
Vol. 5, No. 1, January–February 2006

New Perspective To Improve Reusability in
Object-Oriented Languages

Philippe Lahire, Laurent Quintian, I3S Laboratory, University of Nice-Sophia
Antipolis and CNRS, France

Object-oriented languages provide insufficient answers regarding reuse of hierarchies
of classes especially because mechanisms provided for separating application concerns
are not sufficient. We propose to extend object-oriented languages, Java in the current
implementation, to address this particular issue. The model, inspired by approaches
dedicated to the separation of concerns, introduces a new concept called adapter. It
enables to specify the composition protocol of a hierarchy of classes independently
from the context of use. This composition protocol allows the programmer to ben-
efit from the necessary guidance and controls when the adapter is customized to be
integrated into applications.

1 INTRODUCTION

The reuse of the code written for one application to develop new ones is essential to
be able to react quickly to the market needs but most of the time it is necessary to
adapt the existing code in order to reuse it. Reusability represents one of the most
important challenges of object-oriented languages [13] but we have to admit that,
whatever the skills of existing programming languages are, this objective is far from
being reached, in particular because the adaptation mechanisms (based on feature
renaming or redefinition) are not powerful enough.

One of the keys of software reusability is to separate the various concerns of
a software and to make them as much independent as possible from the future
contexts of use. Depending on the nature of the concern which is addressed, it may
be represented by a set of features (attribute or method), a set of statements, one
class or a set of classes, one or several hierarchies of classes, etc. From a general
point of view, a concern represents one facet of the problematic addressed by an
application.

A concern is known as functional, non-functional or hybrid. Let us give some
more explanation about this classification of concerns.

Generally an application is composed of several facets like:

• the extraction or storage of application data,

• the control of data consistency,

Cite this document as follows: Philippe Lahire, Laurent Quintian: New Perspective To Improve
Reusability in Object-Oriented Languages, in Journal of Object Technology, vol. 5, no. 1,
January–February 2006, pages 117–138,
http://www.jot.fm/issues/issues 2006 1/article2

http://www.jot.fm/issues/issues_2006_1/article2

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

• the evaluation or computation of data,

• their display through the use of either a textual or graphical interface.

Each of these facets corresponds to a set of functionnalities which implements
the associated objective. Such a piece of software is called a functional concern. For
example, libraries of classes provided by object-oriented languages and dedicated to
one purpose may correspond to a concern.

When applications need to extend existing functionnalities with additional pro-
cessing (often called services), like persistence handling, distribution of data, support
of various forms of security or method-call tracing [10], then it is a non-functional
concern. In Section 2 we will address a hybrid concern which extend existing func-
tionnalities but also add new ones.

When a concern is identified and described, whether functional or non-functional,
an important issue is to get a sufficient expressiveness to recompose those concerns
so that applications may be specified. Two different situations may occur: the
contents of the concern may be located in a single location (for example within a
class or a hierarchy of classes) or it has to be spread out into the system of classes.

If we focus on highly flexible applications, which are more and more numerous
with the development of ubiquitous computing, we observe that the means provided
by the object-oriented languages are insufficient. The main reason is that to imple-
ment separation and composition of hierarchies of classes, object-oriented languages
mainly rely on various concepts of class, possibly generic, and on both inheritance
and aggregation relationships. But the experiments that may be found in the lit-
terature show that it leads to costly feature redefinitions and to a large duplication
of code. In some situations object-oriented languages do not even offer any realistic
solution for the composition of concerns. This is typically the case when a concern
is spread out into the application or when the number of concerns to be composed
evolves constantly and makes the resulting hierarchy too complex very quickly.

Following these observations other paradigms emerged to address the needs of
modern applications. Among others we may mention the separation of concerns
[12], programming by components [21] or programming by models [5]. We think
that object-oriented languages should accept the challenge and provide mechanisms
supporting, in some form, the separation of concerns. These mechanisms should
fit nicely with object-oriented concepts, in particular reuse, and applications using
those facilities should be as robust and reliable as applications built upon pure
object-oriented mechanisms. To go in this direction, we propose a generic approach
(independent of existing object-oriented languages), to extend the object-oriented
languages with a set of adaptation operators applying on classifier diagrams1.

This approach respects the following hypotheses: i) describing and separating
the various concerns relying strongly on the object-oriented language which is chosen
to program the application, ii) enabling the specification of a composition protocol

1This is the term used in UML to deal with the various kinds of class.

118 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

2 DESCRIBING APPLICATION CONCERNS

which is documented and comprehensive enough to guide and control the reuse of
each reusable concern.

Our model is inspired by the existing approaches dedicated to the separation of
concerns (ASoC - Advanced Separation of Concerns). Approaches for the separation
of concerns include aspect-oriented programming (AOP) [12], subject-oriented pro-
gramming (SOP) [17], role or point-of-view oriented programming [9], composition
filters [1] or, to a lower extent, mixins [2] and metaprogramming [4]. The state of
the art and the detailed study proposed in [20] show that the languages offering the
most interesting expressiveness are AspectJ [11, 10] (AOP) and Hyper/J [18] (SOP).

Section 2 presents our choices for the description of concerns and sets the bases
of an example which is particularly representative and on which the remaining parts
of this document rely. Section 3 provides an overview of both the composition
model and the type of adaptations supported in our approach. Section 4 relies
on the previous sections to describe how to equip a concern in order to improve its
reusability. Section 5 provides some more details about the semantics of adaptations.
Section 6 gives an overview of the implementation and addresses the state of the
art. In particular it compares the contribution of our approach to AOP and SOP.
The last section draws conclusions and describes some future works.

2 DESCRIBING APPLICATION CONCERNS

A concern is made up of classifiers (class, interface. . .) or hierarchies of classifiers
and it is reasonnable to assume that it is encapsulated in one container (a package
for example) which may possibly contains itself other sub containers.

