
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 9, November-December 2005

Cite this article as follows: M. Naeem and Ch. Harrison: “A Formal Description of a Type Checking
Algorithm”, in Journal of Object Technology, vol. 4, no. 9, November - December 2005, pp. 93 - 100
http://www.jot.fm/issues/issue_2005_11/article2

A Formal Description Of A Type
Checking Algorithm

Majid Naeem, University of Central Punjab, Lahore, Pakistan
Chris Harrison, School of Informatics, Manchester University, UK

Abstract
In type system theory, a program variable can assume a range of values during the
execution of a program. In a statically typed language, every expression of the language
is assigned a type at compile time. There are many advantages to having a statically
type-checked language including provision of earlier information on programming errors,
documenting component interfaces, eliminating the need for run-time type checks, and
providing extra information that can be used in compiler optimization. In this paper a
formal description of a static type checker is presented and used to construct a static
type for each expression in an object-oriented language called POOL.

1 INTRODUCTION

In object-oriented languages, a subclass enables reuse of the code of its superclass and
relies on the type-correctness of the corresponding source code. A particular task
associated with statically type checking an object-oriented language is designing the type
checking rules which ensure that methods provided in a superclass will continue to be
type-correct when inherited in a subclass. A set of typing rules, based on the structure of
expressions, can be used to construct a static type for each expression at compile time by
the type checker. The type checker is thus able to guarantee that if an expression has a
static type T, evaluation of that expression at run-time will result in a value of type T.

POOL [1], [2] is a class-based strongly typed object-oriented language. In POOL, a
program may consist of a number of user-defined types which may appear in any
declaration order. POOL also supports parametric type definitions, a general technique
that enables the same piece of code to be used by different types. In POOL, a parametric
type that has been inferred from a program fragment may take on a different instance in
every context in which it is used. Languages which also support type parameters include
Trellis/Owl [8], Eiffel [9], and PolyTOIL [11].

In POOL, a relationship between types enables an object of a subtype to be used in
any context that expects an object of the supertype. This process is termed Subsumption
[3, 12]. Thus, if β is a subtype of α, i.e. (β ≤ α), then any expression of type β may be

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_11/article2

A FORMAL DESCRIPTION OF A TYPE CHECKING ALGORITHM

94 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

used without type error in any context that requires an expression of type α. Thus, if Γ is
a static typing environment and it is well-formed (◊), then we can assign (:=) the value of
an expression (or term) of type β to an object of type α without any type error.

Γ d ◊ Γ d b:β Γ d a:α Γ d β ≤ α

Γ d a:=b

The same substitutivity rule can be applied to functions. If α, α’, β, and β’ are four types
such that α’ is a subtype of α and β’ is a subtype of β, and two functions φ and ϕ are
defined in these types such that the type of function φ is φ : α’→β’ and the type of
function ϕ is ϕ : α→β, then the function φ can be substituted for function ϕ [13].

Γ d ◊ Γ d ϕ : α → β Γ d φ : α’ → β’
Γ d α’≤ α Γ d β ≤ β’

Γ d ϕ ≤ φ

This substitution principle is extended to the class-based model of a language. Thus, a
type β is a subclass of a class α if β is derived from α, either by updating or modification
of its methods (β <m α) or by extension, i.e. extending its attributes or introducing new
methods (β <e α) [4, 12].

If α is composed of mi attributes and methods, and β is composed of mj attributes
and methods, then if mj is the same as mi (or mj has additional attributes or methods),
then β is a subclass of α by extension <e .

Γ,α,β d ◊ Γ α≡{mi:Mi} Γ β≡{mj:Mj} i∈1…n j ∈ 1…m m >= n

Γ d β <e α

If α has a method mi of type mi:Pi→Ri’ and β has a method mj of type mj:Pi→Ri such
that Ri’ is a subtype of Ri, then β is a subclass of α by modification <m.

