illustrated in Figure 2.

Following the preamble, a class declaration comprises one or more of the following
sections:

abstract

� var iable declarations;
These describe the abstract data model and for the CreditCard example would
include

var

l im i t : nat ,
ba lance : int ;

190 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 BACKGROUND

CreditCard
�(limit , balance, INIT ,withdraw , deposit ,withdrawAvail)

limit : N

limit ∈ 1000, 2000, 5000

balance : Z

balance + limit > 0

INIT
balance = 0

withdraw
∆(balance)
amount? : N

amount? 6 balance + limit
balance ′ = balance − amount?

deposit
∆(balance)
amount? : N

balance ′ = balance + amount?

withdrawAvail
∆(balance)
amount ! : N

amount ! = balance + limit
balance ′ = −limit

Figure 1: Credit Card

� invariant declarations;
These describe any constraints that apply to the abstract variables and for the
Creditcard example would include

invariant

l im i t in set of nat {1000 , 2000 , 5000} ,
ba lance + l im i t >= 0 ;

� Abstract method declarations;
These describe methods to obtain derived data that may be treated as vari-
ables (cf secondary variables in Object-Z). Although there are no secondary

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 191

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

Figure 2: Perfect Developer Class

variables within the CreditCard example, it would be possible to have avail-
ableFunds as a secondary variable and this would be expressed within Perfect
as:

function ava i lab leFunds : nat

^=
balance + l im i t ;

Where ^= means ' i s de f ined as ' .

internal

The internal section is available to allow for the re�nement of the abstract model and
although none exist within the CreditCard example an illustration is given below.

192 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 BACKGROUND

class Dig i t s ^=
abstract

var

numbers : set of nat ;

internal

var

even : set of nat ,
odd : set of nat ;

invariant

even ** odd = set of nat { } ;

function numbers ^=
even ++ odd ;

interface

. . .
end ;

Where ** means ' set i n t e r s e c t i o n ' and ++ means ' set union ' .

con�ned

The con�ned section is used to de�ne methods that are available only to the class
and its descendants and is similar to C++'s protected category.

interface

This section forms the public interface to the class and may contain the following
sorts of declaration:

� function;
Functions return a result and do not modify the abstract data.

� schema;
Schemas may modify the abstract data depending on the value of their pa-
rameters .

� operator ;
These are similar to a function but use a symbol rather than a name (i.e. they
may be used to de�ne equality between two objects of the same class).

� selector;
A selector is a method that allows direct read/write access to an item of
abstract data.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 193

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

� constructor;
The constructor is a method that returns an instance of the class and initialises
all of the class's abstract data. Constructors are introduced with the build
keyword.

Example

Exploiting the description of the aspects of a Perfect class we can take the CreditCard
example of [7] and express it in Perfect, this is illustrated in Listing 1 (shown below).

Veri�cation

The concept of Perfect Developer is veri�ed design by contract and thus the envi-
ronment provides for the veri�cation of the speci�cation and will attempt to prove
the consistency and completeness of the abstract model. Once the model has been
successfully veri�ed, C++ or Java code can be generated for the target system. As
part of the veri�cation process the steps undertaken by the prover are available for
inspection and a sample from the CreditCard example is shown below.

Proof of obligation: Class invariant satis�ed

In the context of class: CreditCard, declared at: CreditCard.pd (1,7)

Obligation location: CreditCard.pd (27,7)

Condition de�ned at: CreditCard.pd (8,11)

To prove: self ′.limit in set of nat{2000 as nat, 5000 as nat, 1000 as nat}

Given: self.limit in set of nat{2000 as nat, 5000 as nat, 1000 as nat}, 0 ≤ (self.balance + (self.limit
as int)), 0 ≤ amount, (self.balance + (amount as int)) = self ′.balance, ∀ $x ∈ $attributeNames(CreditCard)
• di�erent(self ′.$x; self′.balance) ⇒ self.$x= self ′.$x

Proof:

[Take given term]

[2.0] self.limit in set of nat{2000 as nat, 5000 as nat, 1000 as nat}

→ [remove type check cast]

[2.1] self.limit in set of nat{2000, 5000 as nat, 1000 as nat}

→ [remove type check cast]

[2.2] self.limit in set of nat{2000, 5000, 1000 as nat}

→ [remove type check cast]

