
Vol. 4, No. 10, 2005

Global and Local Virtual Functions in C++

Christian Heinlein, Dept. of Computer Science, University of Ulm, Ger-
many

Global virtual functions (GVFs) are introduced as C++ functions defined at global
or namespace scope which can be redefined later similar to virtual member functions.
Even though GVFs are a relatively simple concept, hardly more complex than ordi-
nary C functions, it is shown that they subsume object-oriented single, multiple, and
predicate-based method dispatch as well as aspect-oriented before, after, and around
advice. Furthermore, the well-known “expression problem” can be solved in a simple
and natural way. Local virtual functions are a straightforward extension of GVFs allow-
ing temporary redefinitions during the execution of some other function or part of it.
Amongst others, this is quite useful to simulate “cflow join points” of aspect-oriented
languages. The implementation of global and local virtual functions by means of a
precompiler for C++ is briefly described.

1 INTRODUCTION

C++ provides both global functions (defined at global or namespace scope, i. e., out-
side any class) and member functions belonging to a particular class [18]. The latter
might be defined virtual to support dynamic binding and object-oriented program-
ming, while the former are always bound statically.

A severe limitation of (virtual) member functions (that is also present in other
object-oriented languages where member functions are usually called methods) is
the fact that they must be declared in the class they belong to, and it is impossible
to declare additional ones “later,” i. e., in a different place of a program. This leads
to the well-known “expression problem” [19], i. e., the fact that it is easy to add new
(sub)classes to an existing system, but very hard to add new operations to these
classes in a modular way, i. e., without touching or recompiling existing source code.
The Visitor Pattern [7] has been developed as a workaround to this problem, but
its application is rather complicated and must be planned in advance, i. e., it does
not help to cope with unanticipated software evolution.

On the other hand, global functions can be added to a system in a completely
modular way at any time without any problems. However, they suffer from the fact
that they are always bound statically (i. e., they cannot be overridden or redefined),
which makes it hard to add new subclasses to a system whose operations are imple-
mented as such functions.

Given these complementary advantages and disadvantages of global functions
and virtual member functions, it seems very promising to provide global virtual

Cite this article as follows: Christian Heinlein: Global and Local Virtual Functions in C++ ,
in Journal of Object Technology, vol. 4, no. 10, 2005, pages 71–93,
http://www.jot.fm/issues/issues 2005 12/article4

http://www.jot.fm/issues/issues_2005_12/article4

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

functions (GVFs, cf. Sec. 2) which combine their advantages:

• Because they will be defined at global (or namespace) scope, it will always be
possible to add new GVFs to an existing system without needing to touch or
recompile existing source code.

• Because they will be bound dynamically, it will always be possible to redefine
them later if new subclasses have been added to a system, again without
needing to touch or recompile existing source code.

In particular, the expression problem can be solved in a very simple and straight-
forward way (much simpler as suggested, for instance, by [19], where generics are
used as a technical trick to solve a problem that is not inherently generic), and
advanced dispatch strategies such as multiple or predicate dispatch [6] happen to
become special cases of GVFs (cf. Sec. 3).

Furthermore, the particular kind of dynamic binding that will be employed will
also allow the flexible extension and/or modification of existing GVF definitions in a
manner similar to advice in AspectC++ [17] and comparable languages (cf. Sec. 4).

As a straightforward extension of global virtual functions, local virtual functions
(LVFs) can be used to temporarily override an existing GVF during the execution
of some other function (or part of it) by providing a local redefinition in the corre-
sponding statement block. Amongst others, this concept is quite useful to simulate
so-called cflow join points of aspect-oriented languages (cf. Sec. 5).

Even though the basic concept of global and local virtual functions is language-
independent and might be incorporated into any imperative (i. e., procedural or
object-oriented) programming language, it has been implemented as a precompiler-
based language extension to C++ (cf. Sec. 6).1

Since the concept is similar to several other approaches found in the literature,
a discussion of related work is given (cf. Sec. 7) before the paper is concluded in
Sec. 8.

2 GLOBAL VIRTUAL FUNCTIONS

Basic Concept

A global virtual function (GVF) is an ordinary C++ function defined at global
(or namespace) scope whose definition is preceded by the keyword virtual (whose
application is restricted to member functions in original C++). In contrast to normal
functions, which adhere to the one definition rule [18], i. e., a program must not
contain more than one definition of the same function (except if it is an inline or

1Furthermore, GVFs have also been implemented earlier as so-called dynamic class methods in
Java [9] and as dynamic procedures in Oberon(-2) [8].

72 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

2 GLOBAL VIRTUAL FUNCTIONS

template function, in which case the definitions in all translation units must be
identical), a GVF might be defined multiple times with different function bodies in
the same or different translation units. In such a case, every new definition (also
called a branch of the GVF) completely overrides the previous definition, so that
calls to the function will be redirected to the new definition as soon as it has been
activated during the program’s initialization phase (see below for a precise definition
of activation). However, every branch of a GVF is able to call the previous branch
of the same GVF by using the keyword virtual as the name of a parameter-less
pseudo function that calls the previous branch with the same arguments as the
current branch (even if the formal parameters have been modified before calling
virtual).

