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An efficient tool for recovering Design Pat-
terns from C++ Code
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Design Patterns are informal descriptions of tested solutions to recurring problems.
Most design tools have little or no support for documenting the presence and usage
of patterns in code. Reverse engineering is therefore often required to recover Design
Patterns from code in existing projects. Knowledge of what Design Patterns have
been used can aid in code comprehension, as well as support research.
Since pattern descriptions are abstract and informal, they offer no algorithmic trans-
lation into concrete code. Some patterns prescribe class structures that are easy to
recognize, while others lead to structures that are difficult or impossible to recognize.
This work presents a tool that can recover five different design patterns from C++
code with high precision and at a speed of 3×106LOC/hr. This makes it suitable for
analysis of large (multi-millon LOC) systems.

1 INTRODUCTION

Software Design Patterns, as first formalized by Gamma et al. [10], have become
popular in the object-oriented software community. Some of the patterns have
been incorporated into widely used architectures and frameworks. Examples of this
are the Iterator pattern in the C# language (coupled to the foreach keyword), the
Observer pattern in event-based user interfaces, and the Factory pattern in Microsoft
COM, MFC and J2EE.

Recovery of Design Patterns from existing code is important in several situations.
Code maintenance should be made easier if any patterns used during the design can
be recovered. Also, empirical research on the effects of using Design Patterns is
severely limited if it cannot make use of existing code bases.

Hopefully, the emergence of integrated development environments that fully
support UML modelling and pattern application will reduce the need for reverse-
engineering tools; however, maintenance of code designed without such support will
remain significant for many years.

To support our ongoing research into correlations between the use of Design
Patterns and defect frequency, we needed a tool to extract patterns from a large
amount of C++ code. A survey of academic literature uncovered a number of
recovery tools, but none of them were documented to be able to handle the patterns
and code sizes we needed. We therefore created and validated our own tool for this
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purpose.

The tool looks for structural signatures, i.e., class and method structures that
result from the implementation of certain design patterns. We developed a semi-
formal, graphic notation to describe Design Pattern structures in greater detail
than the original diagrams given by Gamma et al., but not so rigid as to overspecify
and thereby miss recovery of implementations that are not identical to the “ideal”
structure.

This paper is organized as follows: Section 2 discusses existing tools, as docu-
mented in the academic literature. Pattern structures and our diagrammatic nota-
tion for expressing them are described in Section 3. The goals and construction of
our tool are in Section 4, and its performance, recovery and precision on a 500 000
LOC system are in Section 5. Section 6 concludes.

2 EXISTING TOOLS AND RELATED WORK

In this section we summarize related pattern-extraction tools. Our starting point is
executable code, not UML designs or other specifications.

The justification for this starting point is as follows. A Design Pattern is a
description, using prose and semi-formal diagrams, of a way to structure classes in a
program. However, the ultimate expression of Design Patterns is in executable code,
whether generated from a model or by hand, and the code is the ultimate reference
(as opposed to UML models or other documents, which tend to become out of date
if not used with good tool support, or rigorously maintained). Our survey of related
work is thus restricted to tools that use code as their input.

It is in the very nature of Design Patterns that they are abstract, general prescrip-
tions of solutions. Their translation into actual code necessarily involves judgement,
and is not a task that can be performed mechanically without regard to context.
This is especially true when analyzing existing code, the design of which was in-
spired by patterns yet did not have “compliance” with pattern specifications as its
goal. This means that we should not expect any tool to recover all patterns with
100% precision.

An early work was by Kramer and Prechelt [16]. Patterns were drawn in an
OMT design tool and translated into Prolog rules; source code was parsed using
the Paradigm Plus tool and converted into Prolog facts. Then, queries were run to
determine what facts matched the rules, ie., what patterns were present in the code.

