

JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 4, No. 7, September-October 2005

Cite this column as follows:Mahesh Dodani: “Confessions of a Service-Oriented Abuser”, in
Journal of Object Technology, vol. 4, no. 7, September-October 2005, pp 19-24,
http://www.jot.fm/issues/issue_2005_09/column2

Confessions of a Service-Oriented
Abuser

Mahesh H. Dodani, IBM Software, U.S.A.

1 MEET PAT TERNA BUSER

“One comment I saw in a news group just after patterns started to become more popular
was someone claiming that in a particular program they tried to use all 23 GoF patterns.
They said they had failed, because they were only able to use 20. They hoped the client
would call them again to come back again so maybe they could squeeze in the other 3.
Trying to use all the patterns is a bad thing, because you will end up with synthetic
designs—speculative designs that have flexibility that no one needs.” – Erich Gamma,
http://www.artima.com/lejava/articles/gammadp.html

Hello, my name is Pat, and I resemble the person that Erich is talking about in his quote
above. I introduced my pattern abusing story to you in 1999 [Dodani, M., "Rules are for
Fools, Patterns are for Cool Fools", Journal of Object-Oriented Programming, Vol. 12,
No. 6, pp. 21-23, SIGS Publications, October 1999], and asked for help in getting over
my abuse.

To summarize my abuses, I applied patterns mercilessly to any software
development project, and in fact came up with a “pattern” to abuse patterns – which
ensured that I could apply almost every pattern (yes, I was disappointed that I could not
apply all 23 as well) to the implementation of a single class hierarchy (I assume that you
are familiar with the Gang of Four Patterns):

• For a single class, I used the State pattern to implement the instance variables to
facilitate flexibility in changing the behavior of the instance based on its state and
the Stategy pattern to implement the methods to facilitate flexibility in the choice
of algorithms. For the more complex methods, I used the Bridge pattern to ensure
that the interface of the method was decoupled from the actual implementation,
providing even greater flexibility. I used the Adaptor pattern to implement the
interface defined by the class using existing legacy code.

• For a grouping of instances of a class, I applied the Chain of Responsibilitiy
pattern to facilitate the flexibility of allowing the handler of the request to be

http://www.jot.fm
http://www.artima.com/lejava/articles/gammadp.html
http://www.jot.fm/issues/issue_2005_09/column2

CONFESSIONS OF A SERVICE-ORIENTED ABUSER

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

determined dynamically. Additionally, I used the Composite, Iterator and Visitor
patterns to group the instances into a tree-like structure and to facilitate uniform
access and treatment of the organized objects. For a hierarchy of classes, I used
the Façade pattern to ensure that the entire set of classes could be accessed
through a single interface which I could separate from the implementation. To
create objects that are part of a family, I used the Abstract Factory, Builder and
Factory Method patterns to facilitate flexibility in creating instances. In some
cases, I achieved greater flexibility using the Prototype pattern to clone objects
from existing ones rather than creating them as instances from a class.

• For the clients of objects, I used the Observer pattern to facilitate flexibility in
how the client reacts to changes in the object. Furthermore, I used the Proxy
pattern to completely decouple the methods provided by the object from the
manner and location from which they need to be accessed.

As I became more abusive, I requested help from you in resolving the following issues:
• How do I know when a pattern is really applicable, and will have the needed

impact on the application?
• How do I know that the application of the pattern has made the application more

flexible and reusable?
• Will the application become “better” after the patterns are applied? How do I

define “better”, and determine that the application has become “better”.

2 REMISSION FROM ABUSING PATTERNS

The outpouring of support and help from the community was overwhelming. I got help
that focused on several facets of my abuses – including, unfortunately, how to increase
the number of patterns that I could use in my approach above! The key antidotes that I
received that helped me overcome my sickness were the following:

• AntiPatterns which documents bad practices using the same template as patterns.
It therefore identifies common problems with solutions, and then show how to
refactor the solution to get rid of the problem. Several of these antipatterns deal
with my problem of applying patterns just for the sake of applying patterns (e.g.
BigDesignUpFront, DesignForTheSakeOfDesign, PolterGeists) and other (not
really categorized as antipatterns) ways of handling “smells” in your design and
implementation. I was able to leverage these antipatterns and their refactored
solutions to bring back some sanity into my design and coding practices, and
slowly wean myself off using patterns for the sake of patterns.

• Using larger grained assets through a gradual progression from design patterns to
frameworks and finally to architectures. My first step was to move from design
patterns to components, which allowed me to break away from the fine-grained
confines of objects to the large-grained world of components, and from the

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 21

constricted inheritance-based flexibility to the more powerful world of
composition. From components, it was easy to transition into architectures, which
provided the most effective antidote to my design pattern abuses. Layered
architectures allowed me to separate functionality and concerns between layers
that have well defined interfaces (and consequently hidden implementations) to
interact with – typically layers (from the outside in) include presentation, business
logic, persistence, integration and enterprise applications. Within each layer, I can
implement the required functionality (maybe through components, and the
components in turn are implemented via objects.) The next step was to evolve to
component architectures where the components themselves were considered first
class citizens, and this led to using interacting components as the primary
mechanism to build flexible systems.
o Agile methods facilitate individuals interacting with each other and in close

collaboration with their customer to build incremental versions of the system
and quickly respond to needed changes. Agile methods forced me to focus on
particular parts of the system, and build flexibility for one piece of
functionality at a time.

