
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 9, November-December 2005

Cite this article as follows: Lakshmi Prayaga: “Game programming – The “Why”, ”What”
and “how” with Graphics Objects”, in Journal of Object Technology, vol. 4, no. 9, November-
December 2005, pp. 39-58 http://www.jot.fm/issues/issue_2005_11/column5

39

Game programming – The “Why”,
“What” and “How” with Graphics Objects

Lakshmi Prayaga, Lecturer, Computer Science Department, University of West
Florida, Pensacola

Abstract
Game Programming is the latest buzz word in the computer science educational
curriculum. Many universities across the world are offering complete CS degree
programs in game programming while others such as the Art institute of Portland have
summer camps for teens in game programming (Ai of Portland, 2005). This brings us to
three interesting questions, The “ Why”, “What” and “How” of game programming. This
paper serves the purpose of analyzing these questions within the context of a Visual
basic.Net application. A discussion on the choice of Visual Basic .Net as the
environment to create and manipulate the objects in the game is also presented. The
code used is also included in the paper.

1 WHY GAME PROGRAMMING?

The idea of using games for educational purposes in K-12 and also for higher education is
well documented (Dempsey etal, 1997, cited by Seay and Scott). However, educators are
split on the idea of using games in a class room. Some feel it is very effective to teach a
concept while others feel it takes up valuable class time. But research
(J.C.Herz , in JoyStic Nation, p 1-2 cited by Seay and Scott, Affisco, 1994, p.171 cited by
Feldgen and Clua) shows that students these days have a totally different way of learning.
They react more to interactive learning. In fact Affisco coins the word ‘Edutainment’ a
combination of entertainment and education and points out that if students are not
entertained while they learn, the instructor has lost them. Herz argues that, “If your
memories have pop soundtracks or big-screen kisses, if you've ever told an anecdote with
instant replays or a coda of stadium applause, it's because you've been brought up with
media that furnish those conventions. Video games provide a new set of conventions,
which are being rapidly assimilated, as you read this, by a legion of six-year-olds. Their
mental grammar is going to reflect that, just as the baby boomers' worldview echoes the
impact of television. But whereas TV turned kids of the fifties and sixties into a nation of
screen watchers, videogames have created a cadre of screen manipulators (p.1-2).”
Continuing on this thought, Lave(1991) and Mcllelan(1995)argue learning happens

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_11/column5

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

within a context and culture of a society, i.e. it is situated. The typical student today(2000
– present) is very well versed in playing games on the computer. They acquire high levels
of skills in playing these games and in trying to beat the computer. In addition, many
argue that (Coleman et al. 2005) “videogames are the initial draw to technology for a
number of students in the first place”, (Pleva 2004) they provide a “stepping stone for
kids into the world of technology. Students who play computer games tend to be more
comfortable with the technology and more adept at using it.”.

Ideas such as these expressed by educationalists show that games are here to stay and
are being used as educational tools, and are in many cases successful at delivering
educational content in a way that students internalize those concepts being presented.
Seay and Scott cite a reference to an article in the American Scientist which shows that
the IQ of present day students is increasing and one of the theories for the increase in IQ
“is that our increased exposure to visually rich mass media---television, computers, video
games -- has enabled us to perform better on spatial-visual tests. The theory states that the
ability to interpret different forms of information from different media and make some
kind of sense of it is what these IQ tests actually test for.”

The game environment is almost like a comfort zone for the student by which he is
not intimidated. It is in fact his preferred choice of context to work in. It is therefore an
area that can be used advantageously by educators to motivate students to be focused in
and complete their assignments. In fact Feldgen and Clúa show that most students in the
year 2003, chose the context of the game environment for their projects compared to the
context of engineering, calculus or business and were also successful in completing their
projects. This shows that the gaming environment has a heavy influence on the students
mind and therefore also acts as a good motivator. Not surprisingly, many universities
(GameDev.Net05) such as University of Pennsylvania, University of Denver, Middlesex
University UK, University of North Texas have now started to think seriously about
including game technology into the CS curriculum.

2 WHAT IS GAME PROGRAMMING?

“Game programming is a subset of game development, is the programming of computer,
console or arcade games. Though often engaged in by professional game programmers,
many novices may program games as a hobby. Most software engineering students
program games as exercises for learning a programming language or operating system. In
fact, the Unix operating system and the C programming language exists because the
original programmers wanted to play games” (Wikepedia 2005).