The parsing tool had significant limitations. It did not extract information that
would have been useful, such as whether a method is a constructor, or whether a
class is abstract or concrete. Further, the tool looked only at header files, and thus
had no information on the function call hierarchy. This made recovery of patterns
more difficult, since essential parts of the signature of a pattern that depended on
these concepts could not be expressed. Nevertheless, the tool achieved reasonable
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recall and precision rates on source code of moderate size (150–350 classes).

Florijn et al. [8] constructed a tool that was integrated in a Smalltalk environ-
ment, which supported development at several abstraction levels, including that of
Design Pattern. With this tool, it is possible to create new classes as instances of
patterns, connect existing classes with patterns and roles, and check whether pat-
tern invariants are being upheld by classes in the code. The real-life test example
cited involves about 150 classes.

Bansiya [6] presented a tool in 1998 that used the Microsoft MSVC compiler to
parse the code, and relied on the “browse information” database generated. The
tool seems to have been based on a structural rule-based matching method, but
there is little information on its precision, or its ability to handle large systems.

Antoniol et al. used a different approach [3]. The code was analysed in terms of
tuples of classes and their relations, and metrics were used to reduce the number of
candidate classes and avoid the combinatorial explosion.

The metrics calculated were the number of attributes and operations, further
divided into public, private and protected; the number of association, aggregation
and inheritance associations for each class; and the total numbers of attributes,
methods and relations.

Using the metrics, classes were eliminated that did not show the “right” signature
for the pattern in question, such as inheritance or associations that are part of the
given patterns’ structure. In the final stage, the exact pattern signature was sought
among the classes that survived the metrics selection process.

Their method was tested on public-domain and industrial software in the 5 000–
50 000 LOC range. It performed well in terms of speed (minutes), but did not
achieve high precision. In the industrial software analyzed, there were so few pattern
instances that it was difficult to judge the precision of the process.

The method has been further developed and was last presented in 2001 [2];
however, the precision of the system is still quite low (3%–50%).

A potential weakness is the fact that some metrics, such as inheritance, are not
reliable indicators of a pattern structure. For instance, the Template Method pattern
specifies a base class with a template method, and concrete subclasses that override
and implement the primitive operations. However, this whole hierarchy might well
be embedded in a larger context, so that the abstract base class is itself a subclass
of one or more classes. Thus, it would be incorrect to conclude that a class has to
be at the top of the hierarchy to be at the root of the Template Method pattern.
However, it is correct to require that the subclass in the Template Method really be
a subclass; though it may be deeper than a direct subclass of the base class.

Keller et al. [15] designed a pattern extraction mechanism for use within a larger
reverse-engineering system. Based on the structure of the pattern, they constructed
an appropriate query that searched their metadata repository for corresponding oc-
currences. Performance figures are not given, but one of the systems tested consisted
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of more than 470 000 lines of code. This work is a continuation of earlier work by
Schauer and Keller [18].

An interesting point is that there are some patterns that are difficult or impos-
sible to recover, because their structural signature is weak or variable. The Bridge
pattern is cited as an example; while the original definition of Bridge specifies a
certain combination of inheritance and aggregation associations, in practice these
are not always followed. Relaxing the criteria to accommodate this causes large
numbers of false positives, while keeping them strict, means that design constructs
intended to work like Bridge are missed. We believe this is an inherent property of
the pattern, rather than of any particular approach to recovery.

Albin-Amiot et al. [1] have proposed and implemented in prototype a system
that searches for, and recognizes, pattern signatures in Java code. Their system
relies on a constraint solver, which attempts to solve the problem given by matching
the actual code structure to the structure of the design pattern. Their system can
recognize partial or distorted implementations and can even recommend possible
refactorings.

They do not state running times or give examples of the application of their
system to non-trivial systems. However, they state that they intend to test their
system on the package JHotDraw; a companion paper [12] states that this package
“... contains more than 125 classes and identifies several design patterns”.

Perhaps the most promising method to date for design pattern recovery from
large-scale projects is that of Balanyi and Ferenc [5]. They use a reverse engineering
framework to convert C++ code into metadata (termed Abstract Semantic Graph),
and express patterns in an XML-based language. They then perform a multi-step
algorithm to identify candidate class structures, match them to the pattern descrip-
tions, and filter out mismatches. One of their major contributions is to look at
information from function bodies, such as function calls and object creations, in
addition to the more traditional static structure.