Using the above three antidotes, I was able to push myself into remission from abusing
patterns. The architectures, frameworks, and components that I was having to deal with in
addition to the design patterns made my design and development life complex and
engrossing. These higher-level abstractions allowed me to use a model-driven approach
to my development, so that by the time I came to implementing the components with
objects, I knew which patterns would be applicable to provide the flexibility in the
smaller context of implementing the needed interface. The agile methods gave me further
focus by facilitating iterative and incremental feature/function driven design.

3 RELAPSING INTO ABUSING SERVICES

As you must be aware, a few years ago, the entire technical world was awash with
services – here was the ultimate construct for building flexible systems. A Service is a
discoverable software resource which has a service description. The service description is
available for searching, binding and invocation by a service consumer. The service
description implementation is realized through a service provider who delivers quality of
service requirements for the service consumer.

I got introduced to services through web services. Web Services are self-describing,
self-contained, modular applications that have to be described, published, found, bound,
invoked and composed. Web services conform to the structure summarized in Figure 1.

CONFESSIONS OF A SERVICE-ORIENTED ABUSER

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

Fig. 1: The Web Service Structure

As shown in the figure, service providers create application functions that are available
on disparate implementation platforms as web services and describe them using a
standard definition language. These services are published in a service registry. Service
requestors who need a particular type of service search the service registry and find the
desired service. Once a service is found the requestor and the provider of the service
negotiate to access and invoke the service.

The other beauty of web services is that they are standards based, implying that the
underlying technologies supporting web services need to be platform and implementation
neutral, and are therefore specified in XML. The core technologies include

• Simple Object Access Protocol (SOAP) is the XML based messaging
specification that defines the message envelope content, the encoding rules for the
data types, and conventions for defining requests and responses. SOAP is vendor
neutral, and can support any language, programming model, and platform.
Implementations of SOAP exist in Java, Perl, C/C++, and C#.

• Web Services Definition Language (WSDL) is the XML based description of a
web service as a group of ports which are in turn defined by associating a network
address with a reusable binding. Each binding defines a group of operations (port
type) that is associated with a protocol. Each operation in turn is defined in terms
of messages and types. WSDL facilitates the abstract definition of web services to
be separated from their concrete implementations.

• The Universal Description, Discovery and Integration (UDDI) specifications
define a way to publish and discover information about Web services. The core
component of the UDDI is the UDDI business registration, an XML file used to
describe a business entity and its Web services, and which are used to provide
white pages (service provider), yellow pages business categories), and green
pages (technical binding information.)

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 23

So, this was great – I was able to relapse right back to working with smaller-grained
constructs (services), achieve great flexibility, and I had the added bonus of working in a
standards-based environment! It was just too good to be true. I took to services, with the
same excitement and fervor that I did with objects.

Very soon, I realized I had relapsed right back to abusing services. Here is what I
was doing in my design and implementation:

• For every interface and API in my system, I implemented a web service. I
replaced every (remote) call or point-to-point message with a SOAP message.

• I created these services for every application in my system, including for the non-
business logic functionality that I had developed to support the application.

• I created UDDI based service registries to support the services that I was creating
for each application, and used that to find the services that I needed.

• I created lots of fine-grained services to handle the interactions that I needed
between the presentation and business logic functionality. So, for example, I
would have individual services to get each of the attributes needed to populate
information about a cutomer.

• I quickly found that I could convince customers who had spent all their time on
putting in complex and expensive middleware to facilitate integration to change
over to using point-to-point integration using services. Basically, I would wrapper
the two applications that needed to be integrated as web services, and then invoke
them using SOAP messaging. The fact that we were using standards convinced
them that it would be cheaper and easier to maintain.

• I relied on web services to reach any part of the system that I wanted, and
basically used that as the unifying structure across all applications. I argued that
this made the systems simpler and therefore easier to change, manage and
maintain.

Of course, I soon realized that I was back to my old pattern abusing days – taking
advantage of my prowess with this new services construct and the hype surrounding it to
brow beat any customer into agreeing that I was leaving them with a much more flexible,
changeable and cheaper to maintain system. Of course, I used the metric of number of
services as the key indicator of these “qualities”, along with the added “open standards”
that were now an integral part of the system. Like before, the reality was far from what I
was selling. The proliferation of services and registries, the unstructured nature of the
system, the number of fine-grained services, and the point-to-point integration quickly led
to systems that performed poorly, were difficult to maintain, and were expensive to make
changes to.

CONFESSIONS OF A SERVICE-ORIENTED ABUSER

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

4 RISING BACK FROM THE ABYSS

I quickly realized that I had relapsed so far into the dark side again that it was time for me
to go back to my rehabilitation “pattern.” Using the same techniques and approaches that
I did to get out of my pattern-abusing nightmare, I was able to fight back from my
services abyss. I got involved with Service Oriented Architectures and use those first to
organize and structure the services that I would build and use and to define how these
services could interact with another through the Enterprise Service Bus. I also determined
how to handle qualities of service effectively through the layers of services. I used
appropriate methods to help me identify services that are appropriate to the domain that I
was involved with, starting first with modeling the business process, and then
establishing the services needed to implement the process. I used “smell” tests to
determine the appropriate validity and granularity of services. To provide the services, I
used components to first pull together relevant functionality and then to make these
available as services. I composed components and services to provide larger grained
services.

Learn from my story, and heed my words – architecture is the salvation for your
technical soul.

About the author
Mahesh Dodani is a software architect at IBM. His primary interests are
in enabling communities of practitioners to design and build complex on
demand business solutions. He can be reached at dodani@us.ibm.com.

mailto:dodani@us.ibm.com

