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We design a calculus where objects are created by instantiating classes, as well as
mixins. Mixin-instantiated objects are “incomplete objects”, that can be completed in
an object-based fashion. The combination of class-based features with object-based
ones offers some flexible programming solutions. The fact that all objects are created
from fully-typed constructs is a guarantee of controlled (therefore reasonably safe)
behavior. Furthermore, the calculus is endowed with width subtyping on complete
objects, which provides enhanced flexibility while avoiding possible conflicts between
method names.

1 Introduction

In object-orientedobject-basedlanguages (see, e.g., [27, 1, 11]), objects are the com-
putational entities and at the same time they govern the inheritance mechanism, through
operations like method addition and method override, thus producing new objects starting
from the existing ones. Furthermore, object composition is often advocated as an alterna-
tive to class inheritance, in that it is defined at run-time and it enables dynamic object code
reuse by assembling the existing components [21]. In this paper we present a mixin-based
calculus that combines class-based features with object-based ones, trying to fit into one
setting the “best of both worlds”, discipline and flexibility first of all. Mixins are seen as
incompleteclasses and their instances areincompleteobjects that can be completed in an
object-based fashion. Hence, in our calculus it is possible: (i) to instantiate classes (cre-
ated via mixin-based inheritance), obtaining fully-fledged objects ready to be used; (ii ) to
instantiatemixins, yielding incomplete objectsthat may be completed viamethod addi-
tion and/orobject composition. In other words, it is possible to design class hierarchies
via mixin application, but also to experiment with prototypical incomplete objects.

This paper extends the calculus of incomplete objects of [5] with width subtyping
on objects. The co-existence of object composition and width subtyping on object types
introduces run-time conflicts between methods that might have been hidden by subsump-
tion, in situations where statically there would be no conflict. Suppose we have two ob-
jectsO1 andO2 that we want to compose. ObjectO1 has a methodm1 that calls a method
m, which might be hidden by subsumption (i.e., its name does not appear in the type of
the objectO1). ObjectO2 has a methodm2 that calls a methodm, also possibly hidden
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SAFE AND FLEXIBLE OBJECTS WITH SUBTYPING

by subsumption. (Notice that it is enough if the methodm is hidden in at least one of the
objects.) When these two objects are composed, there is no explicit name clash at the type
level (checked by the type system). But methodsm1 andm2 both call a method with the
same name,m, and it is necessary to: (i) ensure that after object composition, methodsm1

andm2 continue calling the methodm they were calling originally, before the composi-
tion; (ii ) guarantee that if one of them’s is not hidden, we expose the reference to the right
one in the object’s “public interface”. Note that if bothm’s were hidden by subsumption,
none of them would be available to external users anymore, and if none were hidden there
would be atrue conflict, ruled out statically. This situation is an instance of the “width
subtyping versus method addition” problem (well known in the object-based setting, see
for instance [18]). This kind of name clash (nameddynamic name clash) should not be
considered an error, but we must make sure that we solve all ambiguities, in such a way
that accidental overrides do not occur.

Our form of method addition does not introduce any problems with respect to sub-
typing, as we can add one by one only those methods that are required explicitly by the
incomplete object, that is, we have total type information about the methods to be added
beforethe actual addition takes place (see Sections3 and5). The conflict arises, instead,
with object composition where the complete object may have more methods than the ones
required by the incomplete object, and these methods may clash with some of the methods
defined in the incomplete object. Notice that this problem is exactly the same as the one
introduced by the general object composition example described above. Our approach to
solving this problem is based on the idea of preserving the object generator within each
object. In order to avoid undesired interactions between methods while allowing the ex-
pected rebinding, every object carries the list of its methods and the list of the methods
it is still expecting. The first version of this methodology was presented in [6] where it
is applied to a calculus with only (abstract) classes and no method overriding. Here we
apply it to the complete calculus of mixins and incomplete objects.

One of the possible approaches to solving the problem seemed to be exploiting thedic-
tionariesof Riecke and Stone [25]. Unfortunately, their mapping “internal label-external
label” does not solve completely the ambiguities introduced by object composition in the
presence of subtyping described above. In particular, there is still an ambiguity when only
one of them’s is hidden by subsumption. It has to be said, however, that the original dic-
tionaries setting is stateless, therefore object composition can be simulated by successive
method additions, and dictionaries would be sufficient to model object composition. In
our setting, instead, all objects (complete and incomplete) have a state (i.e., an initialized
field), and object composition cannot be linearized via any form of repeated method ad-
ditions. On a side note which will be useful later, we would like to recall that the calculus
of [25] is “late-binding”, i.e., the host object is substituted to self (in order to solve the
self autoreferences) at method-invocation time, whereas our calculus is “early-binding”,
i.e., the host object is bound to self at object-creation time. To the best of our knowl-
edge, it is not possible to remove all the ambiguities without either carrying along the
additional information on the methods hidden by subsumption, or restricting the width
subtyping. We discarded immediately the solution of re-labelling method names at object
composition time, as this is untidy from a semantical point of view and impractical from
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an implementation one. (By re-labelling we mean the actual physical renaming of method
names, and therefore all method invocations within method bodies.) In this version of the
calculus, we decided to allow width subtyping only oncomplete objects. Our solution is
an “early-binding” version of the dictionaries approach, where the notion of “privacy-via-
subsumption” of [25] is completely implemented (see Section3 and Section5).

2 Syntax of the calculus

Mixins [10, 20] are (sub)class definitions parameterized over a superclass and were in-
troduced as an alternative to some forms of multiple inheritance. A mixin could be seen
as a function that, given one class as an argument, produces another class, by adding
and/or overriding certain sets of methods. In this paper the termmixin refers tomixin
classes[2, 15, 7]), as opposed tomixin modules(modules supporting deferred compo-
nents [3, 22]). In our calculus a mixin can: (i) be applied to a class to create a fully-
fledged subclass; or (ii ) be instantiated to obtain an incomplete object. An incomplete
object can be “incomplete” in two respects: (i) it may need some expected methods; (ii )
it may contain redefining methods that need the methods with the functionality of their
next (i.e., the method with the same name in the superclass). Completion can happen in
two ways: (i) via method addition, that can add one of the expected methods or one of the
missingnexts; (ii ) via object composition, that takes an incomplete object and composes
it with a complete one containing all the required methods. Furthermore, method addition
can only act on incomplete objects, and the object composition completes an incomplete
object with a complete one. This way we totally exploit the type information at the mixin
level, obtaining a “tamed” and safe object-based calculus at the object level.

The starting point for our calculus is The Core Calculus of Classes and Mixins of
Bono et al. [9] which, in turn, is based onReference MLof Wright and Felleisen [28]. To
this imperative calculus of records, functions, classes and mixins we add the machinery to
work with incomplete objects. Our calculus is imperative and does not supportMyType
[17] inheritance (and as such does not supportbinary methods[12]). In this version of
the calculus we assume that the methods we add to an incomplete object via addition
or composition do not introduce incompleteness themselves, i.e., the set of “non-ready”
methods never increases. Moreover, we do not considerhigher-ordermixins (mixins that
can also be applied to other mixins yielding other mixins) and related mixin composition,
being an orthogonal issue. To ensure that mixin inheritance can be statically type checked,
the calculus employs subtype-constrained parameterization. From each mixin definition,
the type system infers a constraint specifying to which classes the mixin may be applied
so that the resulting subclass is type-safe. The mixin constraint includes information on
which methods the class must contain, whereas negative constraint, i.e., which methods
the class must not contain, is checked by the type system at mixin application time.