Game programming is both an interdisciplinary and an intra-disciplinary field. It is
an intra-disciplinary field of computer science because it includes (Masuch, Freudenberg
2002). “Computer graphics, AI, simulation, user interface design are core components of
every game. And more: network techniques, multimedia, databases and many other
disciplines take part in game development”. It is an interdisciplinary fields due to its

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 41

heavy dependence on photography, physics, imagery, audio and video technology, in
short all elements of multi media technology.

The above topics provide the necessary background knowledge to deal with the
complex relationships among many abstract and concrete components of game
programming. Some of these components are the story line, picturization, characters,
shapes, sound, interactivity and other multimedia effects. These components can broadly
be classified into two categories, visual and non-visual. This paper focuses on creating
and using graphics objects as the primary source of visual representation of the game
being planned. Graphics objects form the core of game programming because images
used in any game have properties which are similar to the properties of a graphics object.
An example is that of an image bound within a rectangular or circular graphics object.
We show how geometric shapes can be made into objects that have properties, events,
and methods suitable for game programming.

In addition to introducing students to the idea of “objects”, game programming can
be used to introduce introductory data structures such as arrays and records. Together,
these topics form the core of an introductory object oriented programming (OOP) course
with gaming as the context. As discussed earlier, students can relate to this context, and
hence there is a better chance of meeting and improving student learning outcomes in an
introductory OOP course. In recent years game programming is being introduced into the
CS curriculum in many different ways such as (deLaet et al. 2005)“a games course for
women, a software development course that uses games as projects, an introductory
games programming course in Java, and an advanced graphics course that focuses on
games”.

Regardless of which way a game programming course is introduced, there are some
essential elements of the subject which must be taught. These include graphics objects,
animation, physics of collisions, collision detection, collision response and multimedia
effects. The elements of game programming presented in this paper implement the
recommendations of Cunningham et al. (2004) as shown in Fig1.

Figure1

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Figure one provides a framework that explains the design process and is discussed below:
• Problem statement: In order to create a game, it is important to formulate the story

line, followed by identification of the individual components participating in the
game and their relationships. An example is to visualize a scenario when in which
a group of objects appear on the screen and start moving randomly.

• Model: Once the statement of the problem is verbalized, the next step is to
conceptualize or abstractly visualize a model that represents this problem.

• Geometry: This conceptualization must now be translated into figures, outlines or
geometric shapes. For example the objects can be thought of as spherical,
rectangular, triangular or polygonal objects which have geometric properties such
as points, angles, vertices and lines. Objects may also have irregular shapes, with
pictures of trees, birds, animals etc.

• Image: The last phase is to visually depict this model on the screen of a computer
by using an image that corresponds to this model.

These four phases constitute the building blocks of game programming. As shown in
fig.1, looping back to the initial phase (or to any phase from any phase, similar to the
waterfall life cycle model in software engineering - Schach02) may occur many times
during the design of the program. Only one loop back is shown in the figure to avoid
clutter. The next section is a discussion on the implementation of these core concepts.

3 THE HOW OF GAME PROGRAMMING:

We discuss the implementation of the principles of game programming based on fig1
with reference to a specific game environment being designed. Graphical
reusable/replaceable objects are used to illustrate the use of the four elements of game
programming discussed above.

The problem statement/ story line of the game: The game being designed is a
combat operation between different geometric shapes. The user/player controls one of the
objects and the rest of the objects try to hit the user/player object and destroy it. The
elements required at this stage include creation of objects for the game, the movement of
these objects (animation) on the game board, the collision of objects, the result of this
collision and audio clips to add sound effects to the environment.

The model: A model is an abstract visualization of the problem being discussed. The
model for this game is the interaction between the two sets of objects, system/game
controlled objects and the user controlled object. These shapes do not have any social
skills, so when they interact with the user object the user object is either destroyed
completely or shattered into smaller pieces. So, the outcome of the combat is collision,
destruction or the survival of some objects

Geometry: The geometry is the crucial piece of game programming. It is at this
stage that decisions regarding the size of the game board, the types of objects, the shape
of the objects and the location of the objects on the board, have to be made. During the

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 43

game, various geometrical transformations of the objects have to be performed, such as
rotations, translations, scaling, etc. Students designing the game must therefore be
particularly familiar with coordinate geometry, linear algebra and trigonometry to be able
to make these decisions. The importance of geometry in game programing is also evident
as it is included as one of the major courses students wishing to major in game
programming must take. (Coleman et al. 2005). We assume that students entering to take
a course on game programming have this pre-requisite knowledge.