To give a simple example, consider the following GVF f computing the partially
defined mathematical function f(x) = x sin(1/x):

virtual double f (double x) { return x * sin(1/x); }

Since this function is undefined for x = 0, mathematicians might extend its def-
inition by declaring f(0) = limx→0 f(x) = 0. This can be reflected by an additional
branch of the GVF that completely overrides the original definition, but calls it via
the pseudo-function virtual if x is different from zero:

virtual double f (double x) {
if (x == 0) return 0;

else return virtual();

}

For every GVF, there is an initial branch zero, playing the role of the previous
branch of the first branch, that is either empty (if the result type of the GVF is
void) or returns a default value of its result type by calling its parameter-less con-
structor.

Modules

A branch of a GVF is activated at the same time the initialization of a global variable
defined immediately before or after the branch would be executed during the pro-
gram’s initialization phase [18]. This implies that the branches of a GVF which are
defined in the same translation unit will be activated in textual order, which is rea-
sonable. If branches of the same GVF are distributed over multiple translation units,
however, their activation order will be partially undefined since the C++ standard
does not prescribe a particular initialization order for variables defined in different
translation units. Because this is unacceptable for many practical applications, a
module concept similar to Modula-2 [20] and Oberon [21] has been incorporated
into C++, that (amongst other useful things) defines a precise initialization order

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 73

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

of the modules making up a program and consequently also a precise activation
order of the branches of GVFs.

A module in this extension of C++ is a top-level namespace that might be struc-
tured into public, protected, and private sections, just like a class or struct (with
the first section being implicitly public). In contrast to normal namespaces, whose
definition might be distributed over multiple translation units, a module must be
completely defined in a single translation unit (and typically, a translation unit con-
tains exactly one module). Furthermore, a module might nominate base modules
(similar to the base classes of a class) on which it depends, i. e., whose public defi-
nitions it wants to use, e. g.:

// Module A depending on base modules B and C.

namespace A : B, C { /* definitions of module A */ }

By specifying such base modules (B and C in the example), their public definitions
will be available in the dependent module (A) as if they have been inserted before
its own definition (similar to #include files):2

namespace B { /* public definitions of module B */ }
namespace C { /* public definitions of module C */ }
namespace A { /* definitions of module A */ }

Furthermore, it will be guaranteed that modules B and C will be initialized (in this
order) at run time (and consequently, the branches of GVFs defined in these base
modules will be activated) before the dependent module A will be initialized (i. e.,
before branches defined there will be activated). Expressed differently, the overall
initialization order of the modules making up a program is determined by traversing
the directed acyclic graph consisting of modules (nodes) and inter-module depen-
dencies (edges) in a depth-first, left-to-right manner (where left-to-right corresponds
to the textual order of the base module specifications of a module), starting at a
designated main module and visiting each module exactly once (i. e., ignoring al-
ready visited ones). If, for example, the main module A depends on B and C (in this
order) and C depends on D and B (in this order), the overall initialization order will
be B, D, C, A. (In particular, B will be initialized before D, even though the textual
order of their specification as base modules of C is different, because B’s specification
in A precedes that of C.)

GVF (and other) definitions appearing in a public section of a module will be
reduced to bare declarations when the public part of the module gets inserted before
another module in order to avoid multiple definitions (and activations) of the same
branches. Those appearing in a protected section can be redefined in the dependent

2To actually use a name such as b provided by a base module such as B, the normal C++
rules for name lookup apply, i. e., b must either be qualified as B::b or “imported” by a using
declaration using B::b; To simplify the “import” of multiple names from the same module, the
syntax of using declarations has been generalized to, e. g., using B { b1, b2, b3 };

74 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

3 OBJECT-ORIENTED APPLICATION

module, but cannot be called from there. This allows a module to provide “hooks” to
internal functions where other modules can “hang on” extensions, without allowing
them to directly call these functions.

To redefine a GVF defined in a base module, its qualified name has to be used,
even if its name has been explicitly imported by a using declaration.

3 OBJECT-ORIENTED APPLICATION

The Expression Problem

Figure 1 shows a simple class hierarchy for the representation of arithmetic expres-
sions (root class Expr) consisting of constant expressions (derived class Const) and
the four basic arithmetic operations (derived classes Add, Sub, Mul, and Div with
common intermediate base class Binary). Furthermore, a GVF eval is defined which
evaluates an expression x, i. e., computes its value.

The first branch of this function uses an explicit dynamic cast operator to test
whether the argument x is actually a constant expression c and, if this is the case,
returns its value val. Otherwise, the previous branch of the function (i. e., branch
zero) would be called via virtual(), which should never happen in this example,
however, since all other kinds of expressions will be handled by the subsequent
branches of the function.

The second branch shows a more convenient way to express this frequently occur-
ring programming idiom: “If the function arguments satisfy some condition, execute
some code, otherwise delegate the call to the previous branch.” By moving the con-
dition from the body to the head of the function, where it acts as a kind of guard,
the stereotyped else clause can be omitted.

The third branch shows an even more convenient way to perform a dynamic
type test in such a condition by using the colon operator which is very similar to
Java’s instanceof operator, but does not exist in standard C++. In addition to
performing the respective dynamic cast, this operator causes the static type of the
parameter x (which is Expr* from a caller’s point of view) to become Sub* in the
function’s body (and any guards that might appear in its head), thus eliminating
the need for an extra variable of that type.

