
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 9, November–December 2005 

 
 
 
 

Cite this article as follows: Peter Merrick and Pat Barrow: “The Rationale for OO Associations in 
Use Case Modelling”, in Journal of Object Technology, vol. 4, no. 9, November-December 2005, 
pp. 123-142, http://www.jot.fm/issues/issue_2005_11/article4 

The Rationale for OO Associations in 
Use Case Modelling 

Peter Merrick, University of East Anglia, UK 
Pat Barrow, University of East Anglia, UK 

Abstract 
This paper introduces the topic of use cases for the capture and representation of 
requirements and then focuses on the associations between use cases. Specifically it 
makes clear the difference between the include and extend associations, and then goes 
on to argue why use case modellers should incorporate the more familiar aggregation 
and specialisation associations between use cases for the explicit representation of 
models at different levels of goal abstraction. The modelling experience reported here is 
drawn from a number of industrial case studies that specifically employ early lifecycle 
use case modelling for the purpose of improving project delivery through improvements 
to IT procurement. 

1 INTRODUCTION 

For many years, having recognised the limitations of natural language for requirements’ 
expression, Ivor Jacobson laboured on his ideas that would eventually come to be known 
as use cases. While working in Sweden for Ericcson, modelling telephone switches, those 
ideas came to fruition. He showed use cases to have significant benefits to customer and 
developer alike. Jacobson was so encouraged he left Ericcson and formed his own 
consulting company, Objectory, to apply more widely what had become known as Object 
Oriented Software Engineering (OOSE) (Jacobson, Jonsson et al.'92). Objectory came to 
have around 20 customers who continued to refine the notion of his new ‘use case driven 
approach’. Objectory’s customers included Swedish Defence, Ericsson Mobile, Ericsson 
Radar Electronics, and ABB, all of whom were able to demonstrate the approach’s merit. 

The use case approach is iterative; introducing complexity gradually (Jacobson, 
Jonsson et al.'92). This iterative process is in accordance with the way the task is actually 
performed by practitioners where requirements become more clear over time (Kulak and 
Guiney'00). As the process continues, more detail is accumulated. Eventually the analyst 
has enough information to transform the use case model into sequence diagrams. This 
transformation from one model to another type of model is a key factor in the 
attractiveness of UML. The transformation of models indicates the project is moving 

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_11/article4


 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

closer to implementation, where instructions as to what should be coded are sufficiently 
detailed. Sequence diagrams are a more concrete realisation of the structure necessary to 
deliver the functionality described by use cases. They are the link between the problem 
representation and the first artefact of a proposed solution. 

Use cases can be thought of as an initial model of the problem under consideration 
that sits at the centre of the ‘developmental wheel’. They allow requirements to be 
represented in a graphical form that can be transformed into solution specific models 
from which code can be written. They can act in a project management capacity to keep 
track of progress throughout the developmental lifecycle. They can be included in 
commercial contracts, and can inform user documentation. Use cases can also be 
employed as test case scripts (Pooley and Stevens'99). They can be the basis of 
measuring progress, the basis of parcelling up work for different teams working in 
parallel, and the basis of traceability. By any measure, use cases are a versatile and 
flexible mechanism that offers a unique contribution to software engineering that features 
a solid route from project inception to implementation. Use cases have proved to be a 
notation that is understood by business and by technical staff (Pooley and Stevens'99), 
thereby providing a joint language of communication that suffers less from ambiguity 
thereby improving communication in a project team. 

2 WHAT IS A USE CASE? 

Many definitions have been postulated for the definition of a use case, yet still the 
approach has been criticised for a lack of formality in definition (Firesmith'02). 
Originally Jacobson described a use case as “a specific way of using the system by using 
some part of the functionality. [A use case] constitutes a complete course of inter-action 
that takes place between an actor and the system” (Jacobson, Jonsson et al.'92). Later, in 
the UML, the subject of a suitable definition was expanded when it was suggested that “a 
use case is the specification of sequences of actions, including variant sequences and 
error sequences that a system, sub-system, or class can perform by interacting with 
outside actors (Rumbaugh, Jacobson et al.'99). Philip Kruchten provides a short elegant 
definition when he says that “a use case yields an observable result of value to a 
particular actor (Kruchten'00). Martin Fowler sees a use case as “a typical interaction 
between a user and a computer system [that] captures some user-visible function [and] 
achieves a discrete goal for the user” (Fowler and Scott'99). Constantine and Lockwood 
provide a definition that is more complete at the expense of being less easily digestible. 
They say that a use case is a “single discrete, meaningful, well-defined task of interest to 
an external user in some role in relation to the system, comprising the user’s intentions 
and system responsibilities in the course of accomplishing that task, described in abstract, 
technology free implementation-independent terms using the language of the application 
domain and of users in role” (Constantine and Lockwood'01). 

A use case is a representation of a user goal to be satisfied. A system can be 
considered a collection of use cases together represented in a use case model. The use 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 125 

case model is a picture intended to be easily ‘surveyable’ and changeable by customers 
and developers alike (Jacobson, Jonsson et al.'92). A use case model (UCM) has actors, 
task ovals, associations and a system boundary. UCMs start simple and become more 
complex over time (Pooley and Stevens'99). Each use case has two parts; a graphical 
representation and a textural representation. The text part adds detail to the graphical 
representation. It is convenient to consider the graphical component of a use case as a 
kind of table of contents that directs the reader to the accompanying text. 