Image: The images on the screen follow the decisions made in the geometry phase.
Images translate the model into a visualization. Depending on the expertise of the
programmer, imagery can become a very complex element of game programming.

Why Visual basic.Net: The choice of Visual basic.Net as the programming
language to introduce students to game programming was the result of an experiment
conducted on a batch of at risk high school students. These students were ninth graders
who were participants of the “reach for tomorrow” program which is designed to
motivate at risk students to acquire military scholarships and pursue higher education.
(Reachfortomorrow.org) The students had no prior computer programming experience
and were also not very comfortable using the computer. The limitations under which the
experiment was conducted were:

• Limited amount of time (two and a half hours)
• Students having limited computer experience
• Zero programming experience

Given these limitations, I needed to choose a language that was user friendly and did not
have a high learning curve. Visual basic.net seemed to fit this bill. I used VB.net to get
the students develop a simple game that included the basics of game programming by

• using picture boxes to hold the objects used in the game
• simulating animations and movements with timer controls
• simulating ideas of velocity, speed, direction
• including the idea of collision detection and response

The result of this experiment was that the students enjoyed the experience. In fact
students at this stage were motivated enough to experiment with changing the speed,
direction, size and other aspects of the objects used in the program. This shows that
choosing the proper context (games) and providing the proper and easy to use
programming environment (user friendly VB.Net tool box) generates the required
motivation for students to pursue their goals. Visual basic.Net is a very user friendly
language because of its rich GUI environment. Presented below is the design of an
application that includes the basic elements of a game program discussed so far.

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

4 DESIGN

The table below shows the design of the game in terms of the elements used in the game
and their corresponding VB.Net elements.

Game Element VB.Net Element
An area to play the game PictureBox
The Players Graphics Objects
Movement of players Controlled by timer Controls
Collision - detection Intersectswith property
Collision – Response Simulation of Explosion and collision

The graphics objects used in this program are created by instantiating the shape object
named ObjectShape. Since the objectShape is an object, we can reuse it and instantiate it
as many times as necessary. The ObjectShape object has properties and events as follows:

• Properties:
 Color, shape, size
• Events:
 Click

Using this method we set up six small ellipses which are the opponents in the game and
one slightly larger ellipse which is controlled by the user. The user controls his piece with
the mouse, so he can move around the play ground.

5 THE WORKING OF THE GAME

To maintain clarity and for demonstration purposes the elements of game programming
incorporated in this example are kept simple. These include animation/movement of the
objects, velocity, collision, graphics objects and audio rendition.

Animation

Animation is provided by using a timer control. The timer control’s tick event is used to
move the graphic object on the screen, horizontally, vertically or diagonally. The timer
control’s tick event also checks for collision occurrence and if collision occurs, the
function collide is called to swap the velocities of the objects. The code for moving the
objects is included in the moveAround sub procedure.

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 45

Collision

Collision detection and response are other key elements of game programming. There
are several kinds of collision responses that occur when objects collide. We discuss three
types of collision responses - one in which an object bounces off a wall, one in which two
objects have a head on collision and bounce off each other and a third in which an
explosion or shattering occurs on collision

• A ball hits a wall and bounces off. (code in the sub procedure moveAround)
• A ball collides with another ball and the two balls bounce off of each other. (code

in the sub procedure collide) In the sub procedure collide the velocities of the two
objects are interchanged.

• The collision response resulting in an explosion is achieved by disposing off the
object (user controlled object) and creating six smaller objects on the screen. This
creates the effect of an object being shattered and explode into small pieces.

Sound:

The next element used in the game to provide sound effects is audio. SoundWav.vb
is a simple class file used in the application to provide the functionality of playing a wave
sound file when necessary. This is a modified version of a class file available on the
internet (soundFile) We have used two different sound files for collision between the
game objects and collision between the game object and the user object. When collision
occurs between the game object and the user object we have a “crashing” or “exploding”
sound, and when collision occurs between game objects we have a ‘ding’ sound. This
completes the design of the game elements.