In the following example we use the Java syntax in order to define the two
concerns that we consider but the composition model relies on a reification of object-
oriented languages and not on a given syntax.

We now suggest to consider two possible concerns of an application: the graph-
ical user interface (from now referred to as GUI) and the design pattern Observer

[7]. In this section we describe each of these concerns independently from each
other. Section 4 benefits from the information given in Section 3 about both the
supported adaptations and the modelling of the composition protocol. It explains
how to specify the composition protocol of the concern Observer and shows how to
implement and control its integration within the concern GUI.

Concern Design Pattern Observer

The design pattern involves the classifiers Observer, Observable and ImplObser-

vable2 (see Figure 1); they are independent from any application. The reader
may notice in particular that the concern is encapsulated within the Java package

2Gamma prefers Subject and ConcreteSubject instead of Observable and ImplObservable.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 119

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

01 package designpattern.observer;

02 public interface Observable {
03 public void addObserver(Observer o);

04 public void removeObserver(Observer o);

05 public void notifyObservers();

06 }
07 package designpattern.observer;

08 public interface Observer {
09 public void updateObserver(Observable o);

10 }
11 package designpattern.observer;

12 import java.util.ArrayList;

13 import java.util.Iterator;

14 import java.util.List;

15 public class ImplObservable implements Observable {
16 protected List observers = new ArrayList();

17 public void addObserver(Observer o) {
18 observers.add(o);

19 }
20 public void removeObserver(Observer o) {
21 observers.remove(o);

22 }
23 public void notifyObservers() {
24 for (Iterator iter = observers.iterator(); iter.hasNext();)

25 ((Observer) iter.next()).updateObserver(this);

26 }
27 }

Figure 1: Design pattern Observer

designpattern.observer. The interfaces Observer and Observable correspond
to the two roles of the pattern. The class ImplObservable is a staightforward
implementation of the interface Observable. It relies on the classes ArrayList, List
and Iterator which are defined in the packages of the Java library (java.util).

At this stage, the developer may only notice that i) any class implementing
the interface Observer must specify a body for the method updateObserver and
ii) both interfaces are strongly coupled because each of them requires the other in
the signature of their methods. To easily reuse this concern, and more generally
all concerns, it is mandatory to add a more comprehensive documentation: the
composition protocol which will be addressed in Section 4.

Concern Graphic User Interface

The concern in which we want to integrate the design pattern Observer deals with
the implementation of GUI applications. It is obvious that the proposed GUI is
very basic and fully dedicated to the example. But it is simple to understand and
complex enough to explain our approach and to show its contribution.

The GUI concern is encapsulated in the Java package application.ihm (Figure
2). It describes two types of graphical objects: buttons (class Button) and labels
(class Label). These two classes are based on classes from the Java swing library,
JButton and JLabel. The redefinition of the method fireActionPerformed within

120 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

3 MODELLING THE COMPOSITION OF CONCERNS

01 package application.ihm;

02 import java.awt.event.ActionEvent;

03 import javax.swing.JButton;

04 public class Button extends JButton {
05 public Button(String text) {
06 super(text);

07 }
08 protected void fireActionPerformed(ActionEvent event) {
09 super.fireActionPerformed(event);

10 }
11 }
12 package application.ihm;

13 import javax.swing.JLabel;

14 public class Label extends JLabel {
15 public Label(String text) {
16 super(text);

17 }
18 }
19 package application.ihm;

20 import java.awt.*;

21 import java.awt.event.*;

22 import javax.swing.*;

23 public class ApplicationInterface extends JFrame {
24 public ApplicationInterface() {
25 super("My application interface");

26 getContentPane().setLayout(new GridLayout(1,3));

27 Button button1 = new Button(" Click on me !");

28 getContentPane().add(button1);

29 Label label1 = new Label("- no text -");

30 getContentPane().add(label1);

31 JButton finish = new JButton(" Exit ");

32 getContentPane().add(finish);

33 finish.addActionListener(new ExitListener());

34 pack(); show();

35 }
36 public static void main (String args[]) { new ApplicationInterface(); }
37 public class ExitListener implements ActionListener {
38 public void actionPerformed(ActionEvent arg0) {System.exit(0);}
39 }
40 }

Figure 2: Description of the GUI concern

the class Button is not mandatory. Its only interest is to make the example more
understandable.

The class ApplicationInterface contains the GUI initialisation and an entry
point to launch the application. Figure 2 shows the full source code, but only the
initialisation of the objects referenced through button1, and label1 in the class
constructor (lines 24 to 35) will be used in Section 4 for the explanation dedicated
to the composition of the two concerns.

3 MODELLING THE COMPOSITION OF CONCERNS

Before going further in the description of the example, it is necessary to address the
composition model and the adaptations which may be applied to the concerns to
weave them one another.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 121

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

Composition Model

The adaptations which are involved in the implementation of the concern composi-
tion rely on concepts that belong to most languages and on one or several transfor-
mation or typing rules; thus it is reasonable to propose a common reification for the
entire set of properties (of course it is possible to extend the reification at any time
without breaking the model architecture). As we mentioned it earlier, a concern is
encapsulated in one hierarchy of containers (package, cluster . . .)3 which contains
classifiers. A classifier (class, abstract class, deferred class, interface. . .) may inherit
from one or several other classifiers. A classifier belongs to a container and it has
modifiers (abstract, deferred, final, frozen, public. . .). It contains attributes (con-
stants, instance or class variables), methods (procedure, function or constructor)
which need or not the creation of class instances. The methods have a signature
(name, parameters, return type. . .), modifiers and a body which corresponds to a
set of statements. Most of the time it is not useful to consider the semantics associ-
ated with the language reification. We have to consider it only when this semantics
influences the description of an adaptation.