Login

Customer

Make booking

 
Figure 1: A simple use case model, featuring an actor, two task ovals, with associations. 

 

In Figure 1, the most basic form of a use case is represented graphically by a named task 
oval that represents a user goal. This diagram illustrates a customer’s ability to Login and 
to Make booking. As more detail becomes available, it is added to the use case. Over 
time, the use case becomes primarily a textural construct that describes the system 
behaviour in semi-formalised natural language. 

3 ACTORS 

Use cases are triggered by actors. Jacobson defines an actor as a construct that represents 
a role a user may play (Jacobson, Jonsson et al.'92). An actor who triggers a use case is a 
human user who plays a well-defined role. Human actors are also known as primary 
actors. There are, in addition, secondary actors that represent other software systems with 
which communication must be established. Lastly, there are secondary actors that 
represent encapsulated behaviour; consider the concept of a clock actor that automatically 
triggers use cases, or an email engine that offers common behaviour to many individual 
use cases to aid communication. To Jacobson, actors are simple to discover, coming from 
an analysis of customers, partners, suppliers, authorities, and subsidiaries (Jacobson'95). 
Actors are considered outside the system boundary, although primary actors may come to 
have an internal representation even if it is on the trivial level of permissions, such as in 
the case of a notional customer who would need to have permission over their own 
account. It is useful to distinguish the ultimate primary actor; the actor who ‘really cares’ 
about the successful completion of a use case, rather than a proxy actor who is acting in 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

their stead (Cockburn'01). Thus, a clerk can be regarded as a proxy actor on behalf of a 
customer. This leads to the development of primary actor hierarchies which are related 
via specialisation. 

Customer

Search customers

Make booking Book excursion

<<extend>>

Third party 
gateway

Clock

Login

<<include>>

Clerk Modify booking

 
Figure 2: Actor types as part of a hierarchy. The Clerk and Customer are both primary (human) actors. The 

Third party gateway is a legacy system that accepts excursion bookings. The Clock is an automated 
convenience that logs users off the system when they have been inactive for a period of time. 

 

Actors may be realised by devices, other systems, or by human beings; all three of which 
are illustrated in Figure 2. Actors are connected to use cases only via association, 
meaning they communicate by both sending and receiving information. Primary actors 
have a goal they wish to see fulfilled. Secondary actors assist in realising the goals of 
primary actors. A use case task oval is associated with a text description. An actor 
triggers a use case instance, termed a scenario, which performs a transaction on the 
actor’s behalf. Cockburn considers that the basic course of action can be thought of as the 
‘archetype scenario’ (Cockburn'01). Curiously, although the UML accepts that actors 
may be associated via specialisation, it does not define use cases as being capable of 
association via specialisation. This is an unfortunate limitation. 

4 DEFINED ASSOCIATIONS BETWEEN USE CASES 

In addition to the elements already described in a basic graphical use case (Figure 1) use 
cases themselves may also be associated through the <<include>> and <<extend>> 
stereotypes (Figure 3). This association between use cases is intended to be useful as a 
mechanism for reuse. Jacobson has recently postulated that such ‘internal’ use cases (not 
directly triggered by an actor) should not be considered as use cases in their own right, 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 127 

but rather as use case fragments (Jacobson'03). In Figure 3, the <<include>> and 
<<extend>> association are illustrated. 

Customer

Search customersLogin

Make booking Book excursion

<<include>>

<<extend>>

 
Figure 3: A simple use case model with an <<extend>> and an <<include>> stereotype. 

 

Originally, use cases could be associated in two ways, either through the <<use>> or 
<<extend>> stereotypes (Jacobson, Jonsson et al.'92). In UML 1.3 the <<use>> tag was 
replaced with the <<include>> (Fowler and Scott'99) tag (probably to limit the word 
‘use’ which had already acquired many connotations). Although Jacobson saw these 
stereotyped associations as being straightforward, they have since been the topic of 
considerable confusion and ambiguity. Jacobson believed the system modeller should 
associate two use cases with an <<extend>> stereotype when the extending use case 
represents additional behaviour. He suggests the extending use case should make sense 
on its own, that it represents new functionality being added. He believed this was a 
mechanism that would allow a system to grow (be extended) over time and where what 
was added would not require changes to what already existed (Jacobson, Jonsson et 
al.'92; Jacobson'03). 

In considering the <<include>> association, Jacobson saw an included use case as 
making no sense on its own; that it must be called by the containing use case in order that 
it should perform something meaningful. It is sensible to extract included behaviour 
because it represents something common that can be reused (Jacobson, Jonsson et al.'92; 
Jacobson'03). Cockburn agrees, seeing <<include>> as employed when there exists a 
‘chunk’ of behaviour that is similar across more than one use case and rather than 
defining behaviour over and over again it can be associated to a containing use case with 
an <<include>> (Cockburn'01). 