Expressions and values of the calculus are given in Figure1, wherex∈ Var (an enu-
merable set of variables),const∈ Const(an enumerable set of constants),I ,N ,R ,E ,M
⊆N, andvg,vc,vmi ,vmj ,vmk are values, more precisely, lambda abstractions. The lambda-
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e: : = const| x | λx.e | e1 e2 | fix
| ref | ! | := | {xi = ei}i∈I | e.x
| H h.e | classval〈vg,M 〉| new e
| mixin

method mj = vmj ;
( j∈N )

redefine mk = vmk;
(k∈R )

expect mi ; (i∈E)

constructor vc;
end

| mixinval〈vg,N ,R ,E〉
| e1� e2| e1←+ mi = e2| e1←+ e2

| obj〈{mi = vmi}i∈M ,vg,M 〉
| obj〈{mi = vmi}i∈I ,vg, r,N ,R ,E〉

v: : = const| x | λx.e | fix | ref | !
| := | := v | {xi = vi}i∈I

| classval〈vg,M 〉
| mixinval〈vg,N ,R ,E〉
| obj〈{mi = vmi}i∈M ,vg,M 〉
| obj〈{mi = vmi}i∈I ,vg, r,N ,R ,E〉

Figure 1: Syntax of the calculus: expressions and values.

calculus related forms are standard.ref, !, := are operators1 for defining a reference to
a value, for de-referencing a reference, and for assigning a new value to a reference, re-
spectively.{xi = ei}i∈I is a record which represents an object in our calculus ande.x is
the record selection operation (this corresponds to method selection in our calculus). The
constructh is a set of pairs〈x,v〉, wherex is a variable,v is a value, and first components
of the pairs are all distinct. The set of pairsh is thestore, or heap, found in the expres-
sion formH h.e, where it is used for evaluating imperative side effects. In the expression
H 〈x1,v1〉 . . .〈xn,vn〉.e, H binds variablesx1, . . .xn in v1, . . . ,vn and ine. We describe below
the other forms.

• classval〈vg,M 〉 is aclass value, the result of mixin application. The functionvg is
the generator used to generate its instance objects, and the setM contains the indices of
all methods defined in the class.

• Themixindefinition contains three sorts of method declarations:newmethods (mj ),
which are the newly introduced methods by the mixin seen as a subclass,redefiningmeth-
ods (mk), which wait for a superclass containing a method with the same name to be
redefined and provide the overriding body, andexpectedmethod names (mk), which are
names of methods not implemented by the mixin (these methods must be provided by the
superclass since they can be used by new and redefining methods). We assume that the
programmer must declare the expected method names in the mixins, but that their types
are inferred from new and redefining method bodies. Each method bodyvmj,k is a func-
tion of the privatefield and ofself , which will be bound to the newly created object at
instantiation time. In method redefinitions,vmk is also a function ofnext , which will be
bound to the old, redefined method from the superclass. Notice that the field does not
appear explicitly in the mixin definition, as we model it as a lambda-abstracted variable
within method bodies: it is non-accessible, not only non-visible, outside the methods. For

1Introducing ref, !, := as operators rather than standard forms such asrefe, !e, :=e1e2, simplifies
the definition of evaluation contexts and proofs of properties. As noted in [28], this is just a syntactic
convenience, as is the curried version of :=.
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the sake of simplicity, we consider only one (private) field for each class, but this is not a
restriction, as the field could be a tuple (encodable in the lambda calculus). Also, the field
can be made a proper mutable instance variable by declaring it to be of typeref (we refer
the reader to [28]). The vc value in theconstructor clause is a function of one argument
that returns a record of two components: thefieldinit value used to initialize the private
field, and thesuperinit value passed as an argument to the superclass constructor. When
evaluating a mixin,vc is used to build the generator as described in Section3.

•mixinval〈vg,N ,R ,E〉 is amixin value, the result of mixin evaluation. The generator
vg for the mixin is a “partial generator” of incomplete objects, used also in the� operation
evaluation, where it is appropriately composed with the class generator.

• new ecreates a function that returns a new object (incomplete, in the mixin case).

• e1� e2 is the application of mixin valuee1 to class valuee2 that produces a new class
value that is a subclass ofe2.

• e1←+ mi = e2 is the method addition operation: it adds the definition of method
mi with bodye2 to the (incomplete) object to whiche1 evaluates. A method to be added
to an incomplete object is a function ofself only, i.e., no private field is used in an added
method, since such field is typical of an object (it represents its state).

• e1←+ e2 is the object composition operation: it composes the (incomplete) object
to whiche1 evaluates with the complete object to whiche2 evaluates.

• obj〈{mi = vmi}i∈M ,vg,M 〉 is a fully-fledged object that might have been created
by directly instantiating a class, or by completing an incomplete object. Its first part is a
record of methods, the second part is a generator function, kept also for complete objects,
since they can be used to complete the incomplete ones.M contains the indices of the
methods of the object.

• obj〈{mi = vmi}i∈I ,vg, r,N ,R ,E〉 is an incomplete object.{mi = vmi}i∈I is a record
of methods,vg is a generator function,r is a record containing redefining methods which
will be used whennext for them becomes available during method addition or object
composition (as explained in Section3), and three setsN ,R , andE contain the indices
of new, redefining, and expected methods defined in the mixin. When the sets of method
namesR andE become empty (and so does the record of redefining methods) the incom-
plete object becomes a complete object.

Mixins are first class citizens in our calculus, allowing all the usual operations on
them. However, class values, mixin values, and object forms are not intended to be writ-
ten directly; instead, these expression forms are used only to define the semantics of
programs. Class values can be created by mixin application, mixin values result from
evaluation of mixins, and object forms can be created by class and mixin instantiation.

We define the root of the class hierarchy, classObject , as a predefined class value

Object
4
= classval〈 λ .λ .{}, [ ] 〉 necessary for uniform treatment of all the other classes.
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const v → δ(const,v) (δ) refv → H〈x,v〉.x (ref)
if δ(const,v) is defined H〈x,v〉h.R[!x] → H〈x,v〉h.R[v] (der)

(λx.e) v → [v/x] e (βv) H〈x,v〉h.R[:=xv′] → H〈x,v′〉h.R[v′] (ass)
fix (λx.e) → [fix(λx.e)/x]e (fix) R[H h.e] → H h.R[e], R 6= [ ] (lift )

{. . . ,x = v, . . .}.x → v (sel) H h.H h′.e → H h h′.e (mer)

Figure 2: Reduction rules for standard expressions and heap expressions

R: : = [ ] | R e| v R| {m1 = v1, . . . ,mi−1 = vi−1,mi = R,mi+1 = ei+1, . . . ,mn = en}1≤i≤n | R.x
| new R | R � e | v � R | R←+ m= e | R←+ e | v←+ m= R | v←+ R

Figure 3: Reduction contexts

3 Operational semantics

Our intent is to give the calculus a semantics as close as possible to an implementation.
To do so, the formal operational semantics is a set of rewriting rules including standard
rules for a lambda calculus with stores, and rules that evaluate the object-oriented related
forms to records and functions, according to the object-as-record approach and Cook’s
class-as-generator-of-object principle [13]. This operational semantics can be seen as
something close to a denotational description for objects, classes, and mixins, and this
“identification” of implementation and semantical denotation is, in our opinion, a good
by-product of our approach.

The operational semantics extends the semantics of the core calculus of classes and
mixins [9], hence it exploits theReference MLof Wright and Felleisen [28] treatment
of side-effects. To abstract from a precise set of constants, we assume the existence of
a partial functionδ : Const× ClosedVal⇀ ClosedValthat interprets the application of
functional constants to closed values and yields closed values. The reduction rules are
given in Figures2, 4, and5. In Figure2, R’s arereduction contexts[14, 16, 24], necessary
to provide a minimal relative linear order among the creation, dereferencing and updating
of heap locations, since side effects need to be evaluated in a deterministic order. Their
definition is given in Figure3. We assume the reader is familiar with the treatment of
imperative side-effects via reduction contexts, we refer to [9, 28] for a description of the
related rules. The meaning of the object-oriented related rules in Figure4 is as follows.