They seem to be the only group so far that has tested a method on million-line
code collections, and they give running times for extraction of different patterns. In
two large projects of 1 200 KLOC and 1 500 KLOC size, they found about 440 and
520 pattern instances in total, in five and nine hours’ running time. However, the
time spent on code parsing is not given. They cite fairly low rates of false positives
(falsely indicating the presence of a pattern), but do not give any evaluation of false
negatives (failing to identify a pattern that is actually present).

3 PATTERN STRUCTURES AND DESCRIPTIONS

As a first level of abstraction from concrete code, we adopted an entity-reference
model, similar to the class/relation tuples used by Antoniol et al. [3]. An entity is
anything that is not a language keyword or operator, i.e., any named class, variable,
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method, macro or parameter. A reference links two entities, and is of a certain
type, such as “Calls”, “Is declared by” or “Overrides”. Entity types also express
attributes such as “virtual” or “public”. During the parsing step, the code to be
analyzed is reduced to a set of entities interconnected by multiple references.

Using these two concepts, we constructed a graphic notation to define Design
Patterns at a sufficient level of detail for the analysis. In our view, formal, rigorous
definitions as used by France et al. [9], are not suitable in this context, since our
aim is to be able to recover patterns that have been applied imprecisely. Further,
the “rigorous” application of a pattern may simply not be the best design decision
in every case, and we expect software designers to exercise judgement.

In its first version, our tool recovers the patterns Observer, Decorator, Factory,
Singleton and Template Method. Our concepts for pattern structures, and the
structural signature left imprinted in the final code, are discussed for the Template
Method and Observer patterns. They are good illustrations of both simple and
more complex problems. We should note that during most of its running time, our
tool performs parsing and preparatory indexing that is independent of the actual
patterns to be extracted. Adding new patterns is thus fairly easy, and does not
require the whole parsing process to be re-run.

Template Method

This is a relatively simple Design Pattern. It is used in situations where the major
flow of a process or algorithm is given and is reusable, but there may be differences
in the detailed steps. In this case, the algorithm is implemented in a base class, and
calls overridable methods for the detail steps. These methods may be abstract or
have a default implementation in the base class. Derived classes provide their own
implementations of these methods as required, thus customizing the algorithm to
their particular needs.

+TemplateMethod()

#PrimitiveOperation1()

#PrimitiveOperation2()

AbstractClass

#PrimitiveOperation1()

#PrimitiveOperation2()

ConcreteClass

Calls PrimitiveOperation1 and PrimitiveOperation2

Figure 1: Structure of Template Method, from [10].

Gamma et al. use an informal, UML-like notation with explanatory prose to
describe the structure of this design pattern, as shown in Figure 1. We see that
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it involves an abstract class and a concrete class, and one or more “primitive”
operations that are called by the template method in the base class; these methods
are overridden in the concrete class.

Some elements of this structure diagram should not be taken too literally. For
instance, the inheritance may span multiple levels; there may be more than one
template method in the abstract class, and concrete classes will not always override
all of the primitive operations.

Our translation into the entity/reference model modifies and formalizes the struc-
ture to take into account these properties.

Structural signature for Template Method

Type: Class

(Role: template class)

Override

Type: Class

(Role: concrete class)

Ancestor

Type: Member Function

(not constructor)

(Role: template method)

Declare

Call

Type: Member Function

(not constructor)

(Role: primitive operation) Declare

Type: Member Function

(not constructor)

(Role: primitive operation)Declare

[not equal]

Figure 2: Structural signature of Template Method

In our notation, boxes represent entities such as classes or methods, and arrows
between the boxes represent references. The top line of text in a box denotes the
entity type, and the bottom line denotes the role that the entity plays in the pattern.
Restrictions are placed in the middle of the box. Similarly, the text on a reference
defines the reference kind.