On the face of it, these associations do not appear to represent concepts that are 
difficult to apply, but there is evidence to suggest that they are not well understand in 
practice (Cox'00). Cockburn says that extension is an option when one use case is similar 
to another but it does a bit more. This sounds suspiciously similar to the test employed in 
specialisation where the modeller has the choice to either break the new specialised use 
case out of the containing use case or to deal with the specialised behaviour as an 
alternative within the same use case. He gives no guidance as to when to use one 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

approach and when the other. By this definition a specialised use case may be said to 
describe alternate behaviour rendering the decision as to how the model should be 
constructed, unclear. The trouble comes when a modeller attempts to put the guidelines to 
the test; questions are uncovered to which no adequate answers are readily available. 
There is a problem in deciding how alternative behaviour should be modelled. Given that 
use cases are associated through <<include>> and <<extend>> associations they become 
use case fragments, rather than first order use cases in their own right. However, 
examples may be found where a use case may be both directly triggered by an actor in 
one situation, and also called through an extend or include. The rationale for employing 
an <<extend>> is easier to define when reference is made to implementation. According 
to one set of business rules it may be defined that an excursion can only be booked when 
it refers to a particular holiday. For example, booking an excursion is in addition to the 
normal case of booking a holiday; it is clearly additional behaviour. In execution the 
normal case executes through Book Holiday, and then the normal case may run in Book 
Excursion (Figure 7). 

Light can be shed on this ambiguity by examining the differences between the 
<<include>> and <<extend>> stereotypes. They are not inverse associations. Where 
<<extend>> is taken to represent optional behaviour, the assumption that <<include>> 
represents mandatory behaviour is attractive, but incomplete. To reconcile the positions it 
is necessary to return to first principles. A use case has only one normal case where the 
user goal is fully satisfied. Alternatives are not equal to the normal case, as they represent 
another outcome which is an outcome (certainly not an error), but is not as successful as 
that of the normal case (the ‘happy path’ (Evans'99)). Alternate cases are therefore 
execution paths where the user goal is only partially satisfied.  

Behaviour associated with an ‘external’ use case through <<extend>> takes the 
normal case behaviour further, thereby combining two normal cases. In this sense it is 
optional behaviour, but it is not optional to the execution of the base normal case; it is in 
addition. 

Behaviour associated with an ‘external’ use case through <<include>> is mandatory 
to the execution of the normal case, and perhaps also to the alternate cases. Included 
behaviour is likely to become apparent over time, when the text cases are written, and is 
unlikely to be identified during façade modelling (a façade use case is one that features 
only the graphical component) (Kulak and Guiney'00). The modeller/author will notice 
that they are continually writing the same text; this becomes wearisome and so the 
decision is made to break the repetitive behaviour out into a fragment that can be 
associated through an <<include>> stereotype, if for no other reason then because it is 
more efficient in representation. 

The subject of associations between use cases is full of ambiguity. This leads to 
confusion in model-making. Two modellers confronted with the same problem must 
inevitably create two different models. This leads to the problem of evaluating which 
model is superior and for what reason. The subject of associations between use cases has 
been largely accepted as a non-contentious subject by many but there is evidence the 
subject is not clear (Rosenberg and Scott'99). One author goes so far as to council that the 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 129 

subject of stereotyped associations receives too much attention, that it is a distraction that 
can wait until an advanced state in the modelling (Pooley and Stevens'99), and that it is a 
fundamentally boring argument! 

Glinz poses some of the most cogent criticisms of use case modelling (Glinz'00). 
Many of the rules that govern it are too restrictive and routinely broken. The rules 
(staff'99) were intended to encourage practitioners to model with use cases in a defined 
manner taken from an agreed specification written in wide consultation. Still, the 
restrictions are too onerous; compromising the richness of expression needed. This may 
be interpreted as a specific criticism of the omission of inheritance and aggregation from 
the use case association lexicon. 

Use Case Discovery and Abstraction 

The dictionary definitions of abstraction are intended for a broader audience than that of 
object modellers and systems analysts, yet it is helpful to return briefly to first principles 
before exploring the wider issues of abstraction in, specifically, use case expression. 
Abstraction is the ‘act of leaving out of consideration one or more properties of a 
complex object so as to attend to others’, according to the definition offered by Webster’s 
Revised Unabridged Dictionary . From WordNet ® 1.6  abstraction is ‘a concept or idea 
not associated with any specific instance’ and ‘the process of formulating general 
concepts by abstracting common properties of instances.’ To the Free On-line Dictionary 
of Computing , abstraction is defined as ‘generalisation; ignoring or hiding details to 
capture some kind of commonality between different instances.’ 

Representing use cases at the same level of functional abstraction is difficult (Pooley 
and Stevens'99). Use case modelling is full of different concepts that are abstractions to 
one extent or another. Within the world of object modelling, abstraction is generally 
understood as inheritance (generalisation/specialisation) and aggregation (whole-part 
structures). 

A use case is primarily a mechanism for representing a goal abstracted to a level that 
makes the most sense to the user (or other stakeholder). One challenge is to define use 
cases that are comprehensible at the user level and useful at the developmental level. The 
question arises, how is it possible for the same construct to satisfy both? One way is to 
imagine use cases arranged in a hierarchical structure where they can be de-composed 
into sub-use cases (aggregation). Use cases can also be thought of from the perspective of 
inheritance. Although use cases are not defined as being able to apply either inheritance 
or aggregation, there are advantages of doing so. 