Figure 2 shows a typical operational extension of the system defined so far that
adds a new operation to the existing class hierarchy, namely the output operator <<.3

In the normal object-oriented paradigm, adding this operation in a modular way
(i. e., without touching or recompiling the existing source code) would be impossible,
because in order to be dynamically dispatchable it would be necessary to add it as
virtual member functions to the existing classes Expr, Const, etc. Furthermore, the

3C++ standard include files such as iostream can be used as base modules in a module defi-
nition.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 75

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

namespace expr {

// General expression.

struct Expr {

// Virtual desctructor to make the type "polymorphic",

// i. e., allow dynamic_cast.

virtual ~Expr () {}

};

// Constant expression.

struct Const : Expr {

int val; // Value of expression.

};

// Binary expressions.

struct Binary : Expr {

Expr* left; // Left and right

Expr* right; // subexpression.

};

struct Add : Binary {};

struct Sub : Binary {};

struct Mul : Binary {};

struct Div : Binary {};

// Evaluate constant expression.

virtual int eval (Expr* x) {

if (Const* c = dynamic_cast<Const*>(x)) return c->val;

else return virtual();

}

// Evaluate addition.

virtual int eval (Expr* x) if (Add* a = dynamic_cast<Add*>(x)) {

return eval(a->left) + eval(a->right);

}

// Evaluate subtraction.

virtual int eval (Expr* x : Sub*) {

return eval(x->left) - eval(x->right);

}

// Likewise for Mul and Div.

......

}

Figure 1: Basic implementation of arithmetic expressions

76 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

3 OBJECT-ORIENTED APPLICATION

operation is problematic from an object-oriented point of view because it shall not
dispatch according to its first argument (which is the output stream), but according
to the second. (This problem could be solved by defining operator<< as a normal
function that calls an auxiliary member function on its second argument.) With
global virtual functions, however, the extension can be done in a very simple and
natural way.

namespace output : iostream, expr {

using iostream { ostream };

using expr { Expr, Const, Add, Sub, Mul, Div };

// Print constant expression.

virtual ostream& operator<< (ostream& os, Expr* x : Const*) {

return os << x->val;

}

// Print addition.

virtual ostream& operator<< (ostream& os, Expr* x : Add*) {

return os << ’(’ << x->left << ’+’ << x->right << ’)’;

}

// Likewise for Sub, Mul, and Div.

......

}

Figure 2: Operational extension

Finally, Fig. 3 shows a subsequent hierarchical extension of the existing system
that adds a new derived class Rem representing remainder expressions, together with
appropriate redefinitions of the GVFs eval imported from expr and operator<<

imported from output. Even though adding new subclasses to an existing class
hierarchy is basically simple in the object-oriented paradigm, this extension would
be difficult, too, if the operational extension mentioned above would have been
performed by employing the Visitor Pattern [7], because in that case it would be
necessary to add new member functions to all existing visitor classes. Again, by
using global virtual functions, the extension can be done in a simple and natural
way.

Multiple and Predicate Dispatch

Figure 4 shows that it is equally easy to write GVFs that dispatch on the dynamic
type of more than one argument, i. e., perform multiple dispatch. In this (somewhat
artificial) example it is assumed that output to a file shall be more verbose than
output to other kinds of streams.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 77

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

namespace rem : iostream, expr, output {

using iostream { ostream };

using expr { Expr, Binary, eval };

using output { operator<< };

// Remainder expression.

struct Rem : Binary {};

// Evaluate remainder expression.

virtual int expr::eval (Expr* x : Rem*) {

return eval(x->left) % eval(x->right);

}

// Print remainder expression.

virtual ostream& output::operator<<

(ostream& os, Expr* x : Rem*) {

return os << ’(’ << x->left << ’%’ << x->right << ’)’;

}

}

Figure 3: Hierarchical extension

Finally, Fig. 5 demonstrates that a GVF might actually dispatch on any predicate
over its arguments (or even other information such as values of global or environment
variables, user preferences read from a configuration file, etc.). The module shown
maintains an RPN flag for every output stream (e. g., by employing xalloc [18])
that indicates whether output of expressions to that stream shall be performed
in Reverse Polish Notation. If this flag is set for a particular stream, output of
binary expressions is changed accordingly. To keep the implementation hierarchically
extensible, the internal helping function opchar that returns the operator character
corresponding to a binary expression is declared protected so that other modules
can add additional branches on demand.

4 ASPECT-ORIENTED APPLICATION

It is rather obvious that GVFs might also be used to implement typical crosscutting
concerns such as logging by grouping appropriate redefinitions together in a single
module (cf. Fig. 6). In contrast to the examples seen so far, where every branch of a
GVF is guarded by an appropriate condition and the previous branch is called im-
plicitly if this condition is violated, the redefinitions shown here are unconditional
and call the previous branch explicitly in their body. By that means, it is easily
possible to implement before, after, and around advice, to use aspect-oriented ter-

78 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

4 ASPECT-ORIENTED APPLICATION

namespace file_output : iostream, fstream, expr, output, rem {

...... // using-declarations

// Print constant expression to a file.

virtual ostream& output::operator<<

(ostream& os : ofstream&, Expr* x : Const*) {

return os << "constant expression"

<< " with value " << x->val;

}

......