User Interface:

The program has two buttons, Wall Collision/Dispersion and Ball Collision (Figure2).
The Wall Collision/Dispersion checks for

• Collision of the small balls with the wall and if collision occurs the balls bounce
off the wall.

• It also checks for collision between the small ball and the large ball and if
collision occurs the large ball shatters into small pieces. (Figure3)

The Ball Collision button checks for
• Collision between two small balls on the screen and if collision occurs, the

swapping of velocities takes place. (Figure4)
• It also checks for:
• collision between the small ball and the larger ball which is the user controlled

piece and if collision occurs the user control is disposed.
• Wall collision is also included in this button. See figures 1, 2 and 3 for the game

in action

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Figure 1

Figure 2

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 47

Figure 3

6 CODE FOR THE PROGRAM

Part A – The Class file - Object Shape:

#Region "Import"
Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Color
Imports System.Drawing.Graphics
#End Region

#Region "Class ObjectShape"
Public Class ObjectShape
 Inherits System.Windows.Forms.UserControl

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()
 'This call is required by the Windows Form Designer.
 InitializeComponent()
 'Add any initialization after the InitializeComponent() call
 End Sub

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

 'UserControl1 overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As
Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form
Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub

InitializeComponent()
 '
 'UserControl1
 '
 Me.Name = "ObjectShape"
 End Sub
#End Region

 Private Sub UserControl1_Load(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles MyBase.Load

 End Sub

#Region "Variables"
 Public p1 As New System.Drawing.Pen(System.Drawing.Color.Blue)
 Public p2 As New System.Drawing.Pen(System.Drawing.Color.Orange)
 Public p3 As New

System.Drawing.Pen(System.Drawing.Color.PowderBlue)
 Public br1 As SolidBrush
 Public gradBrush As System.Drawing.Drawing2D.LinearGradientBrush
 Public frm1 As System.Windows.Forms.Form
 Public g As Graphics
 Public gp As GraphicsPath
 Public reg As Region
 Public rect As Rectangle
 Public localmpos As Point
 Public chk As Boolean
 Private _fillColor As Color = System.Drawing.Color.Red
 Public _gradColor As Boolean
 Private _shape As Shapes
 Public Tri_Points(2) As Point
 Private velx, vely As Integer

#End Region

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 49

#Region "Enums"
 Public Enum Shapes
 Rectangle
 Ellipse
 Triangle
 Arc
 Line
 Text
 MixShapes
 End Enum
#End Region

#Region "Events"

 Protected Overrides Sub OnPaint(ByVal e As

System.Windows.Forms.PaintEventArgs)
 Dim point(2) As Point
 Dim g As Graphics
 e.Graphics.SmoothingMode = e.Graphics.SmoothingMode.AntiAlias
 p1.Width = 2.0
 br1 = New SolidBrush(_fillColor)
 If _gradColor = True Then

point(0) = New Point(Me.ClientRectangle.Left,
Me.ClientRectangle.Top)

 point(1) = New Point(Me.ClientRectangle.Left +
Me.ClientRectangle.Width, Me.ClientRectangle.Top +
Me.ClientRectangle.Height)

 gradBrush = New
System.Drawing.Drawing2D.LinearGradientBrush(point(0),
point(1), Color.Red, Color.Yellow)

 e.Graphics.FillRectangle(gradBrush, Me.ClientRectangle)
 e.Graphics.DrawRectangle(p1, Me.ClientRectangle)
 ElseIf Me._shape = Shapes.Rectangle And _gradColor = False Then
 e.Graphics.FillRectangle(br1, Me.ClientRectangle)
 e.Graphics.DrawRectangle(p1, Me.ClientRectangle)
 ElseIf Me._shape = Shapes.Ellipse Then
 e.Graphics.FillEllipse(br1, Me.ClientRectangle)
 ElseIf Me._shape = Shapes.Triangle Then
 Tri_Points = GenerateTrianglePoints(New Rectangle(0, 0,