Concerning inheritance, a hierarchy may be defined according to the strictures of an 
actor satisfying a goal expressed in the language of the domain. This allows 
representations such as Make booking, and also Make Ferry Booking, which are clearly 
related whereby one is more abstract than the other, but both are describing the same 
generalised action. Aggregation, in the form of a single user goal use case being sub-
divided into several sub-goal use cases is equally a helpful concept to be able to apply 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

when modelling. A sub-goal use case may be of no interest to a user; being of interest 
only to the development team who are charged with implementation. 

Abstraction is the omission of detail. In this sense, use cases are abstractions, as they 
begin with little detail and gain more as time passes. Kulak and Guiney describe this 
process of moving through a continuum of increasing detail in their four ‘Fs’ model of 
façade, focused, filled and finished stages of a use case (Kulak and Guiney'00). In each 
stage, a use case gains detail. In the beginning, the façade stage use case is solely a 
graphical construct (all use cases presented in this paper are façades). In the finished 
stage, a use case contains everything, including the completed text template. 

The façade iteration includes the creation of a model, taken from the original 
problem statement. The problem statement is constructed from existing documentation 
and intellectual capital. It will have been used to canvas the sponsors' viewpoint and for 
the identification of users, stakeholders and customers. The problem statement is used to 
find actors and suggest domain entities. The tasks the identified actors want to fulfil are 
identified by understanding their job function (Kulak and Guiney'00). The purpose of the 
façade iteration is to create graphical placeholders or use case names and short 
descriptions characterised as including minimal detail. 

The abstraction of use cases based on detail is not the end of the story. There is also 
the abstraction based on the project stakeholder or project goal. Consider the question, 
“how many use cases does the typical specification contain?” Jacobson believes a system 
will have between 10 and 20 use cases (Jacobson, Jonsson et al.'92; Jacobson'03). John 
Smith at Rational Software defines the ideal number to be between 10 and 50 (Smith'99). 
Smith states that a large number (100+), indicates a ‘lapse into functional 
decomposition’1; a state that is to be avoided (Cockburn'01). However, Cantor in 
(Cantor'03) makes clear that different processes are referred to by the term ‘functional 
decomposition’ and that no universal definition is accepted. The numerical discrepancy in 
the identified range of the ideal number of use cases in a specification differs because use 
cases can be expressed at different levels of goal abstraction. Where a user goal use case 
is modelled with inheritance or aggregation, the effect will be to increase the overall 
number of use cases that appear on the model. 

Knowing the components of a use case does not address the process by which use 
cases are discovered. To enter into the discovery of use cases it is helpful to consider 
them as being underpinned by a semi-formalised language based on grammatical 
constructs. 

In considering the naming of a graphical use case, the task oval component must be 
uniquely identified. The form of the name should include an active verb, in the present 
tense employing the active voice that names a recognisable user goal (Rosenberg and 
Scott'99). Jacobson favours the employment of singular nouns and verbs in the infinitive 

                                                           
1 Functional decomposition: There is no official definition of functional decomposition. The term is used to describe 
several activities including adding more detail to a general requirement, organizing requirements into packages, and 
determining the organization of subsystems. There is likely to be little harm in the first two, which are ways to better 
manage requirements. However using functional decomposition to derive a system architecture is a bad strategy that 
may jeopardize the project. 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 131 

(Jacobson, Jonsson et al.'92). There is a balance to be achieved in the selection of 
concrete vs. generalised verbs. Alongside the chosen verb goes a suitable noun or noun 
phrase (e.g. Book excursion). A use case name should be an instance of identifiable and 
acceptably atomic behaviour of the system. In practice, use case names are short active 
verb phrases naming some behaviour found in the vocabulary of the system being 
modelled. To name a use case, one should employ a simple verb/noun construction 
(Jacobson, Jonsson et al.'92). The objective is to avoid ambiguity in the naming of task 
ovals, successfully achieved when the name is self-evident to the majority of users 
(Constantine and Lockwood'01). 

The user goal may be described at different levels of abstraction that may be 
characterised as specialisation/generalisation relationships. Thus, some use cases are 
abstract, incapable of being instantiated themselves (Jacobson, Jonsson et al.'92), but 
providing a hierarchical structure for efficient use case management. 

Customer

Make ferry booking

Make flight booking

Make package holiday booking

Make booking

 
Figure 4: A use case structure where the specialisation association has been employed to add more 

information about the use case relationships. 
 

In Figure 4, the Make booking use case is abstract (cannot be instantiated) but it acts as a 
convenient placeholder to illustrate that there is some commonality between the different 
types of possible bookings. The different booking types are represented by three 
specialised use cases with significant differences subject to different business rules in the 
detail of Make ferry booking, Make flight booking and Make package holiday booking 
over its parent Make booking. The customer is understood to trigger the specialisations 
rather than the parent use case. This is a succinct approach to diagram construction that 
would otherwise require the actor to be connected to each specialised use case, inevitably 
cluttering the diagram. 