An adaptation is located in one or several adapters, that is to say, outside the
class to adapt; these adaptations are non intrusive. Figure 3 presents the main
entities that enable to describe concern composition and thus the building up of
an application. This composition is represented by one or several adapters. At
the present time the mechanisms dedicated to the composition of adapters are very
limitated and only guarantee that adapters which may create new concerns are
handled first (further they are called ex situ adapters).

Each adapter has a unique name that allows to identify it. It may be concrete
or abstract and it may inherit from another adapter. This inheritance mechanism
is basic and allows only two of the usages of inheritance defined by B. Meyer [13] :
reification inheritance and functional variation inheritance. An adapter contains
adaptation targets that are concrete or abstract4 depending on whether the entities
on which the adaptation applies are fully specified by the declaration or not. An
adaptation target is typed and deals with either a classifier, a method or an at-
tribute. When an abstract adaptation target is declared, it is possible to set some
constraints to be satisfied. A concrete adaptation target contains either an explicit
list of identifiers (depending on its type, names of classifier, method or attribute),
or a regular expression whose evaluation will generate the list of identifiers; its ex-
pressiveness is quite similar to the regular expressions of AspectJ [10]. An adapter
also contains adaptation operators typed with the adaptation target. If the adapter
is defined ex situ, then a new container (one package in current implementation) is
created and the concerns related to the adaptation are inserted into it. If it is in
situ, then the container already exists and the result of the adaptation modifies the
concern associated with it.

3We use terminology of different programming languages (Java, Eiffel. . .) to highlight that our
approach is not restricted to one particular language.

4If it contains itself an adaptation target which is abstract, then the adapter is abstract.

122 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

3 MODELLING THE COMPOSITION OF CONCERNS

Figure 3: Reification of concern composition

Supported Types of Adaptations

Our model supports five categories of adaptation and each of them addresses several
types of adaptation. This list can be extended in the future if new capabilities are
found useful. Figure 4 shows that the design choices applied to the model enable
to increase at any time the list of adaptations without questioning the model or
the implementation architecture. The five categories of adaptation are presented in
table 1. In particular it indicates if an adaptation introduces a new functionality
(functional adaptation) or if it extends the description of existing functionalities in
order to associate them with some new services (non-functional adaptation).

The adaptations supported by our model fit into this classification as follows
(the order is the same as in table 1):

• implementation of new interfaces or insertion of a new super-class (SuperClas-
sifierIntroduction);

• fusion of methods (MethodMerging) with several variants enabling to specify
that the body of the first method is located before (MergingBefore), after
(MergingAfter) or if one of the method is abstract (MergingWithAbstract),
and fusion of classes (ClassMerging) with the ability, either to only add meth-
ods or attributes (FeaturesOnlyadded), or to merge the body of the methods
(CustomizedMerging);

• insertion (MethodIntroduction) or redefinition of methods (MethodRedefini-
tion);

• insertion of new instance or class variables into classes (AttributIntroduction);

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 123

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

N◦ Description Type of adaptation Target of adaptation

1 Implementation of new interfaces functional Class and set of classes

2 Fusion of classes and methods functional Class and set of classes

3 Addition and redefinition of methods

within classes

functional Class and set of classes

4 Addition of class/instance variables to

classes

functional Class and set of classes

5 Interception before, after, around and on

exception of methods

non-functional Method and set of methods

6 Interception of the accesses to

class/instance variables

non-functional Variable and set of vari-

ables

Table 1: Adaptation categories suitable for the reuse of concerns

• interception before (BeforeInterception), after (AfterInterception), around (Ar-
oundInterception) or when an exception is triggered on methods (OnExcep-
tionInterception), whatever they apply to (instance or class);

• interception of the accesses to the instance or class variables OnGet/OnSet). In
this case we also enable the integration of treatments before or after retrieving
the information (BeforeGet and AfterGet) or before and after updating the
variable (BeforeSet and AfterSet).

Each type of adaptation contains two methods: the first one is check, it controls
that the constraints required by the execution are satisfied; the second one is execute,
it describes the behaviour of the adaptation.

Section 4 will give a preview of some of the adaptations supported by our model
through the continuation of the examples started in Section 2. Section 5 will give
more details about the semantics of adaptations.

4 EQUIPPING A CONCERN TO BE REUSED

As a summary of what was written in the previous sections, we claim that the
implementation of the approach must rely on these two key-ideas :

• Integration of concerns into the programming language used. A first exper-
imentation uses the Java language but the previous sections show that the
approach is not dedicated to a particular language.

• Having a set of adaptation operators which is expressive enough to enable the
composition of functional and non-functional concerns.

124 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

4 EQUIPPING A CONCERN TO BE REUSED

Figure 4: Reification of the adaptations which are supported

In this section we aim to demonstrate that reusability means to propose an
approach for the composition of concerns which relies on the following fundamental
principles:

• Being able to delay the specification of the entities on which the adaptation
applies, whatever the adaptation operator is.

• Encapsulating the definition of the composition protocol (or pattern) which is
dedicated to a given concern in order to make it independent from the context
of the future uses.

• Making the composition protocol expressive enough to guide and control the
reuse of the concern.

• Enabling the concretisation of a composition pattern to adapt it to the context
of use.

• Providing two kinds of composition: if we consider two concerns to be com-
posed, the type in situ composes one of the concern into the other one while
the type ex situ creates a new concern which contains the composition of the
two. The second kind of composition is particularly suitable when a concern
must be composed several times in various locations of the application.