Me.Width, Me.Height))
 e.Graphics.FillPolygon(br1, Tri_Points)
 e.Graphics.DrawPolygon(p1, Tri_Points)
 ElseIf Me._shape = Shapes.Arc Then
 e.Graphics.DrawArc(p1, Me.ClientRectangle, 12, 84)
 ElseIf Me._shape = Shapes.Line Then
 Dim pt1 As Point = New Point(30, 30)
 Dim pt2 As Point = New Point(110, 100)
 e.Graphics.DrawLine(p1, pt1, pt2)
 ElseIf Me._shape = Shapes.Text Then

e.Graphics.DrawString("Welcome to the Graphics World",
Me.Font, New SolidBrush(Color.Red), 20, 20)

 ElseIf Me._shape = Shapes.MixShapes Then
 e.Graphics.FillEllipse(br1, Me.ClientRectangle)
 e.Graphics.DrawArc(p2, 100, 100, 100, 100, 12, 84)

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

 e.Graphics.DrawPolygon(p3, Tri_Points)
 End If
 MyBase.OnPaint(e)
 End Sub

Protected Overrides Sub OnMouseDown(ByVal e As
System.Windows.Forms.MouseEventArgs)

 End Sub

#End Region

#Region "Properties"
 Public Property chgColor() As Color
 Get
 Return _fillColor
 End Get
 Set(ByVal Value As Color)
 _fillColor = Value
 Invalidate() 'Forces a paint event
 End Set
 End Property

 Public Property chgShape() As Shapes
 Get
 Return _shape
 End Get
 Set(ByVal Value As Shapes)
 _shape = Value
 Invalidate()
 End Set
 End Property
 Public Property vx() As Integer
 Get
 vx = velx
 End Get
 Set(ByVal Value As Integer)
 velx = Value
 End Set
 End Property
 Public Property vy() As Integer
 Get
 vy = vely
 End Get
 Set(ByVal Value As Integer)
 vely = Value
 End Set
 End Property
 Private Function GenerateTrianglePoints(ByVal Rect As Rectangle) As

Point()
 'Generate Triangle

 Dim _Width As Integer = Rect.Width

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 51

 Dim _Height As Integer = Rect.Height
 Dim CenterPoint As Integer
 Dim LeftPoint As Integer
 Dim RightPoint As Integer
 Try
 CenterPoint = _Width / 2 + Rect.X
 LeftPoint = _Height + Rect.Y
 RightPoint = _Width + Rect.X
 Tri_Points(0) = New Point(CenterPoint, Rect.Y)
 Tri_Points(1) = New Point(Rect.X, LeftPoint)
 Tri_Points(2) = New Point(_Width + Rect.X, _Height + Rect.Y)
 Return Tri_Points
 Catch ex As Exception
 Throw ex
 Return Nothing
 Finally
 End Try
 End Function
#End Region
End Class
#End Region

Part B Class for Sound File –

Imports System.Resources
Imports System.IO

Public Class WinWavSound
 'Declare constants
 Public Const SND_ASYNC As Int32 = 1
 Public Const SND_MEMORY As Int32 = 4

 'this is the API we want to play embedded Wav resource...

 Public Declare Function PlayWavSound Lib "winmm.dll" Alias
"PlaySound" (ByVal data() As Byte, ByVal hMod As IntPtr, ByVal
dwFlags As Int32) As Boolean

 Public Shared Function PlayWavResource(ByVal EmbeddedWav As String)

'BE SURE (embedded).wav HAS BUILD ACTION IN PROPERTIES SET
TO EMBEDDED RESOURCE

 'get the namespace
Dim strNameSpace As String =

System.Reflection.Assembly.GetExecutingAssembly().GetN
ame().Name.ToString()

 ' get the resource into a stream
Dim Str As Stream =

System.Reflection.Assembly.GetExecutingAssembly().GetM
anifestResourceStream(strNameSpace + "." +
EmbeddedWav)

 'bring stream into a byte array
 Dim byteStr(Str.Length) As Byte
 Str.Read(byteStr, 0, Int(Str.Length))

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

 'play the resource
 PlayWavSound(byteStr, IntPtr.Zero, SND_ASYNC Or
SND_MEMORY)
 End Function
End Class

Part C – Main program:

Imports System.Drawing
Imports System.Drawing.Drawing2D

Public Class Form1
 Inherits System.Windows.Forms.Form
 Dim Ball() As ObjectShape.ObjectShape
 Dim smallBall() As ObjectShape.ObjectShape
 Dim navBall As ObjectShape.ObjectShape
 Dim g As Graphics
 Dim gp1, gp2 As GraphicsPath
 Dim reg, reg1, reg2 As Region
 Dim rect, rect1, rect2 As Rectangle
 Dim rectA() As Rectangle
 Dim pen1 As New Pen(linGrBrush)
 Dim colorChoice(4) As System.Drawing.Color
 Dim colorChoiceBig(5) As System.Drawing.Color