The (mixin) rule turns a mixinexpressioninto a mixinvalue(notice that all the other
mixin operations, i.e., mixin application and mixin instantiation, are performed on mixin
values). Given the parameterx for the constructorvc of the mixin expression (we recall
that theconstructor subexpressionvc is a function of one argument which returns a record
of two components: one is the initialization expression for the fieldfieldinit, the other is
the superclass generator’s argumentsuperinit, see Section2), the mixin generator returns
a record containing the following:
• a (partial) object generatorgen, which binds the private field of the methodsmj (newly
defined by the mixin) tofieldinit (returned by the constructor). Recall that method bodies
take parametersfield , self , and, if it is a redefinition, alsonext . The output ofgen has
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mixin

method mj = vmj ;
( j∈N )

redefine mk = vmk;
(k∈R )

expect mi ; (i∈E)

constructor vc;
end

→mixinval〈Genm,N ,R ,E〉 (mixin)

where

Genm
4
= λx.

let t = vc(x) in

gen = λself .
mj = λy.vmj t.fieldinit self y ( j∈N )

mk = λy. self .mk y (k∈R )

mi = λy. self .mi y (i∈E)

 ,

superinit = t.superinit,

redef = {mk = λy.vmk t.fieldinit y (k∈R )}


new classval〈vg,M 〉 → λw.obj〈fix(vg w),(vg w),M 〉 (new class)

new mixinval〈Genm,N ,R ,E〉 → (new mixin)
λw.let vg = (Genm w) in

obj〈fix(vg.gen),vg.gen,vg.redef,N ,R ,E〉

obj〈{. . . ,mi = vi , . . .},vg,M 〉.mi → vi (obj sel)

mixinval〈Genm,N ,R ,E〉 � classval〈vg,M 〉 → classval〈Gen,N ∪M 〉 (mix app)

where

Gen
4
= λx.λself .
let mixinrec = Genm(x) in
let mixingen = mixinrec.gen in
let mixinred = mixinrec.redef in
let supergen = vg(mixinrec.superinit) in

mj = λy.(mixingen self).mj y ( j∈N )

mk = λy.(mixinred.mk self) (supergen self).mk y (k∈R )

mi = λy.(supergen self).mi y (i∈M−R )


Figure 4: Reduction rules for object-oriented forms

“dummy” method bodies in place of redefined and expected methods to enable correct in-
stantiation of incomplete objects. Intuitively,self must refer to all the methods: not only
the new ones, but also the ones that are still to be added. Notice that the method bodies
are wrapped insideλy. · · ·y to delay evaluation in our call-by-value calculus;
• the argumentsuperinit for the (future) superclass constructor, as returned by the mixin
constructorvc applied to its argument;
• the redef component, which contains a record of redefining methods that have their
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private field already bound tofieldinit (returned by the constructorvc applied to its argu-
ment), and are ready to have theirnext parameter bound to a method added to the object
at run time (notice that theirself is still unbound). This record will be used during method
addition and object composition to recover the actual body of the redefined methods, com-
plete it, and insert it in the working part of the object.
The above generator is called “partial” since it returns an object that contains redefined
and expected methods that cannot be invoked (present as “dummy” methods). The actual
implementation of those methods can be provided by (meth add 1), (meth add 2), and/or
(obj comp).

The (new class) rule enables creation of new objects from class definitions. It builds
a function that produces acomplete objectobj〈fix(vg w),(vg w),M 〉, once passed an ar-
gumentw. The expression(vg w) is the object generator, obtained by applying the class
generatorvg to an argumentw (this argument is used by the constructor component within
the class generator). This creates a function fromself to a record of methods. The ex-
pressionfix(vg w) is the record of methods that can be invoked on that object, obtained by
applying the fixed-point operatorfix to (vg w) to bindself in method bodies and create a
recursive record (following the approach in [13]).

The (new mixin) rule createsincomplete objectsfrom mixin values. First, it applies
the mixin generatorGenm to an argumentw (analogously to the (new class) case), thus
triggering the binding of the private field of new and redefined methods and providing ac-
cess toGenm’s gen andredef components. The mixin object generatorvg.gen is a function
from self to a record of mixin methods, whilevg.redef is the record of the redefined mixin
methods that have theirfieldinit bound (self andnext are still to be bound). Thevg.redef
record is used for “remembering” the partial redefined method bodies for future use. The
application of the fixpoint operator tovg.gen creates a recursive record of methods.2

The (obj sel) rule enables method invocation on a complete object.

The (mix app) rule evaluates the application of a mixin value to a class value and mod-
els inheritance in our calculus. Amixin value is applied to a superclass valueclassval〈g,M 〉,
whereM is the set of all method names defined in the superclass. The resulting class
value isclassval〈Gen,N ∪M 〉 whereGenis the generator function andN ∪M lists all
the method names of the subclass. Using a class generator delays full inheritance resolu-
tion until object instantiation time whenself becomes available. The class generator takes
a single argumentx, which is used by (the constructor within) the mixin generator, and
returns a function fromself to a record of methods. When the fixed-point operator is ap-
plied to the function returned by the generator, it produces a recursive record of methods
representing a new object (see the (new class) rule). Genfirst callsGenm(x) to compute
mixinrec, which is used firstly to compute the mixin object generatormixingen, a function
from self to a record of mixin methods. Secondly, it is used to computemixinred, which
provides the record of redefining methods from the mixin. Then,Gencalls the superclass
generatorg, passing argumentmixinrec.superinit, to obtain a functionsupergen from self

2Those methods that do not invoke any expected method and/or have their reference to theirnext already
resolved might be called on this recursive record component of the newly produced incomplete object, but
we do not introduce this possibility here.
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obj〈{. . .},vg, r,N ,R ,E〉 ←+ (ml = vml )→
let incgen= λself .

mj = λy. (vg self).mj y ( j∈N )

mk = λy. self .mk y (k∈R )

mi = λy. self .mi y (i∈E−{l})

ml = λy. vml self y


in obj〈fix(incgen), incgen, r,N ∪{l},R ,E −{l}〉 wherel ∈ E

(meth add 1)

obj〈{. . .},vg, r,N ,R ,E〉 ←+ (ml = vml )→
let incgen= λself .

mj = λy. (vg self).mj y ( j∈N )

mk = λy. self .mk y (k∈R−{l})

mi = λy. self .mi y (i∈E)

ml = λy. (r.ml self) (vml self) y


in obj〈fix(incgen), incgen, r− r.ml ,N ∪{l},R −{l},E〉 wherel ∈ R

(meth add 2)

obj〈{. . .},vg, r,N ,R ,E〉 ←+ obj〈{mi = vmi}i∈M ,v′g,M 〉 →
let incgen=

let gen1 = λs1.λs2.{
ml = λy. (v′g s2).ml y (l∈M−(R ∪E))

mr = λy. s1.mr y (r∈M ∩(R ∪E))

}
in
λself .

mj = λy. (vg self).mj y ( j∈N )

mk = λy. (r.mk self) (v′g fix(gen1 self)).mk y (k∈R )

mi = λy. (v′g fix(gen1 self)).mi y (i∈E)


in obj〈fix(incgen), incgen,N ∪R ∪E〉

(obj comp)

obj〈{mi = vmi}i∈M ,vg,{},M , /0, /0〉 → obj〈{mi = vmi}i∈M ,vg,M 〉 (completed)

Figure 5: Reduction rules for object completions

to a record of superclass methods. Finally,Genbuilds a function fromself that returns a
record containingall methods — from both the mixin and the superclass. All methods of
the superclass that are not redefined by the mixin,mi wherei ∈M −R , areinheritedby
the subclass: they are taken intact from the superclass’ “object” (supergen self ). These
methodsmi include all the methods that are expected by the mixin (as checked by the
type system). Methodsmj defined by the mixin are taken intact from the mixin’s “object”
(mixingen self ). As for redefinedmethodsmk, next is bound to(supergen self).mk by
Gen, which is then passed to(mixinred.mk) self . Notice that at this stage, all methods
have already received a binding for the private field.

The four rules in Figure5 are the basic rules for manipulating the incomplete objects,
i.e., they enable completing them with the method definitions that they need either as
expected or redefined.

The (meth add 1) rule adds to an incomplete object a methodml that some other meth-
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ods expect. The function incgen mapsself to a record of methods, where new method
definitions are taken from the object generatorvg, the redefining and expected (excluding
ml ) methods remain “dummy” and the methodml is added. Therefore, applying thefix
operator to incgen produces a recursive record of methods with boundself and implic-
itly enables their invocation. Theincgenfunction is part of the reduct because it must be
carried along in the evaluation process, in order to enable future method additions and/or
object compositions. Notice that a method which is added to an incomplete object is a
function of self only, becausea priori it does not belong to any object and therefore it
does not have any knowledge of fields, being the (private) field a component of an object
(representing its state). As a side effect, a newly added method cannot access directly the
private field of the object, even though it can do so via sibling methods already present in
the original incomplete object.