Forthcoming subsections constitute a direct continuation of the examples started
in Section 2. We use the hierarchy of adaptations described in Section 3 in order
to describe successively the composition protocol of the concern Observer and a
specialization of it to take into account specificities of the concern GUI.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 125

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

We decided to make only one concern reusable (the pattern Observer); the
concern GUI is described for the specific needs of the example. This is why this
paper only describes one composition protocol. But if work is done in order to make
the GUI concern reusable, then it would be interesting to define a composition
protocol for it.

Composition Protocol of the Concern Observer

As mentioned earlier, the composition protocol of the design pattern Observer (Fig-
ure 5) has two main objectives:

• describing the methodology associated with the use of the concern to assist
the programmer during the reuse process,

• providing the necessary material to control that the programmer applies the
given methodology when he adapts the composition protocol to a specific
context (for example the one of the concern GUI).

The syntax proposed hereafter5 is essential because it corresponds to what is
given to the programmer of the design pattern Observer to specify its methodology
of reuse. However, it is only a particular view of the model of which Sections 2 and
3 gave an overview. Still, we initially wanted to make the syntax as close as possible
to the Java language in order to consider the entity adapter as a special kind of
classifier [20]. But the specificity of its contents led us to prefer an ad hoc syntax
guaranteeing a better readability and making it possible to consider the extension
as a language dedicated to the adaptation of classes (Domain Specific Language).
Only the pieces of code describing the behaviour to be inserted or modified are
written with the application programming language. Currently we are thinking of
some syntax refinement to better isolate the corresponding statements.

While examining the contents of Figure 5 we notice that it is independent from
its future contexts of use. The line 01 indicates the concern to which the com-
position protocol (the design pattern Observer) is attached. The entity describ-
ing a composition protocol (ligne 02) is an adapter (keyword adapter) and has a
name (here ObserverAdapter). The keyword abstract appears before the keyword
adapter because the adapter contains some abstract adaptations. Adaptations are
introduced by the keyword adaptation. Each of them has a name and relies on
entities (class, method, attribute), which represent the adaptation targets (keyword
target). The keyword abstract precedes each abstract adaptation or abstract
adaptation target and it is mandatory to specify a comment. We consider that the
documentation of an adapter is crucial because it improves the reusability of con-
cerns. The description of the composition protocol proposed hereafter is made up
with three parts: i) the observable entities, ii) the entities which observe and, iii)
the concern which uses the design pattern.

5The examples of adapters presented in this paper only use a part of this syntax.

126 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

4 EQUIPPING A CONCERN TO BE REUSED

01 package designpattern.observer

02 abstract adapter ObserverAdapter {
03

04 abstract Class target ‘‘class(es) being used as an observable ’’ : observableClass

05 abstract Method target ‘‘ method(s) triggering observer’s changes ’’ : notifyingMethod

06 require notifyingMethod in observableClass.*

07

08 adaptation becomeObservable ‘‘Modify class in order to make it observable ’’ :

09 extend class ImplObservable with observableClass

10 adaptation notifyingObserver

11 ‘‘ Alter notifyingMethods to tell observers about modification ’’ :

12 extend method notifyingMethod(...) with after { notifyObservers(); }
13 ---

14 abstract Class target ‘‘class being used as an observer ’’ : observerClass

15

16 adaptation becomeObserver ‘‘Modify class to make it an observer ’’ :

17 inherit Observer in observerClass

18 abstract adaptation observerUpdate ‘‘Introduce the updateObserver method in the observer class ’’ :

19 introduce method public void updateObserver(Observable o) in observerClass

20 ---

21 abstract Class target

22 ‘‘Class(es) initializing observable or observers objects ’’ : applicationInitClass

23 abstract Method target

24 ‘‘Method(s) creating observable or observer objects ’’ : applicationInitMethod

25 require applicationInitMethod in applicationInitClass.*

26 abstract Attribute target

27 ‘‘Attributes(s) pointing out observable objects ’’ : observableInstance

28 require observableInstance in applicationInitMethod.*

29 abstract Attribute target

30 ‘‘Attributes(s) pointing out observer objects ’’ : observerInstance

31 require observerInstance in applicationInitMethod.*

32

33 adaptation initApplication

34 ‘‘Alter applicationInitMethod to insert observers in the list of observables ’’ :

35 extend method ApplicationInitClass.applicationInitMethod(...) with after {
36 ObservableInstance.addObserver(ObserverInstance);

37 }
38 }

Figure 5: Composition Protocol of the Pattern Observer

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 127

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

The lines 04 to 13 describe the targets and adaptations related to the observable
entities. The adaptation targets observableClass and notifyingMethod respec-
tively deal with the observed instances and the methods that must notify the entities
observing them. At the time the composition protocol is specified, these methods
and classes are not known yet, this is why the targets are preceded by abstract.
They will become concrete when the programmer who wants to use the design
pattern composes it with the chosen concern (GUI in our example). Nevertheless
because it is possible to specify abstract adaptation targets, it is already possible to
describe the corresponding adaptations. Two adaptations were specified: one of type
FeaturesOnlyAdded (keyword extend class) and another of type AfterInterception
(keyword extend method).

The first adaptation indicates that the contents of class ImplObservable must
be inserted into the classes whose instances are observed. For the languages with
multiple inheritance, such adaptation could be replaced by an adaptation of type
SuperClassIntroduction. The second adaptation describes the insertion of a call of
the method identified by notifyObservers at the end of the methods referred to by
notifyingMethod. These methods must belong (keyword require) to the observed
classes (observableClass). The call to the method notifyObservers enables the
instances of the classes to play the role of observers to be warned of some state
changes and to trigger the execution of a set of statements.