// Print remainder expression to a file.

virtual ostream& output::operator<<

(ostream& os : ofstream&, Expr* x : Rem*) {

return os << "remainder expression with left operand ("

<< x->left << ") and right operand (" << x->right << ")";

}

}

Figure 4: Multiple dispatch

namespace rpn : iostream, expr, output, rem {

...... // using-declarations

// Set and get RPN flag of output stream.

virtual void setrpn (ostream& os, bool f);

virtual bool getrpn (const ostream& os);

protected:

// Get operator character of binary expression.

virtual char opchar (Expr* x : Add*) { return ’+’; }

virtual char opchar (Expr* x : Sub*) { return ’-’; }

......

public:

// RPN output of binary expression.

virtual ostream& output::operator<<

(ostream& os, Expr* x : Binary*) if (getrpn(os)) {

return os << x->left << ’ ’ << x->right << ’ ’ << opchar(x);

}

}

Figure 5: Predicate dispatch

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 79

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

minology [17], without the need to introduce any new language constructs nor to
employ some additional “aspect weaving” mechanism for that purpose.

The “join points” directly supported that way are call resp. execution of global
virtual functions. However, if the information hiding principle [16] is applied strictly
by encapsulating all set and get operations on data fields in GVFs, these kinds of
join points can be covered, too. Finally, Sec. 5 will demonstrate how control flow
join points can be simulated by employing local virtual functions.

The “weaving” of “aspects” defined by global (or local) redefinitions of GVFs is
implicitly performed by the general rule stated in Sec. 2 that each new definition
of a GVF completely overrides the previous definition. Calling the pseudo-function
virtual in a redefinition corresponds to executing proceed in AspectC++ and
comparable languages.

namespace logging : iostream, expr, output {

...... // using-declarations

// Log executions of eval.

virtual int expr::eval (Expr* x) {

int val = virtual();

cout << "value of " << x << " is " << val << endl;

return val;

}

// Log executions of operator<<.

virtual ostream& output::operator<< (ostream& os, Expr* x) {

cout << "output of " << x << endl;

return virtual();

}

}

Figure 6: A crosscutting concern

5 LOCAL VIRTUAL FUNCTIONS

Basic Concept

Local virtual functions are a straightforward extension of global virtual functions,
allowing a GVF to be temporarily redefined by a local branch, i. e., a branch defined
locally in another function.4 According to the normal scoping rules, such a local

80 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

5 LOCAL VIRTUAL FUNCTIONS

function can access the local variables of its enclosing function(s).

A local branch of a GVF is activated, i. e., pushed on a stack of local redefinitions
of its function, when the control flow of its lexically enclosing function reaches its
definition. It is deactivated, i. e., popped from the stack of redefinitions, when the
block (or compound statement) containing its definition is left in any way, either
normally by reaching its end or abruptly due to the execution of a throw expression
or a return, break, continue, or goto statement (including non-local jump state-
ments described below). Thus, the time of activation resp. deactivation corresponds
exactly to the time where a constructor resp. destructor of a local variable defined
instead of the local branch would be executed. Expressed differently, this means that
a local redefinition of a GVF is in effect from its point of definition until the end of
the enclosing block.

Even though C++ does not provide a notion of threads as part of the language,
a separate stack of local redefinitions of a function is maintained for every thread
of a program, if multi-threading is provided by some library. Thus, for every GVF,
there is a global list of its global branches plus a thread-local stack of its currently
active local branches per thread. A call to the function from within a particular
thread executes the local branch on top of its stack (if any), whose previous branch
is either the next lower branch on the stack (if any) or else the last branch of the
global list, etc. (cf. Fig. 7).

global
list

stack of
thread 1

stack of
thread 2

Figure 7: Global and thread-local branches of a global virtual function

Non-Local Jump Statements

When a jump statement, i. e., a return, break, continue, or goto statement, is
executed within a local function, its effect is, of course, local to this function, i. e., a
return statement terminates the local function, while a break, continue, or goto
statement transfers control to the appropriate place within this function.

Occasionally, however, it is useful to perform a non-local jump, i. e., to execute
a statement that transfers control out of the local function to a place within (one
of) its enclosing function(s). (Since a local function is in effect only while its en-
closing function is executing, transferring control to the latter is basically possible.)

4This other function might be any kind of function, including normal global and member func-
tions as well as global and local branches of GVFs (allowing even arbitrarily nested local functions).

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 81

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

For example, one might want to execute a return statement that immediately ter-
minates the enclosing function or a break/continue statement that immediately
terminates/continues a loop within the enclosing function. For that purpose, it is
possible to prefix a return, break, or continue statement5 with one or more extern
keywords to indicate that the statement shall be executed as if it were part of the
nth statically enclosing function where n is the number of extern keywords given.

Executing such a non-local jump statement obviously causes abrupt termination
of the function executing it as well as all intermediate functions that have been called
directly and indirectly from the respective enclosing function. To stay compatible
with common C++ semantics, terminating these functions implies the process of
stack unwinding where destructors for all local variables declared in these functions
are executed in reverse order of their constructor invocations [18]. Therefore, the
effect of a non-local jump statement is equivalent to throwing an exception that is
caught at the appropriate place in the designated enclosing function and executing
the corresponding ordinary jump statement from there. The “appropriate place” in
the enclosing function would be a catch block associated with a try block replacing
the innermost block containing the local function definition.