CRUD functionality 

Most systems store and retrieve information (derived from stored data), a large class of 
which are transaction processing applications (Jackson'01; Sutcliffe'02). Different actors 
want to interact with the same data; some of whom have the access rights to make 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

changes, others who may only view data but not make changes. All data must be subject 
to the standard considerations that apply in relational database design, namely 
functionality to create, retrieve, update or delete (referred to as CRUD functionality) 
although there is no agreement on the degree of importance of use cases that perform this 
kind of management over data (Evans'99; Kulak and Guiney'00; Cockburn'01). 

Cockburn provides a neat encapsulation of the argument around CRUD use cases 
when he considers the management of an imaginary entity called a ‘frizzle’ 
(Cockburn'01). He says, “So far there is no consensus on how to organise all those little 
use cases of the sort Create a Frizzle, Retrieve a Frizzle, Update a Frizzle, Delete a 
Frizzle. The question is, are they all part of one bigger use case, Manage Frizzles, or are 
they separate?” Cockburn specifically discusses this issue of CRUD representations, 
coming down on the side of ‘manage’ to represent the functions of create, retrieve, update 
and delete over a persistent entity. Other authors believe it is best to keep them separate 
to better aid identification of which actors have what permissions. Accepting that create, 
retrieve, update, delete should be kept separate has the disadvantage of multiplying the 
number of use cases that need to be tracked, and does nothing to improve the clarity of 
the resulting diagram. Given that manage use cases exist, the problem arises of where and 
how they fit into a use case model (Evans'99; Kulak and Guiney'00; Lilly'00; Biddle, 
Noble et al.'01; Cockburn'01). Although making available the functionality to manage 
data entities is necessary, this was not Jacobson’s vision of how use case modelling 
should be performed. Therefore there is a tension in the articulation of use cases, between 
the representation of user goals at the appropriate level and at a pragmatic level. (CRUD 
use cases can be understood as pragmatic.) 

Create booking

Update booking Read booking

Delete booking

Customer
Manage booking

 
Figure 5: A set of CRUD use cases over the entity booking. The children use cases are shown related to the 

parent use case via the aggregation relationship. 
 

Employing the Manage tag to represent CRUD functions can make the diagram less 
cluttered as in Figure 5. Aggregation has been employed to associate the sub-use cases to 
the container Manage booking. Sometimes it is necessary to show all the constituent use 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 133 

cases contained in Manage to deal with actor permissions. This diagram implies the 
Customer has total control over a booking, a situation unlikely to exist in practice (no 
company would want a customer to be able to make unrestricted changes to an existing 
booking). 

CRUD use cases cause controversy. Kulak and Guiney (Kulak and Guiney'00) state 
it is a mistake to begin use case modelling with manage use cases believing it to be a sign 
of over-engineering. However, accepting manage use cases exist as a first principle is 
fundamental to Biddle (Biddle, Noble et al.'01) simply for the sake of completeness. It is 
not essential to reuse the standard language of relational databases to describe 
maintenance functionality over an entity. If create, retrieve, update and delete do not 
capture the functionality required, the specifier should change the names to better reflect 
the domain. For instance there may be more than one way to create an entity, either by 
making a new one, or by copying an existing one. Providing utility functionality over 
entities should not be done slavishly, without first considering the nature of the 
discovered entity, however, it is likely to be an area of functional specification that will 
lend itself to a degree of automation (Biddle, Noble et al.'02). The full range of manage 
use cases are not required over all the identified domain objects, such as the example 
where a ‘time period’ is modelled as a first order entity (parent table) rather than as an 
attribute of some containing table. Thus, the essential task of ensuring the domain model 
is a minimal representation of the entities needed to manage the business rather than a 
fully normalised database that includes parent – child relations which are inappropriate at 
this early stage of modelling. 

It is important in the beginning to understand how to begin collecting use cases, how 
much detail to collect, the level of abstraction to employ, in order to determine when it is 
safe to move on. 

When counting use cases in a model, Smith employs the ‘external use case’ test. This 
is defined as a use case that has a direct association with an actor. Any use case that does 
not have a direct actor association is an internal use case (or fragment) that should not be 
counted as a first order use case. Unfortunately this convenient convention is exploded 
when one actor’s external use case is another actor’s internal use case. This is illustrated 
in Figure 6. 

Clerk

Read bookingUpdate booking
<<include>>

 
Figure 6: A sub-set of basic functionality triggered by the Clerk. 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

In Figure 6, the Clerk may either Update booking, which includes ‘reading’ over the set 
of all bookings (searching for a booking to find the correct one), or may have, as an 
ultimate goal in its own right, to find a booking so that some detail may be confirmed to a 
waiting customer. Therefore, Read booking is both an external and an internal use case. 

Search customers

Clock

Login

<<include>>

Customer

Make booking Third party 
gateway

Clerk Modify booking

Book excursion

<<extend>>

<<extend>>

 
Figure 7: An extract of the total functionality delivered by the booking system. 

 

Figure 7 provides a second example of how the external/internal use case categorisation 
can break down. Book excursion is a use case fragment from the perspective of the 
Customer, who can instantiate the use case as part of Make booking. To the Clerk, Book 
excursion is a specialisation of Modify booking and therefore a first order use case in its 
own right. 