[2.3] self.limit in set of nat{2000, 5000, 1000}

[Take given term]

[7.0] ∀ $x ∈ $attributeNames(CreditCard) • di�erent(self ′.$x; self′.balance) ⇒ self.$x= self ′.$x

→ [expand all members]

[7.1] (self.limit = self ′.limit) ∧ (∀ $x ∈ $attributeNames(int) • di�erent(self ′.balance.$x; balance) ⇒
self.balance.$x= self ′.balance.$x)

→ [collect non-literal terms]

194 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

2 BACKGROUND

1 class CreditCard ^=
2 abstract

3 var

4 l im i t : nat ,
5 balance : int ;
6 invariant

7 l im i t in set of nat {1000 , 2000 , 5000} ,
8 balance + l im i t >= 0 ;
9
10 interface

11 function l im i t ;
12 function balance ;
13 schema ! INIT
14 post

15 balance ! = 0 ;
16 schema ! withdraw (amount : nat)
17 pre

18 amount <= balance + l im i t
19 post

20 balance ! = balance − amount ;
21 schema ! d epo s i t (amount : nat)
22 post

23 balance ! = balance + amount ;
24 schema ! withdrawAvail (amount ! : out nat)
25 post

26 amount ! = balance + l im i t ,
27 balance ! = l im i t ;
28 build{}
29 post

30 balance ! = 0 ,
31 l im i t ! = 1000 ;
32 end ;

Listing 1: CreditCard example

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 195

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

[7.2] (0 = (− self ′.limit + self.limit)) ∧ (∀ $x ∈ $attributeNames(int) • di�erent(self ′.balance.$x; balance)
⇒ self.balance.$x= self ′.balance.$x)

→ [equal to a modi�ed expression]

[7.3] (0 = (− self ′.limit + self.limit)) ∧ true

→ [evaluate literal expression of the form 'bool & bool']

[7.4] 0 = (− self ′.limit + self.limit)

[Take goal term]

[1.0] self ′.limit in set of nat{2000 as nat, 5000 as nat, 1000 as nat}

→ [from term 7.4, self′.limit is equal to self.limit]

[1.1] self.limit in set of nat{2000 as nat, 5000 as nat, 1000 as nat}

→ [remove type check cast]

[1.2] self.limit in set of nat{2000, 5000 as nat, 1000 as nat}

→ [remove type check cast]

[1.3] self.limit in set of nat{2000, 5000, 1000 as nat}

→ [remove type check cast]

[1.4] self.limit in set of nat{2000, 5000, 1000}

→ [from term 2.3, self.limit in set of nat{1000, 2000, 5000} is true]

[1.5] true

In a commercial application currently being undertaken part of the speci�cation
for a web-enabled database system consists of 35,799 lines of Perfect (though a
more compact translation may be possible later). The subsequent code generation
produces 62,224 lines of Java. In addition, Perfect Developer generates 9,819 proof
obligations which are all proven automatically. Complete proof by Perfect Developer
of all the generated obligations requires approximately 41/2 hours on a modest
(750MHz) laptop. This represents an average of 1.6 sec/proof, with the longest
proof taking 16.2 seconds.

3 INTEGRATING PERFECT DEVELOPER AND OBJECT-Z

The previous section introduced Object-Z and Perfect Developer and illustrated
how Perfect Developer may be used to express and prove the well known CreditCard
example. This section will examine other features of Object-Z and show how they
may be expressed in Perfect Developer.

Instantiation and interaction

Objects as attributes

Like OO languages Object-Z allows a class to be used as the type for an attribute
within a later class and for the attribute to be accessed from outside of the class (de-
pending on the visibility list). As Perfect is an OO language itself the use of classes

196 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 INTEGRATING PERFECT DEVELOPER AND OBJECT-Z

as types for later attributes is supported. However, Perfect allows the directing read-
ing of an attribute that is rede�ned as a function but imposes information hiding
and normally only allows the modi�cation of an abstract variable via a schema.

Promoting operations

Within Z and Object-Z the concept of promoting operations exists so that speci�ca-
tions can be broken into manageable parts. Within Object-Z operation promotion
is indicated by

withdraw1 =̂ c1.withdraw

Within Perfect this is achieved via a schema invoking the lower level schema, e.g.

schema ! withdraw1 (amount : nat)
post

c1 ! withdraw (amount) ;

Conjunction operator

The conjunction operator within Object-Z is implemented with Perfect via the post
condition of a schema, e.g.

schema ! t r a n s f e r (amount : nat)
post

c1 ! withdraw (amount) ,
c1 ! depo s i t (amount) ;

And like Object-Z, Perfect assumes that the operations occur in parallel.