The signature diagram for the Template Method pattern is shown in Figure 2,
and expresses the expected structural signature in a more complete way than the
original notation. Our diagrams can be translated by hand or semi-mechanically into
executable queries against an entity-reference database derived from actual code.

The two main entities in the signature diagram are the template class and the
concrete class (shaded boxes). The template class is a (possibly indirect) ancestor
of the concrete class, and may itself be a subclass of some other class (this is not
specified and thereby not restricted). The template class declares at least two mem-
ber functions, which have the additional restrictions of not being the constructor.
We require a “call” reference from the template member function to one or more
primitive operation functions, and we require the functions to be distinct.
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The concrete class must declare one or more member functions that are also not
constructors, and which override the template class methods that act as primitive
operators.

Observer

The Observer pattern illustrates how it is possible to implement a design pattern
in at least two, radically different ways. The core concept is simple: a class (the
observer) may observe changes to another class (the subject), and react to those
changes in some way; there may be multiple types and instances of Observers for
any Subject.

The differences in implementation are related to the way in which notifications
from subjects to observers are implemented. In the classic, closely coupled model,
described in the original pattern, each observer keeps track of its subjects and di-
rectly notifies them of changes. The structure described in [10] and shown in the
upper part of Figure 3 portrays the closely coupled model.

+Attach(in Observer)

+Detach(in Observer)

+Notify()

Subject

+Update()

Observer

+GetState() : subjectState

+SetState()

-subjectState

ConcreteSubject

+Update()

-observerState

ConcreteObserver

subjectState

foreach o in observers {

    o.Update()

}

observerState = subject.GetState()

1

-observers

*

+Update()

-observerState

Class1

Figure 3: Structure of Observer, from [10].

In this model, there are base classes for the concepts of Subject and Observer,
and concrete classes derived from them. The subject class maintains references to its
current set of observers, and the observers call the subject directly to retrieve infor-
mation. It is explicitly specified that the subject state is not part of the notification
message, but must be retrieved separately.

However, the Observer pattern is also known under the name “Publish-Subscribe”,
which points us to a different, loosely coupled model for its implementation. In this
model there is a third party, a broker, that keeps track of subjects, observers and
notifications. The concrete subject class is relieved of this task and does not have
to be a subclass of a common “subject” base. The observer class will, in most in-
stances, still have some relation to the subject (it is, after all, interested in what
happens to the subject) but its registration interaction will be with the broker.

There are other ways of communicating as well. [7] describes several possible
schemes. The Reactor pattern [19] describes an inter-process variant with Singleton
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multiplexers and demultiplexers in the sending and receiving processes. A simi-
lar scheme, though without the multiplexing, appeared in the OMG Event Service
Specification [11]. It involves a proxy publisher and a proxy subscriber to hide
the process boundary, and an event channel to transfer the notifications. Varying
degrees of buffering, asynchronicity and further decoupling are also possible.

The tightly coupled and loosely coupled observer implementations have quite
different signatures, as seen in Figure 4. The loosely coupled model involves a total
of nine entities and 12 references, while the tightly coupled model uses six entities
and seven references. Most importantly, we will not recognize a tightly coupled
observer while looking for a loosely coupled one, and vice versa.

This range of potential implementations is a fundamental and intended strength
of the concept of Design Patterns; the designer is able to implement a pattern
in the way that best fits the context and problem at hand. However, by the same
token, that same range of potential implementations makes it much more difficult to
reconstruct patterns from code, unless there are some “standard” implementations
whose structural signatures will match most of the actual usage. As a result, it
must be made clear regarding a particular reverse-engineering tool what variants of
patterns it is designed to recover.

Language-specific features

Different languages implement concepts in different ways. One concept that is cen-
tral to many Design Patterns is that of aggregation, generally implemented as a
collection; a set of objects or references to objects. The Composite pattern is a
typical example, where each composite object may contain or reference any number
of child objects. To recognize a Composite, we therefore need to start by recognizing
a collection or aggregation relation.