Γ,α,βd ◊ Γ d α≡{mi:Pi→Ri’}

Γ d β≡{mi:Pi→Ri} Γ d Ri’≤ Ri i∈1…n

Γ d β <m α

If α has a method mi of type mi:Pi→Ri and β has a method mj of type mj:Pi’→Ri’such
that Pi’ is a subtype of Pi, then β is a subclass of α by modification <m.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 95

Γ,α,β d ◊ Γ d α≡{mi:Pi→Ri}

Γ d β≡{mi:Pi’→Ri} Γ d Pi’≤Pi i∈1…n

Γ d β <m α

If α has a method mi of type mi:Pi→Ri’ and β has a method mj of type mj:Pi’→Ri
such that Pi’ is a subtype of Pi and Ri’ is a subtype of Ri, then β is a subclass of α by
modification <m.

Γ,α,β d ◊ Γ d α≡{mi:Pi→Ri’}Γ d β≡{mi:Pi’→ Ri}

Γ d Ri’≤ Ri Γ d Pi’≤ Pi i∈1…n

Γ d β <m α

2 TYPE CHECKING IN POOL

The task of the type checker is to verify that a program is type correct. Ideally, type
checking takes place before the program is run, in which case the program is said to be
statically type correct and the corresponding type system is termed a static type system. If
an implementation verifies type correctness during a program’s execution, then the
program is said to be dynamically type correct and its system is a dynamic type system.

The static type checker designed and implemented for POOL exploits an enhanced
static type-checking mechanism to minimize run-time checks for late bindings. This
mechanism is realized via a small set of type-operation look-up tables that provide run-
time support for dynamic type-checks. POOL follows the typing rules of a general class-
based object-oriented language, the most common of which are given in [6, 7].

The type checker is responsible for ensuring that the typing rules of the language are
enforced. In practice, type checking is done by ‘bottom up’ inspection of a program,
matching and synthesizing types while proceeding towards the root; the type of
predefined identifiers is already “known” and contained in the initial environment,
whereas the type of an expression is computed from the type of its sub-expressions and
type constraints imposed by the expression’s context. In POOL, the type of an object, an
operation and an expression is determined by the rules defined in the following sections.

Object Type

In POOL, an object ‘τ’ can have more than one type, i.e. it may be defined as a variant
object type. Thus, if Γ is a well-formed (◊) static typing environment which has types
α1,α2,…,αn an object τ can be defined with a single type α1, α2,…,αn, or more than
one type α1, α2,…,αn,.

Γ d ◊ Γ d αi i∈1..n

Γ d (τ:α1|…|αn)

A FORMAL DESCRIPTION OF A TYPE CHECKING ALGORITHM

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Operation Type

In POOL, an operation defined in a type can have a parameter of a variant type and return
a value of more that one type as an allowed return type, i.e. POOL supports polymorphic
functions and operations. Thus, if Γ is a well-formed static typing environment which has
types α1,α2,…,αn and β1,β2,…,βm an operation ƒ can be defined in type βj or αi, where
i ∈ 1...n, with a parameter of type αi and a return type βj or vice versa.

Γ d ◊ Γ d αi Γ d βj i∈1...n j∈1...m

Γ d (ƒ:α1|…|αn→β1|…|βm)

ƒ:α1|…|αn→β1|…|βm indicates that function ƒ has a parameter of type α1|…|αn and
returns a value of type β1|…|βm.

Expression Type

If Γ is a well-formed (◊) static typing environment which has types α, β1,β2,…,βn and
γ1,γ2,…,γm, and a polymorphic function or operation, ƒ:β1,β2,…,βn→γ1,γ2,…,γn, then
an object τ of type α can be applied to an operation of type ƒ(τ)→ƒ(τ) iff α and βi(i
∈1…n) have a Least Common Type (LCT).

Γ d ◊ Γ d τ:α Γ d ƒ:β1|…|βn→γ1|…|γm
Γ d LCT(α) in LCT (βi|…|βn)

Γ d ƒ(τ)→γ1|…|γm

LCT (α) in LCT (βi|…|βn) indicates that both α and β1,β2,…,βn have the same Least
Common Type.