Choice operator

The choice operator in Object-Z makes a non deterministic choice between the ap-
plicable operations that are valid, e.g.

withdrawEither =̂ c1.withdraw []c2.withdraw

Perfect provides deterministic guarded choice using the construct:

([guard1]: postcondition1, [guard2]: postcondition2, ...)

This has the semantics "if guard1 then postcondition 1 else if guard2 then post-
condition2 ...".

The choice can be made nondeterministic by inserting the keyword opaque

after the opening bracket. By making each of the guards true, we can translate
withdrawEither like this:

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 197

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

schema ! withdrawEither (amount : nat)
post

(opaque [true] : c1 ! . withdraw , [true] : c2 ! . withdraw) ;

Inter-object communication

The parallel operator of Obeject-Z provides for inter-object communications, e.g.

transferAvail =̂ c1.withdrawAvail || c2.deposit

allows for the results of the 1st operation to be used as input to the 2nd operation.
This can be expressed in Perfect like this:

schema ! t r a n s f e rAva i l
post

(
var x : nat ;
c1 ! withdrawAvail (x !) then

c2 ! depo s i t (x)
) ;

Inheritance

Perfect Developer supports object inheritance and allows for operations to be virtual
and then de�ned later (via the deferred keyword) and for operations to be rede�ned
in later classes. e.g.

class Rule ^=
abstract

var

id : Name ,
f i rmnes s : real ;

interface

// cons t ruc t o r
build{}

post

id ! = DEFAULT_NAME,
f i rmnes s ! = 0 . 0 ;

function r a t i ng : real

^= 0 .0 ;
end ;

class MinimiseRule ^= inherits Rule
abstract

var

unknown : nat ;

interface

build {}
inherits Rule {}
post

unknown ! = 1 ;

redefine function r a t i ng : real

^= 1 .0 ;
end ;

198 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

3 INTEGRATING PERFECT DEVELOPER AND OBJECT-Z

Polymorphism

Polymorphism allows some relaxation of the typing of an object by allowing it to
be in one of a number of classes. Within Object-Z a polymorphic declaration of an
object is

cards : P ↓ CreditCard

In Perfect the declaration is

var cards : from CreditCard

Perfect support late and dynamic binding and so the operation invoked will depend
on the type of the attribute at run time and the parameters associated with the call.

Class union

Class union allows polymorphism between classes that do not �t neatly �t within
an inheritance structure e.g.

aircraft == aeroplane ∪ helicopter ∪ airship

This is supported within Perfect via its union operator e.g.

class aircraft ^= aeroplane || helicopter || airship ;

Visibility List

Perfect does not allow the hiding of the visibility of the inherited public methods
as it would break the subtyping and prevent an object of a derived class being
substituted for an object of the base class.

Re�nement

Having written a formal speci�cation it is necessary to re�ne the speci�cation until it
can be implemented via a readily veri�able step. With Perfect Developer re�nement
is an integral part of developing, checking and verifying the speci�cation. The
Perfect language allows the use of the question mark character ("?") to indicate
something that has yet to be decided upon. The check and verify functions of
the environment will process the speci�cation and ignore those that have not yet
been speci�ed. The Perfect language also supports data re�nement and procedural
re�nement.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 199

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

Data re�nement

Data re�nement is achieved via the internal section of the Perfect class de�nition
and an example was given earlier in the discussion of a Perfect class.

Procedural re�nement

Procedural re�nement allows the designer to guide the code generation engine of
Perfect Developer for example a function to square a value could be expressed using
the exponentiation operator (see below).

function square (y : int) : int

^= y^2 ;

However, this gives Perfect free rein to implement the function as it wishes, yet it
may be known that the target compiler has poor support for exponentiation and a
direct multiplication would be more e�cient, thus by using the via command the
implementation can be directed. e.g.

function square (y : int) : int

^= y^2
via

value y * y
end ;

4 DISCUSSION

The information presented in this paper has illustrated how an Object-Z speci�ca-
tion may be implemented within Perfect, proven and then used to automatically
generate code in either Java or C++ and this provides Object-Z developers with
an easy route to implementation. Additional motivations for de�ning a mechanism
for implementing Object-Z in Perfect was to enable the use of Object-Z and Per-
fect Developer in the design of a potentially critical system and enable the use of
software engineers without a strong mathematical background.