The lines 14 to 20 describe the adaptation target and two adaptations dealing
with classes whose instances observe those addressed by the lines 4 to 13. The adap-
tation target observerClass refers to the classes chosen for playing this role. These
two adaptations are of type SuperClassIntroduction (keyword inherit) and of type
MethodIntroduction (keyword introduce method). The first adaptation adds the
interface Observer to the classes attached to the adaptation target observerClass6.
Let us mention that the interface Observer contains a method update which is of
course abstract so that the second adaptation is abstract too. This indicates that an
implementation must be attached when the context of use is known. It corresponds
to the action to be performed on the observing instances.

The lines 21 to 37 describe the initialisation required to introduce the design
pattern into the user concern. This initialisation fills the contents of the collection of
instances which observe. It is located in the observed instances. The collection corre-
sponds to the attribute observers and insertion of instances is done through method
addObserver, both of them defined in the class ImplObservable. Four adaptation
targets are specified to implement this initialization: i) applicationInitClass

and applicationInitMethod correspond to the classes and methods where the at-
tachment between the observed instances and the ones which observe is set, ii)
observableInstance points out to the attributes referring to the observed instances
and, iii) observerInstance records the attributes referring to the instances which
observe. The insertion of the attachment is done through an adaptation of type
AfterInterception (keyword extend method).

6Everything works as if those classes were specifying the declaration implements Observer

128 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

4 EQUIPPING A CONCERN TO BE REUSED

We may also note that the composition protocol described in Figure 5 permits to
ensure that the attributes pointed out by observableInstance and observerIns-

tance are declared within the method which correspond to applicationInitMethod
(keyword require). The same approach is used (lines 06 to 12) to ensure that
the methods pointed out by the adaptation target notifyingMethod belong to the
observed classes.

GUI-specific Adaptation

Let us now compose the concern related to the design pattern with the concern
GUI. This task, which is assigned to the programmer of the application, is specified
within a concrete adapter (Figure 6). Its contents seems a priori very simple but
we show that inheritance of the abstract adapter (Figure 5) allows to control that
the content is consistent with the composition protocol. The reader may also notice
that the abstract adapter contains enough information to produce a comprehensive
skeleton of the concrete adapter.

Lines 01 and 02 indicate that the concern Observer is composed (keyword
compose) with the concern GUI. Because the package of the adapter (package
application.IHM) is the same as the one of the concern GUI, the composition is
then in situ. The adaptations will be performed directly within the classes Button,
Label and ApplicationInterface which are in this package. Choosing a compo-
sition ex situ would produce the result of the composition in another container. It
would also facilitate a new composition of the design pattern Observer with, for
example, a transparent handling of the storage of the modified objects.

The adapter ApplicationIHM makes the adapter ObserverAdapter concrete.
Its role is to complete its declarations. It is the adaptation name or the adaptation
target that enable to bind the adapter with its homonym in the abstract adapter.
The major part of these declarations is made with abstract adaptation targets (lines
04 to 10). It is worth mentionning that if one of the adaptation targets is missing
ApplicationIHM, this will be detected, because it is not possible to define a concrete
adapter if some of its caracteristics remain abstract7.

The concretization of the abstract adaptation targets implicitly completes the
declaration of the corresponding adaptations. One may notice that some of the adap-
tation targets are concretized by an explicit enumeration of identifiers (observable-
Class, ObserverClass, notifyingMethod or applicationInitMethod), whereas
others are concretized by a regular expression (observableInstance and observer-

Instance). Note that the concretization of an adaptation target may rely on another
one declared within the adapter itself or in one of its parents (lines 08 to 10). To
make the description of adaptation targets easier we should not restrict ourselves to

7Of course nothing prevents us from building a new abstract adapter that inherits from an
existing one, either to add some new adaptations or to make some of its adaptations or adaptation
targets concrete.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 129

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

01 package application.ihm

02 compose designpattern.observer.* with application.ihm

03 adapter ApplicationIHM extends ObserverAdapter {
04 target observableClass = application.ihm.Button

05 target observerClass = application.ihm.Label

06 target notifyingMethod = application.ihm.Button.fireActionPerformed()

07 target applicationInitClass = application.ihm.ApplicationInterface

08 target applicationInitMethod = applicationInitClass.applicationInterface()

09 target observableInstance = applicationInitMethod.button*

10 target observerInstance = applicationInitMethod.label*

11

12 adaptation observerUpdate :

13 introduce method public void updateObserver(Observable o) {
14 setText(‘‘I have been notified of a button click’’);

15 } in observerClass

16 }

Figure 6: Concretization of the composition protocol for the GUI

classical regular expressions8 but we should extend their expressiveness to be able
to point out, without enumerating them, the whole set of leaves of a hierarchy or
all ancestors of a class. At the end, ApplicationIHM contains the description of the
body of method update which should handle the specific needs of the concern GUI9.
If you forget to concretize this method, it will be detected when the composition is
performed.

To better differentiate the adapter and the behaviour attached to the concern, it
may be interesting to isolate the pieces of code representing this behaviour (which
is currently specified within the adapter; see line 12 of Figure 5 and lines 12 to 15
of Figure 6), into a specific class and to refer to it within the adapter.

5 MORE ON THE SEMANTICS OF ADAPTATIONS

This section adds more details about the description of the set of adaptations sup-
ported by our approach. When it is suitable it refers to the example of composition
of concerns presented in Section 4.

Providing the full reification of the adaptations would take too much space with-
out bringing so much significant information. Therefore, we only mention the reifi-
cation details and the controls influencing the understanding of the model10.

There are eight variants of adaptation of type Interception. They apply at dif-
ferent steps of a method execution or of an attribute access. They are strongly
influenced by AspectJ [11, 10]. They deal with attributes and method bodies. In
the context of Java, these adaptations are performed more on classes than on inter-
faces because the latter may not contain method bodies and the attributes are only
class constants (defined as static final).

8In the current implementation their expressiveness relies on the API java.util.regex of Java.
9Even if, in our example, the associated behaviour is very basic.