Private Sub BtnWall_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click

 Timer1.Interval = 10
 Timer1.Start()

 End Sub

 Private Sub moveAround(ByVal Ball As ObjectShape.ObjectShape)
 'Moves the ball around window, bouncing off walls
 With Ball
 If .Left <= 0 Or .Left >= PictureBox1.Width - .Width Then
 .vx = -.vx
 ElseIf .Top <= 0 Or .Top >= PictureBox1.Height - .Height
Then
 .vy = -.vy
 End If
 .Left += .vx
 .Top += .vy
 End With
 End Sub

Private Sub collide(ByVal Ball1 As ObjectShape.ObjectShape, ByVal Ball2
As ObjectShape.ObjectShape)

 Dim temp As Integer
 temp = Ball1.vx
 Ball1.vx = Ball2.vx
 Ball2.vx = temp

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 53

 Ball2.chgColor = Color.DarkSeaGreen
 temp = Ball1.vy
 Ball1.vy = Ball2.vy
 Ball2.vy = temp
 Ball1.chgColor = Color.DarkOrange
 End Sub

Private Sub Form1_Load(ByVal sender As Object, ByVal e As
System.EventArgs) Handles MyBase.Load
 Dim myColorBig As Integer
 g = Me.CreateGraphics
 gp1 = New GraphicsPath
 gp2 = New GraphicsPath
 pen1.Width = 4
 ‘set color for array elements for the six balls created
 colorChoiceBig(0) = System.Drawing.Color.Yellow
 colorChoiceBig(1) = System.Drawing.Color.Red
 colorChoiceBig(2) = System.Drawing.Color.DarkCyan
 colorChoiceBig(3) = System.Drawing.Color.DeepPink
 colorChoiceBig(4) = System.Drawing.Color.DarkTurquoise
 colorChoiceBig(5) = System.Drawing.Color.DarkOrchid

 Dim j As Integer
 ReDim Ball(5)
 For j = 0 To 5
 myColorBig = CInt(Rnd() * 5)
 Ball(j) = New ObjectShape.ObjectShape ‘set shape, size for
balls
 With Ball(j)
 .Left = j * 50 + 50
 .Top = 100
 .Width = 20
 .Height = 20
 .Text.Format(j)
 .chgColor = colorChoiceBig(myColorBig)
 .chgShape = .Shapes.Ellipse
 Randomize()
 .vx = 2 * CInt(Int((2 * Rnd()) - 1)) + j - 3
 Randomize()
 .vy = 2 * CInt(Int((2 * Rnd()) - 1)) + j - 3
 End With
 PictureBox1.Controls.Add(Ball(j))

 Next

 navBall = New ObjectShape.ObjectShape ‘create user controlled
object
 With navBall
 .Left = PictureBox1.Width / 2
 .Top = 10
 .Width = 30
 .Height = 30
 .chgColor = Color.Red
 .chgShape = .Shapes.Ellipse

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

 End With
 PictureBox1.Controls.Add(navBall)
 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer1.Tick
 Dim rect(5), rect2(5) As Rectangle
 Dim navRect, navRect2 As Rectangle

 Dim i, j, k, temp, newLeft, newTop, newleft1, newtop1, mycolor
As Integer

 colorChoice(0) = System.Drawing.Color.Yellow
 colorChoice(1) = System.Drawing.Color.Red
 colorChoice(2) = System.Drawing.Color.DarkCyan
 colorChoice(3) = System.Drawing.Color.DeepPink
 colorChoice(4) = System.Drawing.Color.DarkTurquoise

 With navBall ‘create user controlled object
 navRect = New Rectangle(.Left, .Top, .Width, .Height)
 End With

 For j = 0 To 5 ‘create balls
 With Ball(j)
 rect(j) = New Rectangle(.Left, .Top, .Width, .Height)
 moveAround(Ball(j))