Projects have different stakeholders, who have different needs from the use case 
models they consume. From this perspective there is no right or wrong level of use case 
goal representation, but rather a requirement to see them being part of a hierarchical goal 
structure. This tension in goal expression has been addressed by Cockburn who has 
proposed a workable hierarchy that ranges through Summary, User goal, Sub-goal and 
Too low. Unfortunately, Cockburn does not provide extensive examples of his hierarchy 
at work, but does provide the foundation for navigating such a hierarchy based on goals 
where one form of expression is neither right nor wrong depending on the value offered 
to the model’s audience (Cockburn'97; Cockburn'01). This hierarchy of goal 
decomposition will determine the number of use cases in a use case model, and accounts 
for differences of opinion. Evans warns against letting developers write high level use 
cases because they normally cannot help themselves but to delve into implementation 
detail that is inappropriate during the early stages (Evans'99). The need to be aware of 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 135 

both abstraction of detail and abstraction of goal expression is necessary to successfully 
produce use case models for all stakeholders when and where appropriate. 

Customer Make booking

summary 
level

user goal 
level

sub goal 
level

Find flight Specify passenger details Specify payment method

Make flight booking

Verify plans

 
Figure 8: An example of Cockburn’s hierarchy of abstraction of user goals in use cases. Strictly speaking, 
this type of association between use cases is not defined in the UML specification (staff'99). Make flight 

booking is shown as a specialisation of Make booking. Make flight booking is shown to be comprised of a 
series of use cases that combine to represent a whole-part relationship. 

 

To summarise, there is no agreement in the literature on the nature of abstraction in use 
case modelling, although there are sound approaches that can be employed to better 
understand the issues a requirements modeller must satisfy. Use cases are represented in a 
goal hierarchy in Figure 8. One of the major problems in use case modelling is deciding 
on the correct goal ‘level’ at which to represent requirements. The evidence suggests they 
are all correct, depending on the need of the target stakeholder. The other debate centres 
around the inclusion of either too much or too little detail, and the necessity to represent 
the use case set similarly in order to preserve some ‘homogeneity of expression’. Use 
case modelling can be thought of as having different, inter-related, axes of abstraction. 
On one axis, the abstraction of increasing detail as articulated by Kulak and Guiney, and 
on the other axis, goal expression, as articulated by Cockburn. Together they provide 
guidance to build comparable and consistent models (Merrick and Barrow'03). 

5 OO ASSOCIATIONS IN USE CASE MODELLING 

If the use case hierarchy of abstraction is accepted then guidelines have to be formalised 
for better use case representation. This is necessary because a use case at the summary 
level will be decomposed into the user goal level (and potentially further), requiring it to 
be unambiguous to the modeller when to employ specialisation, aggregation, include and 
extend notation. The UML standard itself defines only <<include>> and <<extend>>. 
The guidelines presented here are not part of the UML standard, but have been 
successfully employed in modelling to improve clarity of expression on a variety of 
assignments (Merrick'04; Merrick and Barrow'04c; Merrick and Barrow'04b; Merrick and 
Barrow'04a). 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

Aggregation 

B
C D

A

 
Figure 9: Aggregation is shown with a line adorned by a diamond. The use case most close to the diamond 

is the containing use case. 
 

In Figure 9, use case ‘A’ is comprised of use cases ‘C’, ‘B’, and ‘D’. In set notation, set 
A is made up of the sets C, B and D or A:={C,B,D}. There is no time or order associated 
with this construction. By this convention, a Manage Entity (A) summary use case could 
be decomposed into a New Entity (B), Modify Entity (C), and Search Entity (D) use case 
set.  

Inheritance 

C

C.1 C.2

 
Figure 10: Specialisation (or inheritance, or generalisation) is represented in this diagram by a line 

annotated with a hollow headed arrow. The use case that is pointed to is the parent (C). It is specialised by 
its children use cases (C.1, C.2). 

 

In Figure 10, use cases C.1 and C.2 are types of use case C (also known as an is a 
relationship). If use case C was a recipe for baking bread, use case C.1 might be a recipe 
for rye bread, and C.2 a recipe for brown. Use case C could describe the use of a bowl, 
water, and yeast. C.1 would describe the type of flour (rye), the proportion of water and 
the cooking time. So, C.1 and C.2 have things in common (contained in C) but they also 
have things that are unique to themselves. In a requirements model, C might represent the 
creation of a New booking, whereas C.1 would represent the creation of a New ferry 
booking. Use case C is abstract in this example. 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 137 

Include 

 

C1.1
C1.2

E1

<<include>>
<<include>>

 
Figure 11: An <<include>> is a standard UML association represented by an open arrow that points away 

from the use case that is being included. Inclusion is a good way of allowing reuse. 
 

In Figure 11 the use case E1 is included in use case C1.1 and C1.2. This way E1 can be 
written once and used twice, thereby encouraging reuse. For example, if use case C1.1 is 
Modify Provisional Booking and C1.2 is Modify Confirmed Assignment, as both of these 
use cases require the assignment to be found, use case E1 might be Search booking. This 
notation is employed with concrete use cases. 

Extend 

C2.2.1

C2.2 <<extend>>

 
Figure 12: An <<extend>> is a standard UML association represented by an open arrow that points to the 
use case that is being employed as an extension. An extension increases the behaviour of the base use case 

 

As both <<extend>> (Figure 12) and <<include>> (Figure 11) employ the same notation, 
there is plenty of opportunity for confusion. The difference between these two 
annotations is the direction the arrow points and the text adornment that seeks to make 
explicit which association is intended. 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

<<Extend>> implies optional behaviour; given the activation of use case C2.2, under 
certain conditions the behaviour in C2.2.1 will be called. This technique also helps with 
reuse (as does <<include>>). It is employed with concrete use cases.  