In C++ in general, this is almost impossible. A C++ pointer can point to one
object, or it can point to an array of objects; but there is no way to know which
without analyzing the code in great detail.

Before the advent of the Template mechanism and the Standard Template Li-
brary [20], every developer or group had to implement its own data structures, so
there was no generally accepted standard (unlike Java and its Collections hierarchy
of objects). To make matters even worse, macros in C++ can be used to perform
almost any textual substitution, making parsing almost impossible. An example of
this is a case where a Container base class is inherited through a macro that defines
a subclass; correctly parsing and recognizing this as a collection is beyond most
tools [4].

In other languages the situation is simpler. Java has a well-defined set of con-
tainer classes [21], and also does not have the fine division between embedded ob-
jects, references and pointers present in C++. Thus, it is much easier to detect
collections with reasonable accuracy in Java.
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Type: Class

(Role: observer base)

Type: Public Function Virtual

(Role: observer update)Declare

Type: Class

(Role subject)

Type: Public Function

(Role: subject data return)

Declare

Type: Class

(Role: observer)

Type: Public Function Virtual

(Role: observer update)Declare

Ancestor Override

Call

Call

Structural signature for tightly coupled Observer

Structural signature for loosely coupled Observer

Type: Class

(Role: broker call sink)

Type: Class

(Role: observer)

Type: Public Function

[not constructor]

(Role: observer update)

Declare

Ancestor

Type: Function

(Role: observer registration)

Declare

Use Ptr
Type: Class

(Role: broker)

Type: Public Function

[not constructor]

(Role: registration)

Declare

Call

Type: Function

[not constructor]

(Role: call)

Declare

Type: Class

(Role: subject)

Type: Public Function

[not constructor]

(Role: subject update)

Class to Class Use Call

Declare

[different]

Class to Class Call

Observer

Subject

Figure 4: Structural signatureof Observer, tightly and loosely coupled.

In C# there is an IEnumerator interface in the standard library set, which
encourages developers to implement their own iterator concepts wherever appropri-
ate. It is coupled to the foreach keyword in the language [17], yielding an easily
recognized, simple and elegant syntax for traversal of any array or collection.

Our tool and the exact structural signature for the chosen patterns were designed
in the context of C++, and to some extent adjusted for the programming style used
in the software analyzed in the case study. However, the underlying concepts are
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transferable to other, similar languages.

4 TOOL GOALS AND DESIGN

We formulated the following goals for a pattern recovery tool:

• It must be possible to describe a structural signature of a pattern, and to
extract from a C++ code base the set of classes that correspond to this sig-
nature.

• The tool must be flexible, because some design patterns have complicated
signatures that are not easily expressible as simple rules. It must be reasonably
easy to express a structure, so that the specification can be checked, revised
and debugged.

• The tool must scale extremely well, and be able to handle amounts of code
in the 108 LOC range with running times in the order of hours, or at least
within a weekend. Preferably, much of the processing time should be spent
on data preparation that is independent of what patterns are being sought, so
that the addition of new patterns does not force a re-run of the whole process.
If possible and when necessary, the method should lend itself to optimization
using parallel hardware (storage, CPU) or clustering.

• The input data should be in the form of “untreated” code files, i.e., whatever
structure the source project is already in. Output should be in a form that is
easily transferable to statistical packages for further analysis.

Tool construction

Due to the lack of a satisfactory, off-the-shelf tool, we decided to construct our own.
The tool was built using several sub-components to handle different stages of the
process. During our research, it satisfied all the goals, with the exception of parallel
processing, which was not pursued due to lack of suitable hardware.

Figure 5 shows an outline of how our tool is constructed. The first stage consists
of extraction of code snapshots from a Version Control System (VCS). If we only
want to perform a single analysis of a system, this stage can be performed manually
(and does not require the presence of a VCS at all). However, for analyses of trends
over time we need to take multiple snapshots, one for each time point we wish to
analyze.