The (meth add 2) rule is similar to the previous one, the difference being that now a
method is added in order to complete a redefining methodml , acting as itsnext . There-
fore, the definition of the redefined method is not “dummy” anymore, but gets a new body
ml = λy. (r.ml self) (vml self) y. The body ofml is taken fromr (it is already bound to
fieldinit) and(vml self) is passed to it asnext. Naturally, this method becomes fully func-
tional, therefore its definition is removed fromr, and the indexl is removed fromR and
added toN .

The only requirement forml , both in rules (meth add 1) and (meth add 2), is that the
bodyvl must be a function ofself .

The (obj comp) rule combines two objects in such a way that the new added object
o2 (which must be already complete) completes the incomplete objecto1 and makes it
fully functional. After completion, it is possible to invoke all the methods that were in
the interface of the incomplete object, i.e., those inN ∪R ∪E . The record of methods
in incgen is built by taking the new methods from the incomplete objecto1 (these are
the only methods that are fully functional in this object), binding thenext parameter in
redefining methods fromo1, and taking the expected methods from the complete object
o2. During this operation we have to make sure that:
•methods of the complete objecto2 requested by the incomplete objectso1 get theirself
rebound to the new resulting composed object (this is the reason why we need to keep the
generator also for complete object values). This rebinding automatically enables dynamic
binding of methods that are redefined even when called from within the methods ofo2;
• methods ofo2 that are not requested byo1 (we call these methodsadditional) are not
subject to “accidental” override.
The second point is crucial in our context, where additional methods in the complete
object, “hidden” because of subsumption, may clash with methods already present in
the incomplete object (i.e., those inN ). The above two goals are achieved altogether
using the additional generator gen1 inside incgen. This generator builds a record where
the additional methods (i.e., the ones belonging toM − (R ∪E)) are correctly bound,
once and for all, to their implementation in the complete object (throughs2 that will be
propagated with the auto-binding of self, via the fixpoint operator application). The other
methods (those requested by the incomplete object, i.e., belonging toM ∩ (R ∪E)) are
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instead “open” to redefinitions since they rely on the reboundself , which, in turns, usess1

as a “handle” to hook onto the complete object method implementations. This generator
gen1 is therefore exploited to supply tov′g (the generator ofo2), the “self” record, obtained
by passing the newself to gen1 and then applying fixpoint. This realizes the main idea that
the method bodies of the complete object will use as implementations of theadditional
methods the ones from the complete object and not possibly accidental homonyms from
the incomplete object. We observe that in the resulting object interface only the methods
declared in the incomplete object are included (N ∪R ∪E). Of course the additional
methods (M − (R ∪E)) are still available to the methods of the complete object (but
hidden instead from all other methods). In [6] we present an alternative solution where
we include the methods belonging to (N ∪M ) in the resulting object interface.

The (completed) rule transforms an incomplete object, for which all the missing meth-
ods were provided, into a corresponding complete one.

Method invocation might be also allowed on incomplete objects, but only on those
methods that are already “complete”, i.e., the ones that do not need anext and do not use
either expected or other incomplete methods. It would be necessary to implement a sort
of “transitive closure”, based on a global analysis technique, to list, for each method, the
dependencies from other methods, but since this feature is essentially an implementation
detail, we leave it out from this version of the calculus.

It might be tempting to argue that object composition is just syntactic sugar, i.e., it
can be derived via an appropriate sequence of method additions, but this is not true. In
fact, when adding a method, the method does not have a state, while a complete object
used in an object composition has its own internal state (i.e., it has a private field, properly
initialized when the object was created via “new” from the class). Being able to choose
to complete an object via composition or via a sequence of method additions (of the same
methods appearing in the complete object used in the composition) gives our calculus an
extra bit of flexibility.

Let us show how the object completion works through an example of reduction. Sup-
pose we have the following objects (for simplicity let us forget the parameter of methods,
λy. . . .y, and dummy methods):

o1 = obj〈{m1 = λself . self .m2},v1
g,{m3 = λnext .λself . . . .},N = {1},R = {3},E = {2}〉

o2 = obj〈{m1 = λself . self .m3,m2 = λself . self .m1,m3 = λself . . . .},v2
g,{1,2,3}〉

o = o1←+ o2

wherem1 in o2 is “hidden” (i.e., the type foro2 will not contain the type of the method
m1 because of subsumption, see Section5 for types). The objecto1 expectsm2 and it uses
m2 insidem1. Moreover, it redefinesm3. Now, following the rule (obj comp), o will have
the shapeobj〈fix(incgen), incgen,{1,2,3}〉, where incgen is as follows:

let incgen=
let gen1 = λs1.λs2.

{
m1 = (v2

g s2).m1, m2 = s1.m2, m3 = s1.m3
}

in

λself .


m1 = (v1

g self).m1

m3 = (r.m3 self) (v2
g fix(gen1 self)).m3

m2 = (v2
g fix(gen1 self)).m2
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In the following we use the notationoi ::mj to refer to the (fully qualified) implementation
of mj in object (or incomplete object)oi . If we invokem1 on o we would like thato1::m1

is executed, theno2::m2, theno2::m1 (i.e., no accidental override took place), and finally
o1::m3 (i.e., the complete object uses the redefined version). Let us make explicit the
reduction steps performed upon the invocation of the methodm1 on objecto (we denote
gen1fix(incgen) by gg):

o.m1→ fix(incgen).m1→ (v1
g fix(incgen)).m1→ (λself . self .m2)fix(incgen) OK: o1::m1

→ fix(incgen).m2→ (v2
g fix(gen1 fix(incgen))).m2→ (v2

g fix(gg)).m2→
(λself . self .m1)fix(gg) OK: o2::m2

→ fix(gg).m1→ (v2
g fix(gg)).m1→ (λself . self .m3)fix(gg) OK: o2::m1

→ fix(gg).m3→ fix(incgen).m3→ (r.m3 fix(incgen)) (v2
g fix(gg)).m3→

(λnext .λself . . . .)(fix(incgen))(v2
g fix(gg)).m3 OK: o1::m3

4 Programming examples

In this section, we provide some examples to show how incomplete objects and object
completion via method addition and object composition can be used to design complex
systems, since they supply programming tools that make software development easier.
We refer to [5] for another example of using object composition to implement a stream
library.

For readability, we will use here a slightly simplified syntax with respect to the cal-
culus presented in Section2: (i) the methods’ parameters are listed in between “()”; (ii )
e1;e2 is interpreted aslet x = e1 in e2, x 6∈ FV(e2), coherently with a call-by-value se-
mantics; (iii ) references are not made explicit, thuslet x = e in x.m() should be intended
aslet x = refe in (!x).m(); (iv) method bodies are only sketched. Finally,x←+ e should
be intended, informally, asx:=(x←+ e).

In the first example, we present a scenario where it is useful to add some functionalities
to existing objects without writing new mixins and creating related classes only for this
purpose. Let us consider the development of an application that uses widgets such as
graphical buttons, menus, and keyboard shortcuts. These widgets are usually associated
to an event listener (e.g., a callback function), invoked when the user sends an event to
that specific widget (e.g., one clicks the button with the mouse or chooses a menu item).

The design patterncommand[21] is useful for implementing these scenarios, since
it allows parameterization of widgets over the event handlers, and the same event han-
dler can be reused for similar widgets (e.g., the handler for the event “save file” can be
associated with a button, a menu item, or a keyboard shortcut). However, in such a con-
text, it is convenient to simply add a function without creating a new mixin just for this
aim. Indeed, the above mentioned pattern seems to provide a solution in pure class-based
languages that normally do not supply the object method addition operation.

Within our approach, this problem can be solved with language constructs: mixin in-
stantiation (to obtain an incomplete object which can be seen as a prototype) and method
addition/completion (in order to provide further functionalities needed by the prototype).
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let Button =
mixin
method display = . . .
method setEnabled = . . .
expect onClick;
. . .

end in

let MenuItem =
mixin
method show = . . .
method setEnabled = . . .
expect onClick;
. . .

end in

let ShortCut =
mixin
method setEnabled = . . .
expect onClick;
. . .

end in

let ClickHandler =
(λ doc.λ self . . . . doc.save() . . .self .setEnabled(false)) mydoc
in
let button =new Button("Save") in
let item =new MenuItem("Save") in
let short =new ShortCut("Ctrl+S") in
button←+ (OnClick = ClickHandler);
button.display();
button.setEnabled(true);
mydialog.addButton(button);
item←+ (OnClick = ClickHandler);
item.setEnabled(true);
mymenu.addItem(item);
short←+ (OnClick = ClickHandler);
short.setEnabled(true);
system.addShortCut(short);

Figure 6: Widgets and handler.