The integration described within this paper raises a number of points:

� A two way process;
The translation between Object-Z and Perfect is potentially a two way process
and may be used to translate a Perfect model into Object-Z. This has the
bene�t of presenting Perfect speci�cations in the more widely accepted Object-
Z format.

� Relationship with other OO technologies?
The mapping of UML models to Object-Z has been presented in [8] and the

200 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

4 DISCUSSION

use of OCL with Object-Z has been presented in [9] and so a route from the
more common UML description to Object-Z is available. Whereas Perfect is
still a niche tool with only a limited adoption, it does however, provide support
for the importation of UML models described by XMI.

� Teaching formal methods
The OO nature of Object-Z �ts more readily into the OO design paradigm
that is currently taught and coupled with the OO nature of Perfect Developer
they provide a powerful combination to introduce formal methods to students.
Some teaching notes have been produced [10]. In addition an academic version
of Perfect Developer is available free of charge from Escher technologies.

� Will Perfect replace Object-Z;
Although Perfect Developer has many features that aid in the development of
veri�able applications the application domains that require critical software
are normally very conservative and so it is unlikely that it will ever replace
Object-Z.

Lessons Learned

We have taken a practical approach to translating Object-Z to Perfect and perhaps
strangely for a paper on formal methods have not formally de�ned the translation
but illustrated it with examples. The translation has helped us to implement our
Object-Z speci�cation and produce code. It has also illustrated that Perfect provides
a mechanism for checking the Object-Z speci�cation and thus the translation can
be seen as a two process.

REFERENCES

[1] The OMG, www.omg.org. Uni�ed Modelling language, add the current version
edition, add year.

[2] J. Warmer & A. Kleppe. The Object Constraint language. Addison-Wesley,
Menlo Park, California USA, 1999. ISBN 0-201-37940-6.

[3] Graeme Smith. The Object-Z Speci�cation Language. Kluwer Academic, 101,
Philip Drive, Assinippi Park, Norwell, Ma , 02061. USA, 2000. ISBN 0-7923-
8684-1.

[4] J.M. Spivey. The Z Notation: A reference Manual. Prentice Hall, 2nd edition,
1998.

[5] Phillip J. Brooke Richard Paige. Integrating bon and object-z. Journal of
Object Technology, Vol 3, no. 3:121 � 141, March - April 2004.

VOL 6, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 201

IMPLEMENTING OBJECT-Z WITH PERFECT DEVELOPER

[6] Perfect Developer Language Reference Manual. Escher Technologies, 3.0 edi-
tion, December 2004. Available from www.eschertech.com (accessed February
2005).

[7] Roger Duke & Gordon Rose. Formal Object-Oriented Speci�cation Using
Object-Z. Macmillan Press, Houndmills, Basingstoke, Hampshire. RG21 6XS.
UK, 2000. ISBN 0-333-80123-7.

[8] Soon-Kyeong Kim and David A. Carrington. A formal mapping between uml
models and object-z speci�cations. In ZB '00: Proceedings of the First Interna-
tional Conference of B and Z Users on Formal Speci�cation and Development
in Z and B, pages 2�21. Springer-Verlag, 2000.

[9] Krysia Broda David Roe and Alessandra Russo. Mapping uml models incorpo-
rating ocl constraints into object-z. Technical Report 2003/9, Department of
Computer Science, Imperial College, London, 2003.

[10] Tony Mullins. Lectures on formal speci�cation and design. World Wide Web,
June 2004. available from www.eschertech.com/teaching/tmlecturenotes.zip
(accessed March 2005).

ABOUT THE AUTHORS

Brian Stevens is a part time PhD student at Cran�eld University and is employed
as a researcher, within the aerospace industry, focusing on real-time software archi-
tectures for avionic systems. E-Mail b.stevens@cran�eld.ac.uk.

202 JOURNAL OF OBJECT TECHNOLOGY VOL 6, NO. 2

mailto:b.stevens@cranfield.ac.uk