The resulting snapshot is a collection of C++ source files, both header and
class body. The method makes no assumptions as to the location of classes or
correspondence between classes and files, but since the VCS generally works at the
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Source

fileSource

fileSource

fileSource

file

Parsing
Meta-

data
Storage

SQL database Indexing Prepared

database

Design Pattern

occurrences
VC informationVersion Control

system
Extraction

Statistical

analysis

Figure 5: Outline of the structure extraction tool. The process starts at the lower
left.

file level, analysis becomes simpler if the convention of “one class, one file pair” is
followed.

The source files are parsed using a commercial tool called Understand for
C++ [14]. This tool is flexible and scalable, and parses C++ code into metadata.
Its main shortcoming is that it does not currently handle templates (generics), and
this causes some problems later on with design patterns that rely on collections.

The output from Understand is a file, in proprietary format, that contains
mainly two kinds of data: entities and references. An entity is any named concept
that is not a keyword, for instance a class, variable, type or file. A reference is a link
between two entities, such as “declares”, “calls”, or “dereferences”. Both entities
and references are classified into predefined kinds.

The “storage” stage of the processing transfers the entity and reference data
from the proprietary Understand format into an SQL database, without materially
changing the data. The database contains the following: (i) tables that correspond to
the entity and reference concepts, and (ii) supporting tables for entity and reference
kinds, and links to files and metrics.

The tables are then indexed. Insertion of large amounts of data is much faster
if there are no indexes, so index generation is postponed until data loading is com-
pleted. During the indexing process, some extra reference kinds are computed in
addition to those generated by Understand. To optimize performance, the database
schema is slightly denormalized by converting some relations (such as whether an
entity is a class member function) into attributes directly in the entity table.

At this stage, the database is ready to perform recognition of structural design
patterns. The recognition is actually done by a series of SQL statements designed
to look for the given structure; a structural signature translates quite readily into
one or more select statements. Complicated or irregular structures may be re-
covered by chaining multiple SQL statements in a stored procedure. This provides
more expressive power than single statements, and also provides an opportunity
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for optimizing performance where necessary. The results are stored in intermediate
tables.

Metadata is also extracted from the VCS, in the form of information about sub-
mitted changes. This information is added to the database with the code metadata,
which enables us to combine it with the class structure and see how it evolved.

Finally, the results are condensed and transferred to a statistical package for fur-
ther analysis. An example of such analysis is to generate indicator variables for each
pattern, and use logistic regression to look for correlations between changeability and
pattern membership for classes.

5 TOOL PERFORMANCE, RECOVERY AND PRECISION

Performance

The tool was used to analyze a Customer Relationship Management system, written
in C++. Table 1 gives some size metrics for the product.

Metric Value
Total lines 1 114 092
Lines of code (LOC) 505 367
Number of classes 2 047
Number of code files 2 809
Number of methods 30 823
Declarative statements 150 685
Executable statements 194 625

Table 1: Descriptive metrics for SuperOffice CRM5

The system consisted of approximately 3 700 files (including scripts, resources,
graphics, etc), totalling 90 MB. However, as our study intended to analyze the
system’s evolution over time, a total of 153 weekly snapshots were extracted from
the VCS. The snapshots grew slightly over time as code was added to the system;
in sum, they consisted of about 500 000 files totalling 14 GB.

The pattern extraction tool was applied to each snapshot, to parse all the code,
load the metadata into the SQL Server, index it and extract Design Patterns. Typ-
ical running times are shown in Figure 6. Each snapshot had its own, preallocated
empty database in the server. Analysis of all the snapshots, 76×106 LOC, took
slightly less than 26 hours on a 2.8 GHz PC with 4 GB of RAM (max. 800 MB
actually in use) and standard IDE disk drives.

