
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 7, September-October 2005 

 
 
 
 

Cite this column as follows: Won Kim: “On Issues with Component-Based Software Reuse”, in 
Journal of Object Technology, vol. 4, no. 7, September-October 2005, pp. 45-50 
http://www.jot.fm/issues/issue_2005_09/column5  

On Issues with Component-Based 
Software Reuse 

Won Kim, Samsung Electronics, SuWon, Korea 

Abstract 
As the size and complexity of software products, and the compression of software 
product development cycle seem ready to go out of control, large software development 
organizations are taking a hard look at the allure of the substantial productivity 
enhancements envisioned by early proponents of component-based software reuse. In 
this article, I will summarize practical difficulties in realizing the benefits of component-
based software reuse and discuss key pre-conditions to meet before attempting 
software reuse on a wide scale in a formalized manner. 

1 INTRODUCTION 

The notion of software reuse has been around for the past thirty years as a way to 
drastically reduce the cost of developing software. This includes component-based 
software design and even service-oriented architecture. The need for software reuse has 
become urgent as the size and complexity of software have started to escalate steeply and 
as the product development cycle has been compressed. Enterprise software, such as 
database systems, ERP systems, CRM systems, SCM systems, data warehousing systems, 
etc. each consist of millions of lines of code, and require expensive technical consulting 
for proper use. Even software embedded in consumer electronics products such as cell 
phones and digital television now consist of millions of lines of code. The competitive 
pressures have forced vendors to reduce product development cycles from 18-24 months 
perhaps a decade ago to 3-9 months today. The significant worldwide reduction in 
students choosing to major in computer science during the past several years simply 
means a shallow pool of software developers with basic training today and into the 
foreseeable future. Today the number of software engineers that some of the large global 
corporations in such countries as Japan and Korea anticipate needing in the next several 
years is far greater than the total number of students anticipated to graduate with degrees 
in computer science and related areas. This, not necessarily the presumed cost savings, is 
the primary reason these companies have been outsourcing software development jobs to 
countries such as India, China, Russia, etc. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_09/column5


 
ON ISSUES WITH COMPONENT-BASED SOFTWARE REUSE 

 
 
 
 

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

Under these circumstances the idea of stockpiling a large number of software components 
in a software component database and simply selecting some of them and dropping them 
into new software being developed is enticing indeed. However, this is a rather naïve 
notion that flies in the face of harsh realities of software development, and as such large 
software development organizations must exercise extreme caution before pursuing 
organization-wide efforts to create a large database of software components for reuse. In 
the rest of this article, I will examine various impediments to component-based software 
reuse, and also outline areas that require standardization and trained discipline as pre-
conditions to component-based software reuse. 

2 DIFFICULTIES WITH COMPONENT-BASED SOFTWARE 
REUSE 

Broadly, there are two types of component-based reuse: with no change to an existing 
component, and with change. Let us examine reuse without change first. Reuse without 
change means simply selecting a component from a software component database, and 
dropping it into new software being developed. The cost of developing the component 
anew is zero! In fact, there are at least three types of component-based reuse in wide use. 
One is reuse of most of existing software when developing the next version of the 
software. Typically, some 60-80 percent of the existing software gets to be reused in this 
situation. However, developers do not go through the formality of “registering” 
components in a common software component database in this case. Another is “reuse” 
of thirty-party software, such as a sorting package, a database loader, etc. on the market 
or on the Internet as open source code. Again, such software is not “registered” in an 
organization’s common software component database. A third type of reuse is common 
functions available in programming language libraries, such as the math functions in the 
C Programming Library.  

There are a large variety of technical reasons that make reusing existing components 
without change not exactly a picnic in the park. Let us examine them. (I do not believe 
the following list is exhaustive, but the types and number of reasons should make the 
point clear.)  

1. functional differences 

This is possibly the most serious reason an existing component cannot be reused without 
change. It is rarely the case that an existing component and a component to be newly 
developed match precisely in functions. The new component to be developed may require 
some changes to corresponding functions in the existing component, or may require 
additional functions. The existing component may be excessively rich in functions and, 
for, say, performance reasons, most of the excess functions may need to be eliminated. It 
is entirely possible, especially in this age of digital convergence where such devices as 
cell phones and MP3 players are continually taking on additional capabilities, software 
developed to provide one particular major capability for one product line may be reused 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 47 

in its entirety for another product line; for example, software for digital cameras may be 
reused on cell phones. However, it is unlikely that smaller granule components may be 
reused without change across product lines (i.e., business units). 

2. programming language difference  

If it has been decided that new software must be developed in, say, Java, an existing 
component written in, say C, cannot be reused without change, even if it satisfies all other 
requirements, such as the functionality, operating environment, system architecture, etc. 
Although cross compilation may sometimes allow reuse of components, in general it does 
not apply. 

3. target environment differences 

Target environments include platforms (chipset for embedded systems, and operating 
system), computer system architecture (single CPU, parallel computer, hub and spoke 
distributed architecture, peer to peer distributed architecture, networking protocol, etc.), 
computing environment (disk, CD ROM, USB, flash memory, etc.) and operating 
constraints (main memory size, secondary storage size, power consumption, screen size, 
paper size for a printer, etc.). Software components developed for one particular target 
environment often cannot be reused without change for another target environment. 

4. operating environment differences 

Operating environments include the number of simultaneous users, read-only or read-
write, volumes of data to manage, data input and output rate, etc. Software developed for 
a single user cannot in general be reused to support a multiple simultaneous-user 
environment. Software designed to only read data cannot in general be reused to support 
a read-write environment. Software designed for slow input and output of data cannot in 
general be reused to support an environment where the input and output rate is very high.  