For instance, we could implement the solution as in Figure6. The mixinButton expects
(i.e., uses but does not implement) a methodonClick that is internally called when the
user clicks on the button (e.g., by the window where it is inserted, in our example the
dialogmydialog). When instantiated, it creates an incomplete object that is then com-
pleted with the event listenerClickHandler (by using method addition). This listener is
a function that has the parameterdoc already bound to the application main document.
At this point the object is completed and we can call methods on it. Notice that the added
method can rely on methods of the host object (e.g.,setEnabled). The same listener can
be installed (by using method addition again) to other incomplete objects, e.g., the menu
item"Save" and the keyboard shortcut for saving functionalities. Moreover, since we are
able to act directly on instances here, our proposal also enables customization of objects
at run-time.

The code in Figure7 (that works together with the previous one) shows another ex-
ample of object completion viamethod addition, where the method to be completed ex-
pects the implementation from the superclass (it refers to it vianext): In fact, the mixin
FunnyButton does not simply expect the methodonClick, it expects to redefine this
method: the redefined method relies on the implementation provided bynext method (ei-
ther provided by a superclass, or in this example directly added via method addition to
an object instance ofFunnyButton) and adds a “sound” to the previous implementation.
Notice that once again the previous event handler can be reused in this context, too.
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let FunnyButton =
mixin
method display = . . .
method setEnabled = . . .
method playSound = . . .
redefine onClick =λself . λnext . . . .next() . . .
self .playSound("tada.wav");

end in

let funnybutton =new FunnyButton("Save") in
funnybutton←+ (OnClick = ClickHandler);
funnybutton.display();
funnybutton.setEnabled(true);
toolbar.addButton(funnybutton);

Figure 7: Another widget that expects to redefine a method.

Another way to implement the same functionalities is via object composition. For
instance, if saving the document requires further and complex operations, instead of in-
cluding all of these in a method, it can be more convenient to include them in an object
(with other methods than the one requested by the incomplete object). In particular, the
incomplete object only requires the methodonClick: the object used for completion can
have more methods (hidden by subsumption). Moreover, the additional methods will be
hidden in order to avoid name clashes. For instance, we can define the class:

let SaveDocument =
mixin
method onClick =λdoc.λself . . . .
method format =λdoc.λself . . . .
method save =λdoc.λself . . . .
method compress =λdoc.λself . . . .
method display =λdoc.λself . . . .
constructor λdoc.{fieldinit = ref doc,superinit = }

end

If we instantiate this mixin we obtain a complete object (since there are neither expected
nor redefined methods), that can be used to complete the incomplete objects in Figure6.
In particular, the methoddisplay in the complete object type will be hidden by subsump-
tion, therefore it will not interfere with the methoddisplay of the classButton (indeed,
they perform different operations). Notice that the constructor ofSaveDocument returns,
in the fieldinit field, a reference to the passed document instance (the value insuperinit
will be ignored, since an instance ofSaveDocument is already complete); this reference
will be used to initialize the private field of all the methods (since it is a reference every
methods will share the same value and can update it).

5 Type System

Besides functional, record, and reference types, our type system has class types, mixin
types, and object types (both for complete and incomplete objects):

τ :: = ι | τ1→ τ2 | τ ref | {mi : τmi}i∈I

| class〈τ,ΣM 〉| mixin〈τ1,τ2,ΣN ,ΣR ,ΣE 〉| obj〈Σ〉 | obj〈ΣN ,ΣR ,ΣE 〉
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(T class val) (T class inst)
Γ ` vg : γ→{mi : τmi}i∈M →{mi : τmi}i∈M

Γ ` classval〈vg,M 〉 : class〈γ,{mi : τmi}i∈M 〉

Γ ` e: class〈γ,{mi : τmi}〉

Γ ` new e: γ→ obj〈{mi : τmi}〉

(T obj) (T sel)
Γ ` {mi = vmi}i∈M :{mi : τmi}i∈M

Γ ` vg :{mi : τmi}i∈M →{mi : τmi}i∈M

Γ ` obj〈{mi = vmi}i∈M ,vg,M 〉 :obj〈{mi : τmi}i∈M 〉

Γ ` e:obj〈Σ〉 mi : τmi ∈ Σ

Γ ` e.mi : τmi

Figure 8: Typing rules for class related forms

whereι is a constant type,→ is the functional type operator,τ ref is the type of locations
containing a value of typeτ. Σ (possibly with a subscript) denotes a record type of the
form {mi : τmi}i∈I , I ⊆ N. If mi : τmi ∈ Σ we say that thelabel mi occursin Σ (with type
τmi ). L(Σ) denotes the set of all the labels occurring inΣ. The metavariableγ ranges over
the set of types.Typing environmentsare defined as:Γ : : = ε | Γ,x : τ | Γ, ι1<: ι2 where
x ∈ Var, τ is a well-formed type,ι1, ι2 are constant types, andx, ι1 6∈ dom(Γ). Typing
judgmentsare the following:Γ ` τ1<:τ2, τ1 is a subtype ofτ2 andΓ ` e: τ, ehas typeτ.

Typing rules for lambda expressions are standard. Typing rules for expressions dealing
with imperative side-effects via stores and the rules for typing classes and records can
be found in [9]. We do not need any form of recursive types because we do not use a
polymorphicMyTypeto typeself (see, for instance, [17]). This prevents the type system
from typing binary methods, but it still allows it to type methods that modifyself , which
can be modelled as “void” methods that return nothing.

Typing rules for class and complete object related forms are given in Figure8. In rule
(T class val), class〈γ,ΣM 〉 is the class type whereγ is the type of the generator’s argument
andΣM = {mi : τmi} is a record type representing the interface of the objects instantiable
from the class. The type of a complete object is the record of its method types (rule
(T obj)). Notice that objects instantiated from class values do not have a simple record
type Σ, but an object typeobj〈Σ〉. This is useful for distinguishing standard complete
objects, which can be used for completing incomplete objects, from their internal auto-
referenceself , that has typeΣ. In the object expression, the second componentvg is a
function fromself to self because it works on the first component of the object, which is
the record of object’s methods. The only operation allowed on complete objects is method
selection and it is typed as ordinary record component selection (rule (T sel)).

We present the typing rules for mixin-related forms in Figure9. In the mixin type
mixin〈γb,γd,ΣN ,ΣR ,ΣE〉, γb is the expected argument type of the superclass generator,
γd is the exact argument type of the mixin generator,ΣN = {mj : τmj} are the exact types
of the new methods introduced by the mixin,ΣR = {mk : τmk} are the exact types of the
methods redefined by the mixin,ΣE = {mi : τmi} are the types of the methods expected
to be supported by the superclass to which the mixin is applied. The rules (T mixin)
and (T mixin val) assign the same type to their respective expressions. The type assigned
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Γ ` e:mixin〈γb,γd,ΣN ,ΣR ,ΣE 〉

Γ ` new e: γd→ obj〈ΣN ,ΣR ,ΣE 〉
(T mixin inst)

For j ∈N : Γ ` vmj : τmj For k∈ R : Γ ` vmk : τmk For i ∈ E : Γ ` vmi : τmi

Γ ` vg : Σ→ Σ Γ ` r :{mk : Σ→ τmk → τmk}k∈R

Γ ` obj〈{mp = vmp}p∈N ∪R ∪E ,vg, r,N ,R ,E〉 :obj〈ΣN ,ΣR ,ΣE 〉
(T inc obj)

For j ∈N : Γ ` vmj : η→ Σ→ τmj For k∈ R : Γ ` vmk : η→ Σ→ τmk → τmk

Γ ` vc : γd→{fieldinit : η,superinit : γb}

Γ `

mixin

method mj = vmj ;
( j∈N )

redefine mk = vmk;
(k∈R )

expect mi ; (i∈E)

constructor vc;
end

:mixin〈γb,γd,ΣN ,ΣR ,ΣE 〉

(T mixin)

Γ ` Genm : γd→{gen : Σ→ Σ,superinit : γb, redef :{mk : Σ→ τmk → τmk}k∈R }

Γ ` mixinval〈Genm,N ,R ,E〉 :mixin〈γb,γd,ΣN ,ΣR ,ΣE 〉
(T mixin val)