 If navRect.IntersectsWith(rect(j)) Then
 newLeft = (navRect.Left + rect(j).Left) / 2
 newTop = (navRect.Top + rect(j).Top) / 2
 myWav.WinWav.PlayWavResource("DRUMROLL.WAV")
 navBall.Dispose()

 ReDim smallBall(5) ‘create small balls
 For k = 0 To 5

 Randomize()
 mycolor = CInt(Rnd() * 4)
 smallBall(k) = New ObjectShape.ObjectShape
 With smallBall(k)
 .Left = newLeft
 .Top = newTop
 .Width = 8
 .Height = 8
 .chgColor = colorChoice(mycolor)
 .chgShape = .Shapes.Ellipse
 .vx = 2 * CInt(Int((2 * Rnd()) - 1)) + k - 3
 .vy = 2 * CInt(Int((2 * Rnd()) - 1)) + k - 3
 End With

 PictureBox1.Controls.Add(smallBall(k))
 Next

 Timer1.Stop()
 Timer2.Interval = 10
 Timer2.Start()

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 55

 End If
 End With
 Next
 End Sub

Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer2.Tick

 Dim j, k As Integer

 For j = 0 To 5
 moveAround(Ball(j))
 moveAround(smallBall(j))
 Next
 End Sub

Private Sub BtnBallCollision_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 Timer3.Interval = 30
 Timer3.Start()
 End Sub

Private Sub Timer3_Tick(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Timer3.Tick

 Dim rect() As Rectangle
 ReDim rect(5)
 Dim navRect, navRect2 As Rectangle

 Dim i, j, k, temp, newLeft, newTop, newleft1, newtop1, mycolor
As Integer

 With navBall
 navRect = New Rectangle(.Left, .Top, .Width, .Height)
 End With

 For j = 0 To 5
 With Ball(j)
 rect(j) = New Rectangle(.Left, .Top, .Width, .Height)
 End With
 Next

 For i = 0 To 5
 For j = 0 To 5 ‘check if balls collide with one another
 If ((i < j) And (rect(i).IntersectsWith(rect(j)))) Then
 myWav.WinWav.PlayWavResource("chimes.wav")
 Beep()
 With Ball(i)
 .Top -= .vy
 .Left -= .vx
 End With

 With Ball(j)
 .Top -= .vy
 .Left -= .vx
 End With
 collide(Ball(i), Ball(j))

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

 ElseIf navRect.IntersectsWith(rect(j)) Then
 newLeft = (navRect.Left + rect(j).Left) / 2
 newTop = (navRect.Top + rect(j).Top) / 2
 navBall.Dispose()
 End If

 Next
 Next

 For j = 0 To 5
 moveAround(Ball(j))
 Next
 End Sub

Private Sub PictureBox1_MouseMove(ByVal sender As Object, ByVal e
As System.Windows.Forms.MouseEventArgs) Handles
PictureBox1.MouseMove

 navBall.Left = e.X
 navBall.Top = e.Y
 End Sub

End Class

7 CONCLUSION/FUTURE WORK

Game programming can be a useful and powerful tool. It can be used in educational
settings to help students understand abstract concepts through games, with which most
students are familiar. Examples of introducing abstract concepts through game
programming include OOP, data structures, principles of physics, chemistry and
mathematics. We also believe that game programming can exert a positive influence on at
risk students by providing them with much needed excitement and motivation to pursue
higher education as was evident by our experience Additionally, game programming is
also a good field with plenty of opportunities as a career choice. Several web sites such as
International Game developers association(igda.org) provide detailed information on the
type of jobs available in the gaming industry along with the salary ranges. In attempting
to promote this idea of introducing game programming to students, our future work will
concentrate on developing a set of tools for the most commonly used game programming
techniques with a grounding in physics as applicable to the gaming environment.

VOL. 4, NO. 9 OURNAL OF OBJECT TECHNOLOGY 57

REFERENCES

[Ai05] Art Institute of Portland, retrieved on July 10th, 2005 from:
http://www.aipd.aii.edu/summerteen.html

[Seay,Scott97] Jerry Seay, Robert Scott, Education and Simulation/Gaming and
Computers, 1997, retrieved on July 10th, 2005 from http://www.cofc.edu/
~seay/cb/simgames.html

[Feldgen,Clua04] Maria Feldgen, Osvaldo Clua, “Games As A Motivation for Freshmen
to Learn Programming”, 34th ASEE/IEEE Frontiers in Education
Conference, October 2004

[Lave,Wenger90] Lave, J., & Wenger, E. (1990). Situated Learning: Legitimate Periperal
Participation. Cambridge, UK: Cambridge University Press.