3 THE TYPE CHECKING ALGORITHM

The main task of a type checker is to make sure that whenever an expression is evaluated
and assigns a value to an object there should be no typing error. In order to do so, the type
checker ensures that the type of the value resulting from an expression’s evaluation is the
same type as the object to which this value is to be assigned. Many type-checking
algorithms do this checking by computing a Least Common Type (LCT) for the
expression and object [10].

In POOL, the algorithm for type checking is composed of four cases. Each case is
based upon the type of expressions (which may have either simple or variant types) and
the type of objects (which again may have either simple or variant types), where objects
will receive the expression’s value. The types of objects are termed henceforth ‘term b’
and the types of expressions ‘term a’ respectively.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 97

Case 1. If term a has a type α and term b has a type β, then if β is a subtype of α (β
≤ α) and term b is assigned (:=) to term a, then the static typing environment will
remain well formed (◊).

Γ d a:α Γ d b:β Γ d β ≤ α Γ d a:= b

Γ d ◊

It is a simple Subsumption Principle [13].

Case 2. If term a has a type α and term b has a variant type β1|…|βn, then
term b can be assigned to term a iff types β1,…,βn are all subtypes of α, i.e. α is a
Least Common Type of β1,…,βn.

Γ d a:α Γ d b:β1|…|βn Γ d βi≤ α
Γ d a := b i ∈ 1...n

Γ d ◊

Thus, if x is an object of type α, y is an object of type β, and z is an object of type β1,
where β1 and β2 are subtypes of type α, then according to the Subsumption Principle we
can assign objects ‘y’ and ‘z’ to object ‘x’.

x:=y x:=z

This also means that if an object y has a type β1 or β2, then it too can also be assigned to
object ‘x’.

x:=y iff y:β1|β2

If there are n types β1…βn such that all these types are subtypes of type α, i.e. α is a
Least Common Type of β1…βn, βI ≤ α ∀ i∈1…n, then an object y of type y:β1|…|βn
can be assigned to an object x of type α.

x:=y iff x:α

Case 3. If term a has a variant type α1|…|αn and term b has type β, then term b
can be assigned to term a iff there is a type in α1,…,αn such that β is a subtype of one
of αi, i∈1…n.

Γ d a:α1|…|αn Γ d b:β
Γ d β ≤ α1|…|αn Γ d a:=b

Γ d ◊

A FORMAL DESCRIPTION OF A TYPE CHECKING ALGORITHM

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

Thus, if x is an object of type α1, y is an object of type α2 and z an object of type β, such
that β is a subtype of α1 , i.e. β ≤ α1, then according to the Subsumption Principle we
can assign object z to object x.

x:=z

This also means that if an object x has a type α1 or α2 then an object y of type β can be
assigned to x.

x:α1|α2 x:=y iff y:β

If there are types α1,…,αn such that one of these is a supertype of the type β, where β ≤
αi i∈1…n, then an object y of type β can be assigned to an object x of type α1 |…| αn.

y:β x:=y iff x:α1|…|αn

Case 4. If term a has a variant type α1|…|αn and term b has a variant type β1|…|βm,
then term b can be assigned to term a iff for every type βj in β1|…|βm there is a type
αi in α1,…,αn such that βj is a subtype of αi i∈1…n.

Γ d a:α1|…|αn Γ d b:β1|…|βm

Γ d βI ≤ α1|…|αn Γ d a:= b

Γ d ◊

Thus, if x is an object of type α1, a is an object of type β1 and b an object of type β2, such
that β1 and β2 are supertypes of type α1, then according to the Subsumption rule we can
assign object a or b to object x.

x:=a x:=b

This also means that if the object x has a type α1 or α2 then the object a of type β1 or β2
can be assigned to x.

x:α1|α2 x:=a iff a:β1|β2

If there are types β1,..,βn such that all these types are subtypes of the type αj, i.e. βI ≤ αj

∀i∈1...n, j∈1...m, then an object y of type y:β1|…|βn can be assigned to an
object x of type α1|…|αm.