Table 2 summarizes the frequency of occurrence of the patterns in the code.
Participation of a class in a pattern is not a simple 1:0 or 1:1 relation, as it is quite
possible for a class to participate in multiple patterns. Our tool considers each
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Running time

Parse code 
00:04:46; 52 %

Load to SQL 
00:02:33; 28 %

Index tables 
00:01:09; 13 %

Extract Patterns 
00:00:39; 7 %

Figure 6: Length and phase distribution of running times for the Pattern recognition
tool, on 500 000 LOC.

pattern separately, but since the entities that represent classes in the metadata have
unique identifiers, it is easy to identify classes that participate in more than one
pattern.

Patterns Occurrences %
No Pattern 183 634 77.5%
Factory 20 237 8.5%
Singleton 3 331 1.4%
Observer 16 061 6.8%
Template Method 5 381 2.3%
Decorator 1 513 0.6%
Factory + Observer 612 0.3%
Factory + Singleton 2 279 1.0%
Observer + Singleton 2 390 1.0%
Observer + Template 953 0.4%
Factory + Observer + Singleton 485 0.2%

Table 2: Frequencies of pattern occurrences, and percentage of
code covered by the patterns

Error rates

Since a Design Pattern is an informal specification of a recommended structure, it
will be translated into program code differently in different projects. Any discussion
of error rates must, therefore, be seen in relation to the application of the method
to a particular set of software artifacts.

It is also necessary to define exactly what we mean by an instance of a certain
Design Pattern. Consider Factory as an example: one Factory class may have
methods to create one or more Product classes. Should we count every combination
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of Factory and Product as an instance, or should one Factory class count as a single
instance, regardless of the number of products? Similar situations occur in most
patterns, since they specify relationships between multiple classes.

In our evaluations, we have adopted a simple definition, according to which one
Factory class counts as a single instance. Similarly, we count one instance of the
Observer pattern for every Subject; one Template Method for each template method;
one Decorator for each Decorator class; and one Singleton for each Singleton class.

It was necessary to adjust the pattern-recovery tool for two particular patterns:
Observer and Decorator. The Observer pattern can be implemented in two different
ways, as discussed in section 3. The “classic” structure specifies that each Subject
should keep track of its Observers directly, using a collection of object references. An
alternative approach is to use a generalized message broker to handle the relations
between subjects and observers, and this is the approach adopted globally in the
studied code. The tool was adapted to this Subject/Broker/Observer structure.

For Decorator, a related problem exists, that of aggregation (see section 3). The
tool was adapted to the kind of aggregation generally used in studied code.

False positives

The rate of false positives was determined by manually examining all detected in-
stances of all patterns. The results for all patterns are given in Table 3.

Pattern Instances False Error rate
Factory 53 8 15.1%
Singleton 45 0 0.0%
Observer 20 3 15.0%
Template Method 163 2 1.2%
Decorator 9 0 0.0%

Table 3: False positives

Most of the false positives identified for the Factory pattern were classes that
used inner (nested) classes. From the outside this looks like a Factory instance, since
the inner class is created by the outer class and by nothing else. However, this usage
does not correspond to the intent of Factory, so it was classed as a false positive.
It is feasible to add the condition “product class must not be nested within factory
class” to the structural signature for Factory in a refined version of the rules.

In the Observer cases, we are dealing with a “loosely coupled” version of Ob-
server, in which all notifications are handled by a centralized message broker class.
This differs somewhat from the classical, simple Observer pattern, in which every
Subject keeps track of its Observers separately. There are other forms of interaction
through the Message Broker than just those that accord with the Observer pattern,
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and the three false positives are such cases. Since the structure of the pattern is al-
ready quite complex, further refinement is difficult without risking a greater number
of false negatives.

The structure for the Template Method allows for multiple levels of inheritance,
and does not require more than one call to an underlying, virtual primitive method to
consider the caller a parent method. It is a matter of taste whether one would want to
tighten the definition, i.e., to demand that there is more than one implementation of
the primitive method, or more than one primitive method for each template method.
The number of false positives would most probably decline, but the number of false
negatives might increase.