Γ ` e1 :mixin〈γb,γd,ΣN ,ΣR ,ΣE 〉 Γ ` e2 : class〈γc,ΣM 〉
Γ ` γb<:γc Γ ` ΣM <:ΣE ∪ΣR L(ΣM )∩L(ΣN ) = /0

Γ ` e1�e2 : class〈γd,ΣN ∪ΣM 〉
(T mix app)

where in all the rules
Σ = ΣN ∪ΣR ∪ΣE ΣN = {mj : τmj}, ΣR = {mk : τmk}, ΣE = {mi : τmi}
τmi are inferred from method bodies

Figure 9: Typing rules for mixin related forms

to an incomplete object is similar to the type of the mixin the object is the instance of,
but it does not contain information about the constructor (see rule (T inc obj)), since the
constructor has already been called when the incomplete object has been created. Notice
that in the rule (T inc obj) the record of methods includes also expected methods (i ∈
N ∪R ∪E). This may seem to contradict the “nature” of expected methods. Indeed,
such methods in an incomplete object are “dummy” in the sense that they are of the
shapem = λself .self .m (see Section3), and they will never be called, since the typing
prohibits invoking methods on incomplete objects. “Dummy” methods are a technical
trick that enables correct instantiation of incomplete objects (intuitively,self must refer
to all the methods, not only the new ones, but also the ones that are still to be added).
When typing an incomplete object value and a mixin value, “dummy” methods allow us
to assign the typeΣ→ Σ to the generatorvg (the generator being a function fromself to
self ). In fact, the body of “dummy” methods simply calls the homonym method onself ,
so the type inferred for expected and redefined methods will be consistent with the types
of “dummy” method bodies (and so with the types of expected andnext methods sought
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Γ ` e:obj〈ΣN ,ΣR ,ΣE 〉 ml : τml ∈ ΣE Γ ` vml : Σ1→ τml

Γ ` (ΣN ∪ΣR ∪ΣE )<:Σ1

Γ ` e←+ (ml = vml ) :obj〈ΣN ∪{ml : τml},ΣR ,ΣE −{ml : τml}〉
(T meth add 1)

Γ ` e:obj〈ΣN ,ΣR ,ΣE 〉 ml : τml ∈ ΣR Γ ` vml : Σ1→ τml

Γ ` (ΣN ∪ΣR ∪ΣE )<:Σ1

Γ ` e←+ (ml = vml ) :obj〈ΣN ∪{ml : τml},ΣR −{ml : τml},ΣE 〉
(T meth add 2)

Γ ` e1 :obj〈ΣN ,ΣR ,ΣE 〉 Γ ` e2 :obj〈ΣP 〉
Γ ` ΣP <:ΣE ∪ΣR L(ΣP )∩L(ΣN ) = /0

Γ ` e1←+ e2 :obj〈ΣN ∪ΣR ∪ΣE 〉
(T obj comp)

Γ ` obj〈{mi = vmi}i∈I ,vg,{}, I , /0, /0〉 :obj〈Σ, /0, /0〉

Γ ` obj〈{mi = vmi}i∈I ,vg, I〉 :obj〈Σ〉
(T compl)

Figure 10: Typing rules for incomplete object-related forms

J⊆ I

Γ ` {mi : τmi}i∈I <:{mj : τmj} j∈J
(<: record)

Γ ` Σ<:Σ′

Γ ` obj〈Σ〉<:obj〈Σ′〉
(<: cobj)

Figure 11: Subtyping for objects

by their sibling methods). If the “dummy” method “trick” was not used, thefix operator
could not be applied to generate an incomplete object.

In the rule (T mix app), ΣM contains the type signatures of all the methods supported
by the superclass to which the mixin is applied. The superclass must provide all the
methods required by the mixins (expected and redefined). The resulting class contains
the signatures of all the methods defined by the mixin, and inherited from the superclass
(superclass may have more methods than required by the mixin constraints).

Figure10 shows the typing rules related to incomplete objects. A methodml can be
added to an incomplete object (rule (T meth add 1)) only if this method is expected by
the incomplete object and if its type is a subtype of the expected one. The added method
completes the functionalities of some already present methods and may invoke some of
them as well. Therefore,ml ’s self type Σ1 imposes some constraints on the type of the
incomplete object thatml is supposed to complete. Hence, the incomplete object must
provide all the methods listed inΣ1, on which the added method is parameterized.Σ1

is inferred fromml ’s body. The rule for adding anext method to complete a methodml

that is redefined in the incomplete object (rule (T meth add 2)) is similar and we omit its
explanation due to the lack of space.

The main novelty in the typing system with respect to the one of [5] is the subtyping
relation on complete objects (Figure11). In the original calculus both depth and width
subtyping was defined on record types. Here, for uniformity with respect to object types,
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we define width subtyping only on record types as well. The cost we pay is a less ex-
pressive mixin application typing rule. However, modifying the subtyping rules in order
to allow also depth subtyping on record types only would be just a technicality and an
orthogonal issue with respect to the subject of the paper.

6 Properties of the system

Our system is proved sound, in the sense that “every well-typed program cannot go
wrong”, which implies the absence ofmessage-not-understoodruntime errors. We con-
siderprograms, which are closed terms, and we introducefaulty programs, in the style
given in [28], which are a way to approximate the concept of reaching a “stuck state”
during the evaluation process, and prove that if the evaluation for a given programp does
not diverge, then eitherp returns a value, orp reduces to a faulty program. By using the
subject reduction property and proving that faulty programs are not typable, we show that
if a program has a type in our system, then it evaluates to a value, under the condition that
the program does not diverge. For complete proofs see [23].

Definition 6.1 (Contexts)

C : : = [ ] |C e| e C | λx.C | {m1 = e1, . . . ,mi = C,mi+1 = ei+1, . . . ,mn = en}1≤i≤n|C.x | H h.C | H〈x,C〉h.e
| classval〈C,M 〉 | new C |C�e | e�C|C←+ m= e |C←+ e | e←+ m= C | e←+ C

| mixin

j ∈N − [l ]
k∈ R
i ∈ E

method mj = vmj ;
method ml = C;
redefine mk = vmk;
expect mi ;
constructor vc;
end

| mixin

j ∈N
k∈ R − [l ]
i ∈ E

method mj = vmj ;
redefine mk = vmk;
redefine ml = C;
expect mi ;
constructor vc;
end

| mixin

j ∈N
k∈ R
i ∈ E

method mj = vmj ;
redefine mk = vmk;
expect mi ;
constructor C;
end

The notion ofsubstitutionis defined as[e2/x]e1, where the expressione2 is substituted for
all the free occurrences of the variablex in the expressione1.

Lemma 6.2 (General deduction properties)

i) If Γ ` C[e] : τ, then there existΓ′,τ′ such thatΓ′ ` e: τ′;

ii) If there exist noΓ′,τ′ such thatΓ′ ` e: τ′, then there exist noΓ,τ such thatΓ `
C[e] : τ.

Lemma 6.3 (Property of <: w.r.t. →) If Γ ` τ1→ τ2<:ρ, thenρ = σ1→ σ2, andΓ `
σ1<:τ1 andΓ ` τ2<:σ2.

Lemma 6.4 (Weakening is Admissible)Let e be an expression, andΓ andΓ′ two typing
environments. If, for all x∈ FV(e), Γ′(x) = Γ(x), then Γ ` e: τ if and only if Γ′ `
e: τ, for someτ.

22 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



6 PROPERTIES OF THE SYSTEM

Lemma 6.5 (Replacement)If D is a deduction ofΓ ` C[e1] :τ, D1 is a sub-deduction of
Γ′ ` e1 : τ′ in D, D1 occurs inD in the hole([ ]) of C, andΓ′ ` e2 : τ′, thenΓ ` C[e2] : τ.

Lemma 6.6 (Substitution) If Γ,x : τ′ ` e: τ andΓ ` e′ : τ′, thenΓ ` [e′/x]e: τ.

Lemma 6.7 (< : Weakening) If Γ,x : τ ` e: σ andΓ ` τ′ < :τ, thenΓ,x : τ′ ` e: σ

Lemma 6.8 (Fix) If Γ ` f ix(λx.e) : τ thenΓ ` [ f ix(λx.e)/x]e: τ.