VOL. 4, NO. 9 JOURNAL OF OBJECT TECHNOLOGY 99

4 CONCLUSION

The main justification for statically checking expressions lies in the nature of the
guarantee that can be given, i.e. in a strongly-typed system, all code is guaranteed to be
type-correct before execution. In practice, checking may be static or dynamic and
involves analyzing the program text, or alternatively, accessing the run-time environment.
As a “rule-of-thumb” it is almost always preferable to check statically as much as
possible [5].

The type checker presented here supports type checking of polymorphic operations
and variant objects, i.e. operations which have variant parameter types and variant return
types, and guarantees that run-time errors of the kind “Message not Understood” are not
generated. Once a class is type checked in this manner, it will remain type correct when
inherited in other classes.

REFERENCES

[1] C.J. Harrison, M. Naeem. POOL: A Persistent Object-Oriented Language. ACM
Symposium on Applied Computing, 2000.

[2] C. J. Harrison, M. Naeem and S. E. Eldridge. A Model-Oriented Programming
Support Environment for Understanding Object-Oriented Concepts.
Workshop 8, ECOOP 2000, France, in Lecture Notes in Computer Science,
Vol. 1964/2000, Springer-Verlag Heidelberg, ISSN: 0302-9743

[3] J. Fisher and C. Mitchell. Notes on Typed Object-Oriented Programming. In
Proceedings Theoretical Aspects of Computer Software, pages 844-885.
Lecture Notes in Computer Science, Springer-Verlag Vol. 789, 1994.

[4] K.B. Bruce. A Paradigmatic Object-Oriented Programming Language: Design, Static
Typing and Semantics. Journal of Functional Programming 1(1):1-10, Jan
1999.

[5] Luca Cardelli. Type Systems. Handbook of Computer Science and Engineering,
Chapter 103, CRC Press, 1997.

[6] Luca Cardilli, Jim Donahue, Misk Jordan, Bill Kalsow, Greg Nelson. The Modula-3
Type System. In Conference record of the Sixteenth Annual ACM
Symposium on Principles of Programming Languages, Austin, Texas, Pages
202-212, January 1989.

[7] Martin Abadi, Luca Cardelli. A theory of Objects. Springer-Verlag New York, Inc.
1996.

A FORMAL DESCRIPTION OF A TYPE CHECKING ALGORITHM

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 9

[8] Schaffert, T. Cooper, B. Bullis, M. Kilian, C. Wilpolt. An introduction to Trellis/Owl.
In OOPSLA’89 Proceedings, pages 9-16. ACM SIGPLAN Notices, 21(11),
November 1986.

[9] Bertrand Meyer. Eiffel: the language. Prentice-Hall, 1992.

[10] P.L. Curien, G. Ghelli. Coherence of Subsumption, minimum typing and the type
checking in F≤. Mathematical Structures in Computer Science, 2(1), pp 55-91,
1992.

[11] K.B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Object Group
(Jonathan Eifrig, Scott Smith, Valery Trifonov), Gary T. Leavenand,
Benjamin Pierce. On Binary Methods. Theory and Practice of Object
Systems, 1(3), pp. 221-242, 1996.

[12] Luca Cardelli. A semantics of multiple inheritance. Information and Computation
76(2/3):138-164, 1988.

About the authors
Majid Naeem is a Professor in the Department of Computer Science at University of
Central Punjab Pakistan. E-Mail: majid.naeem@pcit.ucp.edu.pk

Chris Harrison is a lecturer in the School of Informatics at Manchester University. E-
Mail: cjharrison@manchester.ac.uk

mailto:majid.naeem@pcit.ucp.edu.pk
mailto:cjharrison@manchester.ac.uk