10The detailed reification of each adaptation appears in [20].

130 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

5 MORE ON THE SEMANTICS OF ADAPTATIONS

Four adaptations deal with methods. The adaptation AroundInterception en-
ables executing a piece of code attached to the adaptation. Very often this code
contains one condition if-then-else with, in one of the parts then or else, the key-
word proceed, which means to perform the original code of the method. This type
of interception enables choosing whether the method must be performed according
to the context of execution.

The adaptation BeforeInterception (respectively AfterInterception) enables exe-
cuting a piece of code before the first statement (respectively after the last statement,
when it ends normally) of the original code of the method. If an exception is triggered
and we need to modify the corresponding behaviour, then the adaptation OnExcep-
tionInterception must be used to specify the additional statements that should be
performed if an exception is triggered. Adaptations of type AfterInterception are
showed in Figure 5 lines 10 to 12 and lines 33 to 36.

Four other adaptations apply to attributes (whether they are shared by all occur-
rences of a class or belong to only one given occurence). These adaptations enable to
specify a piece of code when the value of an attribute is read OnGetInterception or
modified OnSetInterception. The execution of this piece of code is triggered either
before this operation (BeforeGet or BeforeSet), or after (AfterGet or AfterSet).

There is another type of adaptation related to the body of a method: the Metho-
dRedefinition. It allows the method body to be modified freely. Its counterpart for
attributes also exists for programming languages supporting this feature (for exam-
ple Eiffel).

The fusion of a class A with a class B is implemented by adaptations of type
ClassMerging. They are inspired by facilities provided by Hyper/J [18]. Their
semantics is the following: i) The super-classes of class A are inserted in the list of
super-classes of class B. Of course, when the language supports single inheritance
only, it is not possible to add any super-class if the class already has one (which
is not inherited implicitly like Object in Java). ii) If people want that the fusion
corresponds only to insertion of additional methods (with handling of possible name
conflicts), they should use the adaptation FeaturesOnlyAdded, otherwise there is
CustomizedMerging. For each method of class A, if one method with the same
signature already exists in class B, then an adaptation of type MethodMerging is
performed on the two methods (at present time, there are three kinds of method
fusion and it is possible to choose the kind of fusion to be applied), otherwise the
method is added to class B (adaptation of type MethodIntroduction). iii) Each
attribute of class A, which does not already exist within B, is copied into it. An
adaptation of type FeaturesOnlyAdded is proposed in the lines 08 and 09 of Figure
5.

The types of adaptation implementing the fusion of one method M with a method
M’ are a specialisation of MethodMerging. They have the following semantics:

• When both methods are abstract, the result of the fusion is also abstract.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 131

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

• If only one of the two methods is concrete (adaptation MergingWithAbstract),
then its body becomes the result of the fusion.

• If both methods are concrete then it is necessary to choose whether the body
of method M must be performed before the one of method M’ (adaptation
MergingBefore) or after (adaptation MergingAfter).

From our point of view, the facilities provided by these last two adaptations are
not sufficient and in most situations the code will have to be inserted somewhere
else or conditionally. To cope with that, a first solution is to use an adaptation of
type MethodRedefinition but it implies a duplication of code. Another possibility
is to introduce a new type of adaptation that enables to make a fusion under some
condition like in an adaptation of type AroundInterception.

In addition to the adaptations dedicated to the fusion, interception or redefini-
tion, we propose adaptations enabling the insertion of super-classes, methods and
attributes. The adaptation MethodIntroduction enables adding a new method to a
classifier11 when it does not already exist in the classifier, otherwise this is a redefi-
nition MethodRedefinition). An example of this adaptation is proposed in Figure 5
(lines 18 and 19).

The adaptation AttributeIntroduction allows to add an attribute to a class if it
does not already exist in the classifier.

The adaptation SuperClassIntroduction enables inserting a classifier within the
list of super-classes. One example of this type of adaptation is given lines 16 and
17 of Figure 5. Let us mention that for the object-oriented languages supporting
several kinds of classifiers such as classes (abstract or not) and interfaces, like Java,
it is necessary to adapt the semantics of this adaptation. It is also the case when
there are fundamental differences between inheritance mechanisms, for example,
that inheritance is multiple in Eiffel and C++ and single in Java and C#. In our
implementation for the Java language, we made the following choices: i) This adap-
tation applies to both classes and interfaces, ii) It is forbidden to add an interface
if it already belongs to the list of direct ancestors and, iii) A super-class may be
introduced if the class implicitly inherits from the class Object only.

6 IMPLEMENTATION AND RELATED WORKS

In this section we first give an overview of the implementation, then we compare
our work with AspectJ and Hyper/J. Finally we address other interesting related
works.

11In Java it applies to both classes and interfaces but for the latter, the method must be abstract
and public.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

6 IMPLEMENTATION AND RELATED WORKS

Overview of the Implementation

The model presented in the previous sections was implemented as a prototype
(JAdaptor), it allowed us to validate the example proposed in Sections 2 and 4.
The remaining part of this section gives an overview of the prototype implementa-
tion. A more detailed description is available in [20].

JAdaptor was implemented with Eclipse [6] as an extension of the Java plugin
that comes with the Eclipse delivery. JAdaptor was implemented as a precompiler
which is executed before the Java compiler. The main tasks performed by the
precompiler are:

• the retrieval of information corresponding to the source code and to the adapters,
contained in the abstract syntax trees12,

• checking of the information consistency, flattening of the hierarchy of adapters
and composition of concerns,

• the generation of the source code after the composition is achieved.