Example

To give an example of local virtual functions and non-local jump statements, Fig. 8
shows a simple module users providing a structure type User with data fields id,
name, and passwd as well as global virtual functions read char (reading a single
input character), read field (reading an input field, i. e., a sequence of characters
up to the next colon or newline character), and read user (reading a complete user
record consisting of id, name, and password fields). If user records are kept in a text
file where each line contains three colon-separated fields, such a file can be read by
repeatedly calling the function read user. The only problem with this function is
that it does not perform any error checking: If a line contains less than three fields,
read user will read the missing fields from the next line; if a line contains more
than three fields, the remaining ones will be treated as part of the next record.

Figure 9 shows how this problem can be fixed in a completely modular way, i. e.,
without changing the existing module users, but by solely providing an additional
module check containing a global redefinition of read user with appropriate local
redefinitions of read char and read field.

The redefinition of read char simply calls its previous branch, i. e., the original
implementation of the function, and additionally stores its result value in a local
variable last of the enclosing function read user. The redefinition of read field

uses this variable to check whether a premature end of line has been reached; if this
is the case, its enclosing function read user is immediately terminated by executing

5goto statements are excluded, because their use is generally discouraged and could easily lead
to very complicated control flows when variable declarations with (explicit or implicit) initializa-
tions are crossed by a jump.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

5 LOCAL VIRTUAL FUNCTIONS

namespace users : iostream, string {

using iostream { cin };

using string { string };

// User with id, name, and password.

struct User {

string id, name, passwd;

User (string i, string n, string p)

: id(i), name(n), passwd(p) {}

};

// Read next input character.

virtual char read_char () {

char c;

if (cin.get(c)) return c;

else return 0;

}

// Read next input field.

virtual string read_field () {

char c; string s;

while ((c = read_char()) && c != ’:’ && c != ’\n’) s += c;

return s;

}

// Read next user.

virtual User* read_user () {

string u = read_field(), n = read_field(), p = read_field();

return new User(u, n, p);

}

}

Figure 8: Module users

a non-local return statement returning a null pointer instead of a real pointer to
a User object; otherwise, its previous branch, i. e., the original implementation of
read field is executed.

The global redefinition of read user also calls its original implementation, with
these local redefinitions in effect. Therefore, calls to read char and read field

performed by this implementation will be redirected to these redefinitions. If the
local branch of read field detects a premature end of line and therefore executes its
extern return statement, all active functions up to and including the redefinition of
read user – i. e., the local branch of read field itself, the original implementation

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 83

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

namespace check : users {

using users { User, read_char };

// Global redefinition of read_user.

virtual User* users::read_user () {

// Last character read by read_char.

char last = 0;

// Local redefinition of read_char.

virtual char users::read_char () {

// Call original implementation

// and store result in local variable last.

return last = virtual();

}

// Local redefinition of read_field.

virtual string users::read_field () {

// If end of line has been reached, terminate read_user.

// Otherwise, call original implementation.

if (last == ’\n’) extern return (User*)0;

else return virtual();

}

// Call original implementation of read_user

// with local redefinitions in effect.

User* u = virtual();

// If end of line has been reached, terminate normally.

if (last == ’\n’) return u;

// Otherwise, read until end of line and return null pointer.

while (last != ’\n’) read_char();

return (User*)0;

}

}

Figure 9: Module check

of read user that has called it, and the redefinition of read user that has called
this – will be terminated abruptly and the latter will return a null pointer to indicate
the error.

If no such error is detected, the call to the previous branch of read user returns
normally. To catch the second kind of error, i. e., an input line with more than three

84 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

6 IMPLEMENTATION

fields, the local variable last is used once more to check whether end of line has
been reached as expected. If not, the remaining characters of the current line are
read and skipped, and a null pointer is returned again to indicate the error.

Control Flow Join Points

If a global redefinition of a GVF f is considered as aspect-oriented advice associated
with call/execution join points of f (cf. Sec. 4), a local redefinition of f in another
function g corresponds to advice associated with those call/execution join points
of f that occur during executions of g, i. e., within the dynamic control flow (cflow)
of g.

6 IMPLEMENTATION

Global Virtual Functions and Modules

The extensions to the C++ programming language described in this paper have been
implemented by a precompiler based on the EDG C++ Front End (cf. www.edg.com).
It recognizes significant keywords (such as namespace, public, or virtual), deter-
mines their context (e. g., whether public or virtual is used in a namespace or a
class), and then performs appropriate source code transformations to map the ex-
tensions to pure C++ code. Because a complete description of these transformations
would be far beyond the scope of this paper, only a few basic ideas will be sketched
in the sequel.

Basically, each branch of a GVF is transformed to a normal C++ function pos-
sessing the same parameter list and result type as the GVF and a uniquely generated
internal name. Its body is augmented with the definition of a single object of a lo-
cal class storing the values of all function arguments and providing a definition of
the function call operator () that calls the previous branch of the function with
these arguments. Then, each appearance of the keyword virtual inside the body
of the function (and not inside a local class) is replaced by the name of this object.
Furthermore, a declaration and initialization of a global function pointer variable is
generated which will perform the activation of the branch at run time by appending
it to the end of a linked list.

When the first branch of a particular GVF is encountered, a declaration of an-
other function pointer variable which will always point to the last branch of that list
as well as an additional dispatch function is generated whose signature (i. e., name,
parameters, and result type) is identical to the GVF and whose body simply calls
the “current” branch via this variable. This is the function that will actually be
called when the GVF is called anywhere in the program.