C

B
D

C.1 C.2

C2.2

C2.2.1

C2.1C1.1

E1

C1.2

actor b

actor c

actor d

actor a

A

 
Figure 13: A complex use case model showing four kinds of use case association. 

 

There are two different kinds of use case shown in Figure 13 which are distinguished by 
their colour and all four proposed use case associations are employed. In Figure 13 all of 
the associations, aggregation, specialisation, include, and extend are used in the same 
diagram. A dark coloured use case is abstract and is used in problem decomposition. An 
abstract use case has no use case text associated with it. Light coloured use cases are 
concrete and have use case text associated with them. 

6 USE CASE MODELLING SUMMARY 

Since the day Brookes wrote identifying the non-existence of a silver bullet to put all the 
things right that are wrong with software engineering (Brooks'86), practitioners have 
reacted with suspicion to any innovation that promised a holy grail. This holds true for 
use case modelling. 

Glinz complains that by limiting inter-actor associations to exclude inheritance 
relationships the richness of the resulting models is excessively restricted. At times the 
specification simply seems incomplete as opposed to being deliberately restrictive. For 
instance, Glinz is critical of the actor model, with its emphasis on the definition of human 



 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 139 

roles representing the only mechanism that can trigger a use case execution. Indeed this is 
too restrictive where the modeller wishes to define automated behaviour. 

To some, the fact that use cases are not fundamentally an object-oriented notation is 
a particular issue (Firesmith'02), although because use cases are a notation for the 
representation of problems rather than solutions, this criticism may be unfounded. Given 
that use cases could be associated via inheritance and aggregation, (and there are good 
reasons for doing so) use case modelling would become more compliant with an over-
arching OO philosophy. However, drawing any parallels between use case modelling and 
the eventual objects that are defined to satisfy the behaviour they represent must be 
resisted. Certainly use case modelling is founded on the principles of object modelling 
(Jacobson'03), which is sufficient, provided there is a recognised process for moving 
from the problem representation to an OO solution representation. To accomplish a 
mapping from problem to solution the interested reader is referred to the concepts 
embodied in the Model-View-Controller pattern (Krasner and Pope'88) and the work that 
has been done subsequently (Spielman'03). The UML specification does not expressly 
forbid the incorporation of useful modelling techniques such as inheritance and 
aggregation relationships between use cases. Certainly all of these concepts have been 
employed implicitly by Cockburn (Cockburn'01) and in other work done by the author 
with respect to early lifecycle use case modelling for the purpose of IT procurement 
(Merrick'04; Merrick and Barrow'04c; Merrick and Barrow'04b; Merrick and 
Barrow'04a). Aggregation and inheritance are perhaps best suited to modelling the 
abstraction between use case layers in the goal hierarchy, whereas <<include>> and 
<<extend>> are sufficient for modelling at the layer where the use case has a text 
component associated with it. At this point a use case takes on detail and becomes more 
concrete. 

There are different audiences for use case models. Management may wish to engage 
with use cases at the summary level, users at the user goal level, architects at the sub-goal 
level and technicians at the too low level. Contrary to Jacobson’s original vision, there is 
no harm in allowing this multiple view of functionality provided the views can be 
reconciled. Incorporating aggregation and specialisation into use case modelling does 
that, and thereby serves the needs of various project stakeholders more faithfully. 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

REFERENCES 

Dictionary.com, www.dictionary.com 

Free On-Line Dictionary of Computing (FOLDOC), http://foldoc.doc.ic.ac.uk 

WordNet, www.cogsci.princeton.edu 

Biddle, R., J. Noble and E. Tempero, "Patterns for Essential Use Cases." Australasian 
Pattern Languages of Programming (KoalaPLoP) (Melbourne, Australia, 
2001), pp  

Biddle, R., J. Noble and E. Tempero, "Supporting Reusable Use Cases." International 
Conference on Software Reuse (ICSR'02) (Austin, Texas, 2002), pp p. 210-
226 Springer Verlag. 

Brooks, F. P., "No Silver Bullet." Information Processing, Elsevier Science, 1986. 

(generic ref) Cantor, M., Thoughts on Functional Decomposition, 2003,  

Cockburn, A., Structuring Use Cases with Goals, 1997, 
http://members.aol.com/acockburn/papers/usecases.htm 

Cockburn, A., Writing Effective Use Cases. Addison Wesley Longman, Upper Saddle 
River, N.J., 2001. 

Constantine, L. and L. Lockwood (2001). Structure and Style in Use Cases for User 
Interface Design. Object Modeling and User Interface Design. M. Van 
Harmelen. Upper Saddle River, N.J., Addison Wesley: 245-279. 

Cox, K., "Cognitive Dimensions of Use Cases - feedback from a student questionnaire." 
12th Workshop of the Psychology of Programming Interest Group (Corenza, 
Italy, 2000), pp  

(generic ref) Evans, G., Nazzano,F., Why Are Use Cases So Painful, 1999, Columbia, 
SC. 