We chose to use the XML technology and in particular the XML-Schema [22]
as pivot model for the specification of the adapters associated with one concern for
several reasons: i) the description of adapters becomes independent of any language,
which facilitates reuse of the composition protocol, ii) people may benefit from the
large set of tools dedicated to the XML technology like the XML editor of Eclipse or
the JAXB library [15] which enables to generate Java classes automatically from the
information contained in XML files, iii) the generation of a view of adapters with a
dedicated and adequate syntax is straightforward (see Figures 5 and 6). Then it is
quite easy to implement an analyser for this syntax that produces XML files.

It is important to underline that the implementation of this approach relies on
both Model Driven Architecture (MDA) and generative programming. The general
nature of concepts presented in Section 2 shows that concerns could be described
using UML (even if in our examples we used Java). The know-how related to the
composition of concerns (Section 3) is recorded in a model which is independent
from the language to be extended and adaptations are handled by transformations
of the reification of the source code, using generators.

Comparison with AspectJ and Hyper/J

As mentioned in the introduction, two of the main sources of inspiration of our
approach are aspect-oriented programming and subject-oriented programming. We
now have to compare it with those two programming styles and show our contribu-
tion.

12One corresponds to the adaptation specifications and another one to the concerns themselves.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 133

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

Our approach does not aim to compete with the approaches of separation of
concerns but to improve object-oriented languages. Thus it introduces new means
to express the specification of adaptations, which are required for a better reuse
of class hierarchies. This is why our approach may be seen as an extension of an
OO programming language or as a domain-specific language, which is external to
it. In other words, the techniques used come mainly from the ASoC but the object
paradigm is dominant.

Let us now consider the expressiveness of our approach with respect to AspectJ
and Hyper/J and compare the example described in Section 4 with its implementa-
tion in both AspectJ and Hyper/J [8, 20]. We showed above13 that it is crucial to
be able to define a composition protocol which is independent from its future con-
texts of use. But Hyper/J does not allow it and Aspect/J allows it only partially.
For example, in the latter some adaptations such as the insertion of new interfaces,
methods or attributes cannot be defined independently from the context of use. It
is the same thing for the adaptation targets which refer to classes or attributes.

We also noticed some deficiencies for the supported adaptations. Aspect/J does
not provide any adaptation to merge classes or methods. The adaptations provided
by Hyper/J for the interception of method are not sufficient, therefore very few
contextual information is accessible, so that it is not possible to get the parameters
and return value of an adapted method. Moreover Hyper/J does not provide any
adaptation for intercepting the access to an attribute.

Finally, even if our example does not put too much emphasis on the location of
composition, Hyper/J and Aspect/J provide only one mode of composition: ex situ
for the first one, and in situ for the second one.

We can see that Aspect/J has better results than Hyper/J (for the criteria we
are considering). Still, AspectJ has deficiencies. Using it for our example would
yield the following problem: i) It is not possible to specify the insertion of interface
Observer within the composition protocol; ii) The contents of ImplObservable

must be described directly within the abstract aspect (it may be compared to our
abstract adapter); iii) None of the adaptation targets necessary for the implemen-
tation of the initialisation required by the integration of the design pattern may be
described within the composition protocol.

Other Related Works

There are other languages or approaches dealing with AOP and SOP. Among them,
ConcernJ [3] relies on component filters in order to implement the separation of
concern. Caesar [14] mixes AOP with component-oriented programming in such
a way that specifications of aspects (i.e. the interfaces) are separated from their
implementation and from their deployment. JAC [19] is also inspired from compo-
nents but uses a reification for the specification of an aspect and thus requires no

13The Ph.D Thesis of Laurent Quintian [20] provides a more detailed study.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

7 CONCLUSION AND PERSPECTIVES

language extension. Jiazzi [16] allows to program by roles or by points of view, but
the separation of concerns may be performed only within the same class.

The fact that several approaches are influenced by component-oriented program-
ming shows the interest of such an approach for achieving a separation of concerns
and then reusability. We can mention some of the promising features provided by
this paradigm: component substitutability (static and dynamic), hierarchical orga-
nization of components, separation of interface and implementation, separation of
the functional and configuration concerns, etc.

7 CONCLUSION AND PERSPECTIVES

The object-oriented languages at the end of the eighties contributed to a better
reusability of the software but the needs of applications which are greater and greater
everyday point out their limits. This is why we propose a model and its implemen-
tation to improve the reusability of languages while preserving the robustness of
application.

Our approach relies on the idea that to make a concern reusable implies to equip
it with its user manual. One interesting point of our approach is that it is not
only textual and static, it is a full entity (the adapter). It enables the specification
of the entities that will be adapted (the adaptation targets) and the adaptations
themselves. An adapter is used only at the beginning of the compilation process to
weave the concerns involved in an application

An adapter provides i) an encapsulation entity supporting abstract (partial) dec-
larations, ii) typing of both adaptations and adaptation targets, iii) an inheritance
relationship (especially reification inheritance [13]) which implements dynamic bind-
ing between the adaptations and the adaptation targets, iv) an assertion mechanism
in order to specify the dependencies between the adaptation targets and, v) a textual
documentation.

The fact that this approach is independent from the chosen programming lan-
guage is also important even if the description independency of the adapters is not
strong enough from our point of view14. But we study some alternatives like locating
this code outside the adapter, in a class. The model has true evolution capabili-
ties. They rely on an object reification which benefits from the underlying language
(modularity, inheritance. . .). The set of concepts addressed in Section 2 and the
hierarchy of adaptations described by Figure 4 are extendible. The independence of
the approach and the evolutivity of the model are favoured at the implementation
level by the use of the XML technology and by the generative capabilities provided
by the Eclipse platform.

Perspectives of our work include the improvement and extension of the model,
and improvement of its implementation. On the implementation side, it would be

14The treatments to be inserted use the chosen language (for us, Java).