To give an example of these transformations, figures 10 and 11 show the (sim-

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 85

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

plified and beautified) output of the precompiler produced for the first and second
branch of the GVF eval shown in Fig. 1.

// Function pointer type.

typedef int (*eval__type) (Expr*);

// Branch zero.

int eval__0 (Expr* x) { return int(); }

// Variable pointing to current branch.

eval__type eval__current = eval__0;

// Dispatch function.

int eval (Expr* x) { return eval__current(x); }

// Variable pointing to previous branch.

eval__type eval__prev__1 = eval__current;

// This branch.

int eval__1 (Expr* x) {

// Instance of local class replacing keyword virtual.

struct virtual__class {

// Copy of function argument and constructor initializing it.

Expr* x;

virtual__class (Expr* x) : x(x) {}

// Function call operator calling previous branch.

int operator() () const { return eval__prev__1(x); }

} virtual__inst(x);

// Original function body

// with "virtual" replaced by "virtual__inst".

if (Const* c = dynamic_cast<Const*>(x)) return c->val;

else return virtual__inst();

}

// Adjust variable pointing to current branch

// by initializing a dummy variable.

eval__type eval__current__1 = eval__current = eval__1;

Figure 10: Transformation of first branch of eval (cf. Fig. 1)

A module is transformed to a C++ source file containing the complete code of
the module plus an additional header file containing only the public part. If base

86 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

6 IMPLEMENTATION

// Variable pointing to previous branch.

eval__type eval__prev__2 = eval__current;

// This branch.

int eval__2 (Expr* x) {

// Instance of local class replacing keyword virtual.

struct virtual__class {

......

} virtual__inst(x);

// Original function head and body.

if (Add* a = dynamic_cast<Add*>(x)) {

return eval(a->left) + eval(a->right);

}

// Implicit call of previous branch.

else return virtual__inst();

}

// Adjust variable pointing to current branch

// by initializing a dummy variable.

eval__type eval__current__2 = eval__current = eval__2;

Figure 11: Transformation of second branch of eval (cf. Fig. 1)

modules are specified, #include directives for the corresponding header files are
inserted.

Local Virtual Functions and Non-local Jump Statements

A local virtual function definition is basically transformed to a member function of
a local auxiliary class. While this allows a completely “local” source code transfor-
mation (in contrast to the alternative possibility of moving the local function out
of its enclosing function(s) and transforming it to an ordinary global function), it
suffers from the restriction that member functions of local classes must not use local
variables of the enclosing function [18]. To circumvent this problem, references to
all local variables of the enclosing function are provided as data members of the
auxiliary class, which are initialized by a constructor receiving the actual references
as arguments. Therefore, local variables of the enclosing function(s) can be used in
the local function without any restrictions.

The constructor and destructor of the auxiliary class are responsible for pushing
resp. popping the local branch on resp. from the stack of local redefinitions of the
function. This stack is implemented as a linked list using the auxiliary class instances

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 87

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

as elements. A pointer to the topmost element of the stack is either provided in a
global variable (if multi-threading is not an issue) or in a thread-local variable. The
dispatch function of the GVF mentioned earlier actually uses this variable to locate
the topmost element of the stack (belonging to the current thread) and call its
member function representing the local branch or – if the stack is currently empty –
call the last global branch as described above.

A non-local jump statement is transformed to a throw expression where the
thrown object encodes the kind of statement (return, break, or continue), the
destination function, and, if appropriate, the value of a return expression. To catch
such exceptions at the appropriate place, blocks containing LVF definitions are em-
bedded into try statements with corresponding catch clauses which decode the
information in the thrown object and execute the corresponding normal jump state-
ment.

7 RELATED WORK

It has already been shown in Sec. 3 that global virtual functions are a generaliza-
tion of object-oriented single, multiple [11, 14, 3, 1], and predicate-based [6] method
dispatch. In contrast to these approaches, however, no attempt is made to find the
best matching branch of a function, but always the first matching branch (in reverse
activation order) is executed. While this heavily simplifies both the semantics and
the implementation of the approach, the resulting semantics is obviously somewhat
different. For many practical applications, however, the two semantics (best match-
ing vs. first matching branch) coincide. In particular, if GVF branches are defined in
the same order as the classes they operate on, the total order of branches is compat-
ible with the partial order between base classes and derived classes, since a derived
class is necessarily defined after its base classes. Furthermore, if the guards of all
branches test for mutually disjoint predicates, the order of the branches becomes
totally irrelevant.

GVFs also capture aspect-oriented advice for simple call and execution join
points [17]. If the information hiding principle is applied strictly, i. e., all set and
get operations on data fields are encapsulated in GVFs, they also capture set and
get join points. Finally, control flow (cflow) join points can be simulated quite easily
by globally overriding the “top level” function of a particular cflow with a branch
containing local redefinitions of all “subordinate” functions before calling its pre-
vious implementation. Thus, a broad range of pointcut expressions provided by
AspectC++ and comparable languages is covered. By defining the predicates used
in the guards of GVFs and LVFs as GVFs themselves, it is even possible to redefine
them later and by that means achieve effects similar to virtual pointcuts.