Lemma 6.9 LetD be a derivation ofΓ ` obj〈{mp = vmp}p∈P ′,vg,P ′〉 :obj〈ΣP 〉, P ⊆ P ′.
Then there exists a sub-derivationD ′ of D for Γ ` obj〈{mp = vmp}p∈P ′,vg,P ′〉 :obj〈ΣP ′〉.

Definition 6.10 (→→ Relation) With→→ we denote the reflexive, transitive, and contex-
tual closure of→.

Lemma 6.11 (Subject Reduction)If Γ ` e: τ and e→→ e′, thenΓ ` e′ : τ.

Proof: The proof follows by cases on the one-step→ reduction definition, followed by
induction on the number of steps of reduction usingC[ ]. We present only the case con-
cerning object composition (rule (obj comp) from Figure5).

Let us introduce the following notation:
v1 = obj〈{. . .},vg, r,N ,R ,E〉,v2 = obj〈{mp = vmp}p∈P ′,v′g,P ′〉, andΣ′= ΣN ∪ΣR ∪ΣE .

The visible interface of the complete object contains typesτp, wherep∈ P , whereas
the set of its methods might contain more methods, i.e., its methods aremp, p∈P ′. Hence
the types of methods hidden by the subsumption areτmh, whereh∈H = P ′−P .

By the rule(T obj comp): Γ ` v1←+ v2 :obj〈ΣT〉. We will prove that we can assign
the same type toobj〈fix(incgen), incgen,N ∪R ∪E〉, where incgen is defined as in rule
(obj comp) from Figure5. Analyzing the rule(T obj comp) and using Lemma6.2 we
derive the following:

Γ ` v1 :obj〈ΣN ,ΣR ,ΣE〉 (1) Γ ` v2 :obj〈ΣP 〉,P ⊆ P ′ (2)
Γ ` ΣP <:ΣE ∪ΣR (3) L(ΣP )∩L(ΣN ) = /0 (4) obj〈Σ′〉<:obj〈ΣT〉

Notice that, because of the possibility of applying some subsumption steps to complete
object types, we must consider a typeobj〈ΣT〉, a supertype ofobj〈Σ′〉, as the type of the
composition expression. Notice also that the incomplete objectv1 is parameterized onself
of typeΣ = ΣN ∪ΣR ∪ΣE , whereas the complete objectv2 being added is parameterized
on self of typeΣP . The type of newly obtainedself is Σ′. HenceΣ = Σ′.

First of all, let us look at the judgement (1). Observing the rule(T inc obj) and using
Lemma6.2we derive:

For j ∈N : Γ ` vmj : τmj (5) For k∈ R : Γ ` vmk : τmk (6) For i ∈ E : Γ ` vmi : τmi (7)
Γ ` vg : Σ→ Σ (8) Γ ` r :{mk : Σ→ τmk → τmk}k∈R (9)
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whereΣ = ΣN ∪ΣR ∪ΣE . Next, for the judgement (2), analyzing the rule(T obj) and
using Lemma6.2we deduce:

Γ ` {mp = vmp}p∈P ′ :{mp : τmp}p∈P = ΣP (10) Γ ` v′g : ΣP → ΣP (11)

For someself ,s1,s2 6∈ dom(Γ), using the projection rule (Γ,x : τ ` x : τ), we obtain:

Γ,self : Σ′ ` self : Σ′ (∗)
Γ,self : Σ′,s1 : Σ,s2 : ΣP ` s1 : Σ (∗1) Γ,self : Σ′,s1 : Σ,s2 : ΣP ` s2 : ΣP (∗2)

Applying Lemma6.4to (8), (9), and (11) we derive:

Γ,self : Σ′ ` vg : Σ→ Σ.(8′) Γ,self : Σ′ ` r :{mk : Σ→ τmk→ τmk}k∈R (9′)
Γ,self : Σ′,s1 : Σ,s2 : ΣP ` v′g : ΣP → ΣP (11′)

Let us now have a look at the function incgen. First we look at its part gen1. We can

apply the rule

Γ ` e1 : τ→ σ Γ ` e2 : τ

Γ ` e1 e2 : σ
(app)

to (11’) and (*2) to deriveΓ,self :Σ′,s1 :Σ,s2 :
ΣP ` v′g s2 : ΣP . For l ∈ P ′− (R ∪E) Γ,self : Σ′,s1 : Σ,s2 : ΣP ` (v′g s2).ml : τml , i.e.,ml :
τml ∈ ΣP ′− (ΣR ∪ΣE).

We can deduce the types forml : τml , wherel ∈ H using Lemma6.9. For r ∈ P ′ ∩
(R ∪E), methods are “dummy”, i.e. they are taken froms1 : Σ, so we have
Γ,self : Σ′,s1 : Σ,s2 : ΣP ` s1.mr : τmr i.e.,mr : τmr ∈ ΣP ′ ∩ (ΣR ∪ΣE).

Therefore, in the contextΓ,self : Σ′,s1 : Σ,s2 : ΣP , the record of methods produced by
gen1 will have the type(ΣP ′ − (ΣR ∪ΣE))∪ (ΣP ′ ∩ (ΣR ∪ΣE)) = ΣP ′ . SinceΣP ′<:ΣP
we deduce the type for gen1:

Γ,self : Σ′ ` gen1 : Σ→ ΣP → ΣP (12).

Now let us analyze the record of methods produced by incgen. Applying the rule
(app) to (12) and (*) we obtainΓ,self : Σ′ ` gen1self : ΣP → ΣP sofix can be applied to
the above obtainingΓ,self : Σ′ ` fix(gen1self) : ΣP .

Finally, applying the rule (app) to (11’) and the above we deduce:
Γ,self : Σ′ ` v′g fix(gen1 self) : ΣP (13).

Selecting the appropriate methods from(13) we get:

For k∈ R : Γ,self : Σ′ ` (v′g fix(gen1 self)).mk : τmk (14)
For i ∈ E : Γ,self : Σ′ ` (v′g fix(gen1 self)).mi : τmi (15)

Applying the rule (app) to (8’) and (*), and to (9’) and (*) we obtain:
Γ,self : Σ′ ` vg self : Σ and fork∈ R : Γ,self : Σ′ ` r.mk self : τmk→ τmk.

For j ∈N : Γ,self : Σ′ ` (vg self).mj : τmj i.e.,mj : τmj ∈ ΣN (16)

For k∈ R : Γ,self : Σ′ ` (r.mk self)(v′g fix(gen1self)).mk : τmk i.e.,mk : τmk ∈ ΣR (17)

For i ∈ E : Γ,self : Σ′ ` (v′g fix(gen1self)).mi : τmi i.e.,mi : τmi ∈ ΣE (18)

From (16), (17), and (18), the record of methods produced by incgen has the type
ΣN ∪ΣR ∪ΣE = Σ′ therefore the type of incgen is

Γ ` incgen :Σ′→ Σ′ (19) andΓ ` fix(incgen) : Σ′ (20)

24 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 10



6 PROPERTIES OF THE SYSTEM

Finally, applying the rule (T obj) to (19) and (20), we derive: Γ `
obj〈fix(incgen), incgen,N ∪ R ∪ E〉 : obj〈Σ′〉 and by subsumption we get:Γ `
obj〈fix(incgen), incgen,N ∪R ∪E〉 :obj〈ΣT〉. 2

Definition 6.12 (Evaluation Contexts) If v’s stand for values, then evaluation contexts
E are defined as follows:

E : : = [ ] | E e| v E | E.x | H h.E | |{m1 = v1, . . . ,mi = E,mi+1 = ei+1, . . . ,mn = en}1≤i≤n

| new E | E �e | v�E| E←+ m= e | E←+ e | v←+ m= E | v←+ E

The notion of theevaluation context E, enables us to make the evaluation procedure
deterministic with respect to side-effects. Note thatR, the reduction context defined in
Section 4, andE are almost identical: they differ only in thatR does not includeH h.R.
This is becauseR is used when looking up heap values, and only the local heap can be
used for this.

Definition 6.13 (Programs and answers)Programsandanswersare defined as follows:

p :: = ec, where ec is a closed expression a:: = v | H h.e.