5. industry standards differences 

There are many industry-wide standards on a very wide range of aspects of computing 
and communications. Examples include Web document standards (HTML, XML, etc.), 
communications standards (CDMA, GSM, 3G, Bluetooth, WiFi, etc.), cable television 
standards (OCAP, ACAP), connectivity standards (DLNA, Marlin, OSGi, UPnP, etc.),  
multimedia data encoding standards (MPEG, JPEG, HDD vs. BluRay, etc.), national 
language encoding standards (Unicode, etc.), metadata management standards (MOF, 
XMI, CWM, Dublin Core), external database access standards (ODBC, JDBC), etc. 
Software components that explicitly reflect one standard cannot be reused in software 
supporting another standard. 



 
ON ISSUES WITH COMPONENT-BASED SOFTWARE REUSE 

 
 
 
 

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

6. data format differences 

A large volume of data is managed either by a file system or a database management 
system. Software components that interface with file systems are significantly different 
from those that interface with database management systems. Different countries use 
different formats to store such data as date, time, currency, etc., and use different 
measurement units. Some software encode data in ASCII, while others use EBCDIC. 
Software components that explicitly deal with such data formats and encoding schemes 
cannot be reused without change in software that use different formats or encoding 
scheme. 

7. algorithm and data structure differences 

A wide variety of algorithms implement key functions or capabilities supported in 
software systems. Examples include sorting, searching, data replication, database locking, 
database logging for recovery, security and encryption, message routing on a network, 
etc.  For each such function or capability, typically there is more than one algorithm or 
technique, and accompanying data structures (e.g., linked list, hashing, binary tree, B+-
tree, R*-tree, heap), to implement it, each with different tradeoff considerations. One 
technique may be simple and quick to implement, while it may result in low performance 
or low level of reliability or low level of security. One technique may be good to support 
the management of a small amount of data, while it may be totally inappropriate for a 
large volume of data or a very high input data rate. One technique may be good to 
support the routing of a large number of small messages, while it may be unacceptable 
for routing a mixture of a small number of large messages and a large number of small 
messages. Software components that implement algorithms and techniques, and 
accompanying data structures, under certain tradeoff considerations cannot in general be 
reused without change under different tradeoff considerations. 

The difficulty with reuse with change to an existing component is obvious. It is 
difficult and time-consuming to fully understand an existing component that appears to 
closely match the requirements of the part of the new software for which the component 
may be reused with change. Then it takes efforts to determine those parts of the 
component that require changes, and to actually make those changes. Of course, once the 
changes are made, the modified component must be thoroughly tested and documented, 
and the entire software that includes the modified component must in turn be thoroughly 
tested. Faced with these practical difficulties, often software developers conclude that it 
would take them less time and manpower to develop the necessary parts of the new 
software from scratch than to select some seemingly closely matching components, 
analyze and modify them. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 49 

3 PRE-CONDITIONS TO COMPONENT-BASED REUSE 

Formal reuse of components, with or without change, is not cost-free. First of all, 
developers must register the components in a software component database. There must 
first be a standard format for registering software components. Simply storing a directory 
of source code files is not enough. The source code must be properly documented, with 
block comments and inline comments. Requirements specification and design 
specification concerning the component to be reused should also be included. Before a 
component may be selected for reuse, it must be confirmed that the component closely 
matches the requirements of the part of the new software into which it is to be used. Even 
if the component comes with proper documentation, this task is difficult and time-
consuming. Proper documentation is essential to make the task more accurate and less 
time-consuming. Further, the test suite for testing the code should be included. It must be 
made easy for other developers to confirm that the component selected will work 
properly in the possibly new environment of the new software being developed. Then the 
developers (or QA/test engineers) must develop test cases to confirm that the component 
in the context of the new software that now includes it behaves as expected. 

Beyond these, programming guidelines, software development best practices, and 
documentation standards should be established organization-wide, and developers must 
follow them. Documentation standards include templates and samples for requirements 
specification, design specification, source code block comments, and software release 
notes. Developers and QA/testers must also be properly trained on all key architectural 
factors in the development of software (including software in embedded systems 
context), including performance, scalability, reliability, extensibility, security, and 
configurability. 

4 CONCLUDING REMARKS 

Component-based reuse should really be taken as one of several ways in which to 
enhance software development productivity. It is certainly not the only way to enhance 
productivity, and not necessarily even the best way. Other, more direct and immediate 
ways to enhance productivity is the use of a variety of software tools, including tools for 
analyzing and testing software, tools for automatically generating unit test cases, and 
simulators for automating the testing of embedded systems. 

There are various pre-conditions that must be met before component-based software 
reuse should be attempted organization-wide and in a formal manner. Pre-conditions 
include proper training of all software developers and QA/testers on all facets of software 
development, including documentation, thorough testing, programming guidelines and 
programming and testing best practices, software design based on full consideration of all 
key architectural factors in the development of software. Of course, all developers and 



 
ON ISSUES WITH COMPONENT-BASED SOFTWARE REUSE 

 
 
 
 

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

QA/testers must follow all guidelines established and all best practices they are trained 
on. 

About the Author 
Won Kim is Senior Advisor at Samsung Electronics, Korea. He is 
Editor-in-Chief of ACM Transactions on Internet Technology 
(www.acm.org/toit). He is Global General Chair of the 
Human.Society@Internet International Conference. He is the recipient of 
the ACM 2001 Distinguished Services Award, and is an ACM Fellow. 
 

http://www.acm.org/toit