In contrast to mainstream aspect-oriented languages such as AspectJ [13] and
AspectC++ [17], no distinction is drawn between a base language (such as Java
or C++) providing, e. g., “normal” methods or functions and an additional aspect

88 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

7 RELATED WORK

language providing, e. g., advice. Instead, GVFs constitute a single, coherent concept
covering both “normal” functions (represented by original definitions of GVFs) and
advice (represented by appropriate redefinitions).

Similarly, the model of composition filters “unifies traditional object behaviour
with crosscutting behaviour” [2] by providing powerful facilities for intercepting, con-
trolling, and manipulating method invocations. Nevertheless, it introduces numerous
concepts in addition to bare methods, such as filter interfaces, filter expressions, se-
lectors, and superimpositions, while GVFs do not really introduce something new,
but only extend the traditional concept of procedures/functions in a straightforward
manner.

GVFs have some obvious similarities with generic functions in CLOS [11] (and
other languages based on comparable ideas, e. g., Dylan [5]) since both are defined
outside any class (and thus can be freely distributed over a program) and both
provide multiple dispatch. Furthermore, before, after, and around methods in CLOS
provide a great deal of flexibility in retroactively extending existing functions, which
can be enhanced even further by user-defined method combinations [12]. However,
even with the latter, the specificity of methods remains a primary ordering principle,
and it is impossible to get the list of all applicable methods simply in the order of
their declaration. Furthermore, it is impossible to define two or more methods having
the same specificity and the same method qualifiers (e. g., two generally applicable
around methods). In contrast, the fact that GVFs do not care about the specificities
of their branches, but simply use their linear activation order, does not only simplify
their semantics, implementation, and use, but also allows complete redefinitions of
a function without losing its previous definition.

The same is true for dynamically scoped functions [4], which embody exactly the
same idea as local virtual functions (and in fact have triggered the idea to extend
the already existing concept of GVFs with LVFs). However, dynamically scoped
functions do not allow to install permanent redefinitions of functions whose effect
exceeds the lifetime of their defining scope. Furthermore, installing a large number
of extensive redefinitions locally (instead of using global definitions for that purpose)
might significantly reduce the readability of code.

Finally, the way virtual is used to call the previous branch of a GVF resembles
the way inner is used in BETA [15]. However, the order of execution is exactly
reversed: While virtual is used in a redefinition to call the previous definition,
inner is used in the original definition to call a possible redefinition, which implies
that the original definition cannot be changed, but only extended by a redefinition
in BETA.

The module concept for C++ introduced in this paper is actually a mixture of
Modula-2 modules [20], Oberon modules [21], and C++ classes: The basic idea has
been taken from Modula-2 where it is possible to import both complete modules
(and use qualified names to refer to their exported entities) and individual names
from particular modules (which can then be used unqualified). In a language such

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 89

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

as C++ that supports overloading of (function) names, it is possible to import the
same name from different modules as long as their definitions do not conflict.

In contrast to Modula-2, but in accordance with Oberon, the public and private
parts of a module are not separated into different translation units, but rather
integrated into a single unit. Finally, the idea to structure a module into sections
introduced by the keywords public and private (and possibly protected) – instead
of using special export marks to distinguish exported names as in Oberon –, has
been adopted from C++ classes. (In every other respect, however, a module is quite
different from a class. In particular, it cannot be instantiated explicitly, but rather
constitutes a singleton global entity.) By following the convention to split a module
into a single public section at the beginning that contains bare declarations of all
exported entities and a subsequent private section containing the corresponding
definitions (plus necessary internal entities), the Modula-2 approach of separating
these parts can be simulated without actually needing two separate translation units.

In addition to the purpose mentioned in Sec. 2, i. e., establishing a unique initial-
ization order among multiple translation units of a program which in turn defines
a unique activation order for GVF branches, modules provide a simple yet effec-
tive way to enforce the well-known principle of information hiding [16]: By defining
data structures (such as struct Const : Expr { int val; }) in the private part
of a module and exporting only corresponding pointer types (e. g., typedef Const*

ConstPtr) and (virtual) functions operating on them (e. g., virtual int value

(ConstPtr c) { return c->val; }), it is possible to hide implementation details
of a module from client modules without needing to employ classes for that purpose.
If a single module contains definitions of multiple data types (e. g., a container type
and an accompanying iterator type), its functions are naturally allowed to operate
on all of their internals, without needing to employ sophisticated constructs such as
nested or friend classes [18] to achieve that aim.

8 CONCLUSION

Global virtual functions have been presented as a straightforward extension of the
traditional notion of procedures. Even though the basic concept is rather simple, it
leads to a significant gain in expressiveness, covering object-oriented single, multi-
ple, and predicate-based method dispatch as well as aspect-oriented before, after,
and around advice, without requiring any additional language constructs for that
purpose.

As another straightforward extension, local virtual functions and non-local jump
statements have been added in order to extend the expressiveness and flexibility of
functions once more. By effectively combining these basic building blocks, it is pos-
sible, for instance, to perform exception handling with the possibility of resumption
(i. e., continuing execution at the point where an exception has been raised), without
needing a dedicated exception handling mechanism provided by the programming

90 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

8 CONCLUSION

language [10].

Global and local virtual functions constitute one of two core concepts of so-called
advanced procedural programming languages, i. e., languages which are not based on
object-oriented principles, but rather on the traditional concepts of procedural pro-
gramming, i. e., data structures and procedures. However, by specifically generalizing
these concepts, advanced procedural programming languages provide a surprisingly
high degree of expressiveness and flexibility with a comparatively small number of
concepts. Their second core concept, open types, which generalizes the traditional
notion of record types, shall be described elsewhere.