(generic ref) Firesmith, D. G., Use Cases: the Pros and Cons, 2002,  

Fowler, M. and K. Scott, UML Distilled - A Brief Guide to the Standard Object Modeling 
Language. Addison Wesley Longman, Upper Saddle River, N.J., 1999. 

Glinz, M., "Problems and Deficiencies of UML as a Requirements Specification 
Language." Tenth International Workshop on Software Specification and 
Design (IWSSD'00) 2000), pp IEEE Computer Society. 

Jackson, M., Problem frames. Pearson Education Ltd., Addison Wesley, Harlow, 2001. 

Jacobson, I., Use Cases: Yesterday, Today and Tomorrow, 2003,  
www-106.ibm.com/developerworks/rational/library/775.html 

www.dictionary.com
http://foldoc.doc.ic.ac.uk
www.cogsci.princeton.edu
http://members.aol.com/acockburn/papers/usecases.htm
http://www-106.ibm.com/developerworks/rational/library/775.html


 
 
 
 
 
 

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 141 

Jacobson, I., P. Jonsson, M. Christerson and G. Overgaard, Object-Oriented Software 
Engineering - A Use Case Driven Approach. Addison Wesley Longman, 
Upper Saddle River, N.J., 1992. 

Jacobson, I. E., M.;Jacobson,A;, Object Advantage - Process Re-engineering with Object 
Technology. Addison Wesley, Upper Saddle River, N.J., 1995. 

Krasner, G. E. and Pope S. T., "A Cookbook for Using the Model-View-Controller User 
Interface Paradigm in Smalltalk-80." Journal of Object Oriented 
Programming, 1 (3), 1988. 

Kruchten, P., The Rational Unified Process - An Introduction. Addison Wesley 
Longman, Upper Saddle River, N.J., 2000. 

Kulak, D. and E. Guiney, Use Cases - Requirements in Context. Addison Wesley 
Longman, Upper Saddle River, N.J., 2000. 

(generic ref) Lilly, S., How to Avoid Use-Case Pitfalls, 2000,  

Merrick, P., "A Requirements Pattern Based Approach to Improvements in Government 
I.T. Procurement", Ph.D., University of East Anglia, 2004. 

Merrick, P. and P. Barrow, "Towards a Requirements Formalism in Procurement." 8th 
Annual Conference of United Kingdom Academy of Information Systems 
(Warwick, England, 2003), pp  

Merrick, P. and P. Barrow, "A Requirements Pattern Based Approach to Achieving 
Internal Stakeholder Agreement." Requirements Engineering, submitted, 
2004a. 

Merrick, P. and P. Barrow, "Testing a Requirements Pattern Language Through Reverse 

Modelling." INCOSE 2004 (Toulouse, France, 2004b), pp International Council of 
Software Engineers. 

Merrick, P. and P. Barrow, "Testing the Predictive Ability of a Requirements Pattern 
Language." Requirements Engineering, pp (Online edition at time of writing), 
2004c. 

Pooley, R. and P. Stevens, Using UML - Software Engineering with Objects and 
Components. Addison Wesley Longman, Harlow, 1999. 

Rosenberg, D. and K. Scott, Use Case Driven Object Modeling with UML. Addison 
Wesley Longman, 1999. 

Rumbaugh, J., I. Jacobson and G. Booch, The Unified Modeling Language - Reference 
Manual. Addison Wesley, Reading, MA, 1999. 

(generic ref) Smith, J., The Estimation of Effort Based on Use Cases, 1999, Cupertino, 
CA. 

Spielman, S., The Struts Framework - Practical Guide for Java Programmers. Morgan 
Kaufmann Publishers, San Francisco, 2003. 



 
THE RATIONALE FOR OO ASSOCIATIONS IN USE CASE MODELLING 

 
 
 
 

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9 

staff, "OMG Unified Modeling Language Specification Version 1.3", 1999. 

Sutcliffe, A., The Domain Theory - Patterns of Knowledge and Software Reuse. 
Lawrence Erlbaum Associates, London, 2002. 

About the authors 
Peter Merrick earned his PhD from the University of East Anglia in 
2005 with his thesis entitled “A Requirements Pattern Based Approach 
to Improvements in Government I.T. Procurement”. He specialises in 
the production of requirements specifications and has worked with 
various commercial organisations in the U.K. His research was 
sponsored by the Health and Safety Executive. Most recently he has 

been working with the University of Cambridge Examinations Syndicate. Peter’s 
ambitions are to make concrete improvements in the field of unambiguous requirements 
representations for the purpose of 3rd party software procurement. He is the author of a 
number of other papers in the field of requirements engineering written with Dr. Pat 
Barrow, also at the University of East Anglia. Peter has his own consultancy, Active 
Requirements Ltd., which offers its services to industry and the public sector. 
 

Dr. Patrick D.M. Barrow is a Lecturer in the School of Computing 
Sciences, University of East Anglia (UEA)  Norwich, UK. He  gained 
his B.Sc. in Business Information Systems from UEA in 1993 and his 
Ph.D. in 2000 (Investigating Stakeholder Evaluation in Rapid 
Application Development).  He is currently researching stakeholder 
involvement in large-scale information systems development. 

 