[McLellan95] McLellan, H. (1995). Situated Learning Perspectives. Englewood Cliffs,
NJ: Educational Technology Publications.

[Coleman etal05] Ron Coleman, Mary Krembs, Alan Labouseur, Jim Weir(2005), “Game
Design & Programming Concentration Within the Computer Science
Curriculum”, ACM SIGCSE 2005, pg 545.

[Pleva04] Greg, Pleva. (2004), “Game programming and the Myths of Childs Play”,
Journal of Computing Sciences in Colleges, Volume 20, Issue 2, pg 126.

[Fernald05] Joseph Fernald (2005) “Game Development Schools – Part 1”, on July 10th,
2005 from: http://www.gamedev.net/reference/business/features/schools1/

[Wikipedia05] online encyclopedia, retrieved on July 10th from http://en.wikipedia.org/
wiki/Game_programming

[Masuch, Freudenberg02] Maic Masuch, Bert Freudnberg, Teaching 3D game
programming, retrieved on July 10th from http://isgwww.cs.uni-
magdeburg.de/~bert/publications/Masuch-2002-TCG.pdf

[Delaet etal] Marianne deLaet, Kuffner James, Slattery michael, Elizabeth Sweedyk,
“Computer games and CS Education: Why and How”, retrieved on July 10th
from http://db.grinnell.edu/sigcse/sigcse2005/Program/viewAcceptedProposal
.asp?sessionType=panel&sessionNumber=16

[Cunningham etal04] Steve Cunningham, Werner Hansmann, Cary laxer, Jiaoying Shi,
“The Beginning Graphics course in Computer Science”, Computer Graphics,
Volume 38, Number 4, November 2004, pg 24

[Schach02] Stephen R. Schach (2002), Object Oriented and Classical Software
Engineering, Fifth Edition, Chapter 3, pg66

http://www.aipd.aii.edu/summerteen.html
http://www.cofc.edu/~seay/cb/simgames.html
http://www.cofc.edu/~seay/cb/simgames.html
http://www.gamedev.net/reference/business/features/schools1/
http://en.wikipedia.org/wiki/Game_programming
http://en.wikipedia.org/wiki/Game_programming
http://isgwww.cs.uni-magdeburg.de/~bert/publications/Masuch-2002-TCG.pdf
http://isgwww.cs.uni-magdeburg.de/~bert/publications/Masuch-2002-TCG.pdf
http://db.grinnell.edu/sigcse/sigcse2005/Program/viewAcceptedProposal.asp?sessionType=panel&sessionNumber=16
http://db.grinnell.edu/sigcse/sigcse2005/Program/viewAcceptedProposal.asp?sessionType=panel&sessionNumber=16

GAME PROGRAMMING - THE “WHY”, ”WHAT” AND “HOW” WITH GRAPHICS OBJECTS

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[Coleman etal05] Ron Coleman, Mary Krembs, Alan Labouseur, Jim Weir(2005), “Game
Design & Programming Concentration Within the Computer Science
Curriculum”, ACM SIGCSE 2005, pg 547.

[reachfortomorrow.org] retrieved on July 10th, 2005, from:
http://www.reachfortomorrow.org/01about.htm

[soundfile] “Play an Embedded sound file”, retrieved on July 10th, 2005, from:
http://www.vb-helper.com/howto_net_play_embedded_sound.html

[igda.org] retrieved on July 10th, 2005, from: http://www.igda.org/breakingin/
career_paths.htm

About the author:
Lakshmi Prayaga is a lecturer in the Computer Science Department, at the University of
West Florida. She is the co-author of a text book, “Programming the Web with
ColdFusion MX and XHTML”. She has presented several papers in conferences and
workshops such as ACMSE, ELearn, EdMedia and NCEI. Her research interests include
building visual tools to serve as teaching aids, web server technologies and computers in
education.

http://www.reachfortomorrow.org/01about.htm
http://www.vb-helper.com/howto_net_play_embedded_sound.html
http://www.igda.org/breakingin/career_paths.htm
http://www.igda.org/breakingin/career_paths.htm