Hence,programsare closed expressions and arewell-typedif they can be assigned a type
in an empty type environment. When a program is evaluated by performing successive
reductions, each intermediate step is a program itself. There are two possible situations:
(i) reduction continues forever, i.e., the program diverges;(ii) the program reaches a final
state, i.e., no further reduction is possible. In this case, a program produces either an
answer, or a type-related error.

Next, we define the relation7→ that represents the reduction relation for evaluation
contexts.

Definition 6.14 (7→ Relation) E[e] 7→ E[e′] if and only if e→ e′. With 7→→ we denote the
reflexive and transitive closure of7→.

This relation enables us to see the evaluation procedure as a (partial) functioneval
from programs to answers. Hence, the partial functioneval is defined on programs as:
eval(p) = a⇐⇒ p 7→→ a.

Corollary 6.15 (Subject Reduction for 7→→) If Γ ` e: τ and e7→→ e′, thenΓ ` e′ : τ.

Definition 6.16 (Faulty Programs) The faulty programsare the programs containing
some of the following sub-expressions:

• cv where c is a constant, v a value butδ(c,v) is not defined;

• v1v2 where v1,v2 are values and v1 6= λx.e, ref, !, :=, :=v;
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• !v where v is a value and v6= x;

• :=v where v is a value and v6= x;

• H h〈x,v2〉.C[xv1] where v1,v2 are values;

• new v where v is a value and v6= classval〈 , 〉 or v 6= mixin〈 , , , 〉;

• v.x where v is a value and v6= {xi = vi}i∈I or x 6= xi ,∀i;

• v1 � v2 where v1 and v2 are values and v1 6= classval〈 , 〉 or v2 6=
mixinval〈 , , , 〉;

• v1←+ m= v2 where v1 and v2 are values and v1 6= obj〈 , , , , , 〉;

• v1 ←+ v2 where v1 and v2 are values and v1 6= obj〈 , , , , , 〉 or v2 6=
obj〈 , , 〉.

Definition 6.17 (Program Divergence)A program p diverges (p⇑) if p 7→ p′ for some
p′ and for all p′′ such that p7→→ p′′ there exist q such that p′′ 7→ q.

Lemma 6.18 (Uniform Evaluation) For a program p, if there is no p′ such that p7→→ p′

and p′ is faulty, then either p⇑ or p 7→→ a, for some answer a.

Proof: By induction on the structure ofp, by proving one of the following: eitherp itself
is faulty (then, since7→→ is reflexive, there is a faultyp′, coinciding with p, such that
p 7→→ p′, therefore the hypothesis of the lemma does not apply), orp 7→→ p′ and p′ is
closed, orp is an answer. We present only the casep = p1� p2: we first considerp1, for
which we have three possibilities:

1. p1 7→ q1 andq1 is closed. Then,p1 = E1[p′],q1 = E1[q′] for some contextE1, where
p′→ q′. ForE = E1� p2, p = p1� p2 = E1[p′]� p2 = E[p′] 7→ E[q′] is closed;

2. p1 is faulty: p is faulty;

3. p1 is an answer: ifp1 6= mixinval〈 , , , 〉, thenp is faulty. Otherwise, we ana-
lyze p2. There are following cases to consider:
a. p2 7→ q2 andq2 is closed. Then,p2 = E2[p′],q2 = E2[q′] for some contextE2,
wherep′→ q′. ForE = p1E2, p = p1� p2 = p1�E2[p′] = E[p′] 7→ E[q′] is closed;
b. p2 is faulty: p is faulty;
c. p2 is an answer: ifp2 6= classval〈 , 〉, thenp is faulty. Otherwise,p reduces in
the empty contextE = [ ], according to the (mixinapp) rule.

Lemma 6.19 (Faulty Programs are Untypable)If p is faulty there are noΓ,τ such that
Γ ` p: τ.

Theorem 6.20 (Soundness)Let p be a program: ifε ` p : τ then either p⇑ or p 7→→ a
andε ` a: τ, for some answer a.
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We can now define a functioneval′ from programsto {answers}∪⊥ where⊥ is a
special value given to the evaluation process of a programpwhen it evaluates to a program
p′ which is faulty. The following are two properties, both corollaries of Theorem6.20.

Corollary 6.21 (Strong Soundness)Let p be a program: ifε ` p : τ and eval′(p) = a,
for some answer a, thenε ` a: τ.

Corollary 6.22 (Weak Soundness)Let p be a program: ifε ` p: τ, then eval′(p) 6=⊥.

7 Conclusions

We presented a possible solution to solve the “method composition versus width subtyp-
ing” conflict where object composition and subtyping safely coexist. We remark that the
high-level ideas underpinning our solution are general. In particular, the idea of having
self “split” into two parts when composing two objects, one taking care of the statically
bound methods, the other one dealing with the dynamically bound ones, can be applied
within any setting presenting the same problem. Moreover, with respect to the dictionar-
ies of [25] in the late-binding setting, our early-binding setting provides a corresponding
solution that is more oriented to an implementation and, in particular, would not suffer
from overheads due to dictionary management and lookups, as the original calculus does,
as pointed out in [25] itself. The approach we chose here was to allow width subtyping
on complete objects only. It is possible to have width subtyping on incomplete objects as
well, if hidden method names are carried along: (i) in the type of the object; (ii ) in the
object itself. Solution (i) would imply a more restrictive typing rule for object composi-
tion, to also check the possible conflicts among non-hidden and hidden methods, and rule
out such conflicts completely. We think, though, that such a solution is too restrictive, as
we think this kind of name clash is not an error. Hidden method name information in the
object (solution (ii )) would solve all possible ambiguities at run-time, but it would be less
standard, as the subsumption rule would act on the object expression, not only on its type.
Nevertheless, we think this solution has the advantage of being quite general, even though
it might be considered not elegant, and it will be presented as future work.

An explicit form of incomplete objects was introduced in [8], where an extension of
Lambda Calculus of Objects of [17] is presented. In this work, “labelled” types are used to
collect information on the mutual dependencies among methods, enabling a safe subtyp-
ing in width. Labels are also used to implement the notion ofcompletionwhich permits
adding methods in an arbitrary order allowing the typing of methods that refer to methods
not yet present in the object, thus supporting a form of incomplete objects. However, to
the best of our knowledge, there exist no attempts other than ours to instantiate mixins in
order to obtain prototypical incomplete objects within a hybrid class-based/object-based
framework.Traits have been proposed in [26] as an alternative to class and mixin inheri-
tance to enhance code reuse in object-oriented programs: they are collections of methods
that can be used as “building blocks” for assembling classes. Traits are concerned with
the reuse of behavior, while our main concern is the composition of objects together with
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their state. An interesting future direction is the study of incomplete objects using traits
instead of mixins, starting from the typed calculus of traits [19].

We plan to add to our calculus the possibility to combine two mixins, thus introducing
higher-order mixins(mixins that can be applied to other mixins yielding other mixins),
along the lines of [4]. This integration seems to be smooth and it would result in a rather
complete mixin-based setting. Moreover, we want to study a form of object-based method
overrideand a more general form of method addition. Both these extensions will add
issues to the subtyping problem. Furthermore, we will study a composition operation
between two complete objects (e.g., no missing methods). Finally, incomplete objects are
a natural feature to be added to MOM I [7], a coordination language where object-oriented
mobile code is exchanged among the nodes of a network.
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[26] N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of behaviour. InProc. ECOOP’03, volume 2743
of LNCS, pages 248–274. Springer, 2003.

[27] D. Ungar and R. B. Smith. Self: The power of simplicity.ACM SIGPLAN Notices, 22(12):227–242, 1987.

[28] A. Wright and M. Felleisen. A syntactic approach to type soundness.Information and Computation, 115(1):38–94, 1994.

About the authors

Lorenzo Bettini holds a PostDoc position at the Dipartimento di Sistemi e In-
formatica, Universit̀a di Firenze, Italy. His research focuses on theory, exten-
sion and implementation of mobile code and object-oriented languages, and on
distributed applications. He can be reached at
http://www.lorenzobettini.it.

Viviana Bono is an Associate Professor in Computer Science at the Univer-
sity of Torino, Italy. Her main research interests are theoretical foundations,
semantics, and design of object-oriented and functional languages. She can be
reached at
http://www.di.unito.it/~bono.

Silvia Likavec got her PhD from University of Torino, Italy and́Ecole Nor-
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