REFERENCES

[1] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein: “MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java.” In: Proc. 2000 ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA ’00) (Minneapolis, MN, October 2000). ACM SIG-
PLAN Notices 35 (10) October 2000, 130–145.

[2] L. Bergmans, M. Aksit: “Composing Multiple Concerns Using Composition
Filters.” Communications of the ACM 44 (10) October 2001, 51–57.

[3] C. Chambers, W. Chen: “Efficient Multiple and Predicate Dispatching.” In:
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA ’99) (Denver, CO, November 1999). ACM SIGPLAN Notices
34 (10) October 1999, 238–255.

[4] P. Costanza: “Dynamically Scoped Functions as the Essence of AOP.” ACM
SIGPLAN Notices 38 (8) August 2003, 29–36.

[5] I. D. Craig: Programming in Dylan. Springer-Verlag, London, 1997.

[6] M. Ernst, C. Kaplan, C. Chambers: “Predicate Dispatching: A Unified The-
ory of Dispatch.” In: E. Jul (ed.): ECOOP’98 – Object-Oriented Programming
(12th European Conference; Brussels, Belgium, July 1998; Proceedings). Lec-
ture Notes in Computer Science 1445, Springer-Verlag, Berlin, 1998, 186–211.

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[8] C. Heinlein: Vertical, Horizontal, and Behavioural Extensibility of Software Sys-
tems. Nr. 2003-06, Ulmer Informatik-Berichte, Fakultät für Informatik, Univer-
sität Ulm, July 2003. http://www.informatik.uni-ulm.de/pw/9239

[9] C. Heinlein: “Dynamic Class Methods in Java.” In: Net.ObjectDays 2003.
Tagungsband (Erfurt, Germany, September 2003). tranSIT GmbH, Ilme-
nau, 2003, ISBN 3-9808628-2-8, 215–229. (See http://www.informatik.uni-
ulm.de/pw/9238 for an extended version.)

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 91

GLOBAL AND LOCAL VIRTUAL FUNCTIONS IN C++

[10] C. Heinlein: “Local Virtual Functions.” In: R. Hirschfeld, R. Kowalczyk,
A. Polze, M. Weske (eds.): NODe 2005, GSEM 2005 (Erfurt, Germany, Septem-
ber 2005). Gesellschaft für Informatik e.V., Lecture Notes in Informatics P-69,
2005, 129–144.

[11] S. E. Keene: Object-Oriented Programming in Common Lisp: A Programmer’s
Guide to CLOS. Addison-Wesley, Reading, MA, 1989.

[12] G. Kiczales, J. des Rivires, D. G. Bobrow: The Art of the Metaobject Protocol.
The MIT Press, 1991.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold: “An
Overview of AspectJ.” In: J. Lindskov Knudsen (ed.): ECOOP 2001 – Object-
Oriented Programming (15th European Conference; Budapest, Hungary, June
2001; Proceedings). Lecture Notes in Computer Science 2072, Springer-Verlag,
Berlin, 2001, 327–353.

[14] G. T. Leavens, T. D. Millstein: “Multiple Dispatch as Dispatch on Tuples.”
In: Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA ’98) (Vancouver, BC, October 1998). ACM SIGPLAN
Notices 33 (10) October 1998, 374–387.

[15] O. Lehrmann Madsen, B. Møller-Pedersen, K. Nygaard: Object-Oriented Pro-
gramming in the BETA Programming Language. Addison-Wesley, Wokingham,
England, 1993.

[16] D. L. Parnas: “On the Criteria to Be Used in Decomposing Systems into Mod-
ules.” Communications of the ACM 15 (12) December 1972, 1053–1058.

[17] O. Spinczyk, A. Gal, W. Schröder-Preikschat: “AspectC++: An Aspect-
Oriented Extension to the C++ Programming Language.” In: J. Noble, J. Pot-
ter (eds.): Proc. 40th Int. Conf. on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific) (Sydney, Australia, February 2002), 53–60.

[18] B. Stroustrup: The C++ Programming Language (Special Edition). Addison-
Wesley, Reading, MA, 2000.

[19] M. Torgersen: “The Expression Problem Revisited. Four New Solutions Using
Generics.” In: M. Odersky (ed.): ECOOP 2004 – Object-Oriented Programming
(18th European Conference; Oslo, Norway, June 2004; Proceedings). Lecture
Notes in Computer Science 3086, Springer-Verlag, Berlin, 2004, 123–143.

[20] N. Wirth: Programming in Modula-2. Springer-Verlag, 1982.

[21] N. Wirth: “The Programming Language Oberon.” Software—Practice and Ex-
perience 18 (7) July 1988, 671–690.

92 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10

8 CONCLUSION

ABOUT THE AUTHORS

Christian Heinlein received a Ph.D. in Computer Science from the University of
Ulm in 2000. Currently, he works as a scientific assistant in the Department of Com-
puter Structures at the University of Ulm. His research interests include program-
ming language design in general, especially support for modular extensibility and
unanticipated evolution of software systems. His email address is heinlein@informatik.uni-
ulm.de.

VOL 4, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 93

mailto:heinlein@informatik.uni-ulm.de
mailto:heinlein@informatik.uni-ulm.de