Decorator has a somewhat problematic structure, in that it contains an aggrega-
tion (the set of Decorators for one decorated class) that can be implemented in many
ways. The signature was adapted to the known kind of aggregation implementation
in this code, and so we should not take the zero error rate as being guaranteed in a
different setting. Also, false negatives are more probable for this pattern.

Singleton is a pattern that is fairly easy to recognize, and so the low false positive
rate is as expected.

False negatives

To determine the actual rate of false negatives, we would need to evaluate all classes
and find all cases in which a class participates in a pattern but has not been detected
by the tool. With more than 2 000 classes this is not realistically possible.

Instead, we chose to evaluate a random sample of classes, to get an estimate
of the false negative rate. Judging from prior knowledge of the code (the author
previously served as a developer and architect for the studied product), a low rate of
false negatives was expected. To calculate the necessary sample size, the following
criteria were set:

Required power: 90%. Hypothesized proportion (false negative rate): 20%.
Alternative proportion (rate to be tested for): 10%.

This yielded a required sample size of 109.1 To guard against randomly choosing
classes that are trivially small or otherwise nonrepresentative, the actual sample size
was increased to 125.

Classes were chosen using a uniformly distributed random number generator.
The chosen classes covered all major modules of the program. Figure 7 shows the
distributions of class sizes, for the full system and the sample.

Out of the 125 classes inspected, a total of nine were false negatives. Of these, one
was part of a Decorator, one an Observer and the rest were Template Methods (six
of the seven were actually part of the same instance of Template Method, missed

1MiniTAB [13] version 13.32 was used for all statistical calculations.
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Figure 7: Histogram of class sizes, of the full system (left pane) and 125-class sample
(right pane)

due to macros in the code that hid the virtual method declarations).

From these observations, we calculate the upper bound of a 95% confidence
interval for the proportion of false negatives. The results are given in Table 4.

Pattern Nfalse 95% CI P
Factory 0 2.3% 0.000
Singleton 0 2.3% 0.000
Observer 1 3.7% 0.000
Template Method 7 10.3% 0.000
Decorator 1 3.7% 0.000

Table 4: False negatives, from code sample

When interpreting these results, we must keep in mind that they apply to the studied
code only. Given the number of possible ways to implement the structure described
by a pattern, the validity of the tool must be tested for each new coding style.

6 SUMMARY AND FUTURE WORK

We have successfully built and validated a tool that efficiently recovers selected
Design Patterns from C++ code. The tool was used to analyze a 500 000 LOC
commercial system. During processing of historical data from the VCS, the tool
evaluated a total of 76×106 LOC.

The tool is based on descriptions of structural signatures associated with the
chosen Design Patterns. The signatures are described using semi-formal diagrams,
which can be translated into queries mechanically, or hand-coded in the case of
complicated or irregular structures. The code to be analyzed is parsed into metadata
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using a commercially available tool, and this metadata is placed in a relational
database where the queries are executed.

The tool has been empirically validated to have a high rate of recovery (few
false negatives) and precision (few false positives). However, validation has been
performed only on one major set of code. Since Design Patterns are usually not
mechanically applied and translated into concrete code, it is necessary to revalidate
the tool when applying it to new software.

Most of the tool’s running time is spent on tasks that are independent of the
specific patterns recovered. This, combined with its speed, means that adding fur-
ther patterns is relatively straightforward, and can be done while using a full code
base and not just trivial examples.

We plan to pursue the tool in four possible directions:

• Add more patterns—many of the patterns in [10] are candidates, though not
patterns such as Bridge, which seem inherently to leave a very imprecise sig-
nature.

• Define a UML Profile for our pattern description notation, and use a code
generator to transform pattern structure diagrams into SQL queries

• Validate the tool on more software—the Open Source community should be a
good source of nontrivial C++ software.

• Extend the tool to other languages—since the first stage is to translate from
C++ into an abstract entity-reference model, an equivalent parser for other
languages can be substituted. While it may be unrealistic to find another
parser with exactly the same output, the entity-reference model is so general
that it should be easy to transform other formats into it.
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