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 135

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

interesting to consider directly the Java byte-code in order, for example, to use our
approach to reuse libraries provided without their source code. It would be also
interesting to validate our model on other languages such as Eiffel or C++.

We aim to perform some improvements upon the suggested model in order to
resolve its weaknesses and to increase the expressiveness of the composition model.
First the hierarchy of adaptations should be extended to offer new adaptation ca-
pabilities. In particular it is necessary to provide the ability to modify the import
clause of a class. The support of this adaptation is mandatory to be able to imple-
ment composition ex-situ within already existing applications and to specify them
into the composition protocol. The fact that generic classes are supported by sev-
eral languages suggests proposing adaptations dedicated to this kind of classifier
which allow to take into account generic parameters. Other improvements include
a better support for composition of adapters attached to the same concern, and
improvement of the flexibility of the composition protocol by enabling to define al-
ternative adaptations. It is important to be able to reuse the associated concern in
an even greater number of contexts without being obliged to reduce the spectrum of
the composition protocol and as a consequence, the programmer assistance and the
controls which are performed. One improvement which derives from the latter is the
implementation of optional clauses. This would enable to differenciate between an
adaptation within the framework of an existing application and another one dealing
with concerns to be composed in order to build an application. A more long term
perspective is to adapt our model to apply it to component-oriented programming
and to model-oriented programming.

REFERENCES

[1] M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-database
integration model: The composition-filters approach. In Proceedings of
ECOOP’92, LNCS(615), pages 372–395. Springer-Verlag, 1992.

[2] G. Bracha and W. Cook. Mixin-based inheritance. In proceedings of OOP-
SLA/ECOOP 90, 1990.

[3] P. Caro. Adding Systemic Crosscuting and Super-Imposition to Composition
Filters. Ph.D Thesis, University of Twente, Netherlands, 2001.

[4] P. Cointe. Reflective languages and metalevel architectures. ACM Comput.
Surveys, 28(4es):151, 1996.

[5] K. Czarnecki and J. Vlissides. Domain-Driven Development. Special Track at
OOPSLA’03 URL: http://oopsla.acm.org/oopsla2003/files/ddd.html, 2003.

[6] Eclipse fundation. Environnement eclipse. http://www.eclipse.org, 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Publishing Co., 1994.

136 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

7 CONCLUSION AND PERSPECTIVES

[8] J. Hannemann and G. Kiczales. Design pattern implementation in java and
aspectj. In proceedings of OOSPLA’02, 2002.

[9] E. Kendall. Role model designs and implementations with aspect-oriented pro-
gramming. In Proceedings of OOPSLA’99, pages 353–369, Denver, Colorado,
United States, November 1999. ACM Press.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
Getting started with aspectj. Communications of the ACM, 44(10):59–65, Oc-
tober 2001.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An
overview of aspectj. In Proceedings of ECOOP’01, LNCS(2072), pages 327–353,
Budapest, Hungary, June 2001. Springer-Verlag.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Lopes, J. Loingtier, and J. Irwin.
Aspect oriented programming. In Proceedings of ECOOP’97, LNCS(1241),
pages 220–242. Springer-Verlag, June 1997.

[13] B. Meyer. Object-Oriented Software Construction. Professional Technical Ref-
erence. Prentice Hall, 2nd edition, 1997.

[14] M. Mezini and K. Ostermann. Conquering Aspects with Casear. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03), Boston, Massachusetts, USA, March 2003, pages 90–99.

[15] Sun microsystems. Java architecture for xml binding jaxb.
http://java.sun.com/xml/jaxb/index.jsp, 2004.

[16] S. McDirmid and W. Hsieh. Aspect-Oriented Programming with Jiazzi. In
Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development (AOSD’03), Boston, Massachusetts, USA, March 2003.

[17] H. Ossher, M. Kaplan, W. Harrison, A. Katz, and V. Kruskal. Subject-oriented
composition rules. In Proceedings of OOPSLA 95, 1995.

[18] H. Ossher and P. Tarr. Hyper/j: Multi-dimentionnal separation of concern for
java. In Proceedings of ICSE’00, 2000.

[19] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Dynamic Wrappers :
Handling he Composition Issue with JAC. In proceedings of TOOLS’01, pages
56–65, 2001.

[20] L. Quintian. JAdaptor : Un modèle pour améliorer la réutilisation des
préoccupations dans le paradigme objet. Ph.D thesis in Computer Science, Uni-
versity of Nice - Sophia Antipolis, France, July 2004.

VOL 5, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 137

NEW PERSPECTIVE TO IMPROVE REUSABILITY IN OBJECT-ORIENTED LANGUAGES

[21] C. Szyperski, J. Bosch, and W. Weck. Component-oriented program-
ming. In Proceedings of the workshop on Component-Oriented Programming
at ECOOP’99, LNCS(1743), pages 184–192, Lisbon, Portugal, June 1999.
Springer-Verlag.

[22] W3C. Xml schema. http://www.w3.org/XML/Schema, 2004.

ACKNOWLEDGEMENTS

We gratefully acknowledge Karine Arnout (ETH Zurich) for her valuable comments
and feedback on the paper.

ABOUT THE AUTHORS

Philippe Lahire is Assistant Professor with an HDR (accredita-
tion to supervise research), at the University of Nice-Sophia An-
tipolis. He can be reached at Philippe.Lahire@unice.fr. See also
http://www.i3s.unice.fr/.

Laurent Quintian received his Ph.D in Computer Science from
the University of Nice-Sophia Antipolis. He can be reached at Lau-
rent.Quintian@unice.fr. See also http://www.i3s.unice.fr/.

138 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 1

mailto:Philippe.Lahire@unice.fr
http://www.i3s.unice.fr/
mailto:Laurent.Quintian@unice.fr
mailto:Laurent.Quintian@unice.fr
http://www.i3s.unice.fr/

