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1 INTRODUCTION 

This is the final article in an informal series on the Theory of Classification, which has 
considered the theoretical notions of type and class in object-oriented languages. The 
series began by constructing models of objects, types, classes and inheritance, then 
branched out into interesting areas such as mixins, multiple inheritance and generic 
classes. The core of our argument has been that the notions of class and type are distinct, 
but both can be described formally in the λ-calculus. Strongly-typed object-oriented 
programming languages are largely based on the idea that “a class is a type” and 
“subclassing is subtyping” [1]. In earlier articles, we demonstrated why this is not really 
satisfactory as a formal model of classes and classification. A type system based on first-
order types and subtyping: 

• fails to capture natural relationships between recursive types (whose methods 
accept or return values of the same type as themselves), since recursive types can 
have no proper subtypes [2]; 

• loses type information when methods are inherited [2], requiring the use of type 
downcasting everywhere to recover the most specific type of the object returned 
by a general method, which is tantamount to breaking the type-system; 

• conflicts with the notion of type classes adopted elsewhere in functional 
programming languages like Haskell, which use type parameters to express this 
notion [3]. 

Instead, we have argued that a class is a family of related types, which can only be 
expressed in a second-order type system with polymorphism [4]. Classical polymorphism 
is represented using type parameters that range over many different actual types, but 
object-oriented programming requires a kind of polymorphism where type parameters 
receive only certain related types that satisfy a particular interface description. 
Mathematically, this is constructed by placing constraints on type parameters, called 
function bounds, or F-bounds, which have form: τ <: F[τ], where F is a type function, 
describing the shape of the interface that the type τ is expected to satisfy [5]. However, 
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while this gives a much more satisfying account of classes and classification, very few 
programming languages have ventured into this new and exciting territory. In this final 
article, we try to understand why this is so; and what practical problems remain to be 
solved in the modular checking of class-types. 

2 TRADING MODULARITY AND EXPRESSIVENESS 

A first-order type system has two things to commend it. Firstly, it is quite simple to 
implement a type-checker that can check types for exact correspondence, or for subtype 
compatibility with a given type. The type of the source object can be compared with that 
of the target variable to see if the former can be converted up to the latter, using 
subtyping rules like those we discussed in [1]. Secondly, code that has been checked once 
need never be checked again, or recompiled in new contexts. This is because the type 
system can never reveal more specific information about an object that is passed into a 
more general variable (which we have called the “type loss problem”), so the code need 
only be checked once over the most general type that it can accept. This, more than any 
other reason, is why object-oriented languages have been slow to take up the new insights 
into the nature of classes and classification: the desire to have modular and incremental 
compilation. Without this, it would not be possible to build industrial-scale systems. 

In the last two articles, we showed that full support for the notion of classes and 
subclassing requires a distinction to be drawn between simple, monomorphic types and 
polymorphic classes, the latter formally expressed using type parameters [6]. However, 
this means that type checking rules are more complicated. The compiler has to keep track 
of sets of type parameters, one for each variable with a “class-type”, and has to know 
how to substitute one parameter for another when values are passed, and also check that 
the various constraints on the parameters will allow the given substitutions [3]. 

Now, different type substitutions may happen upon different occasions. For example, 
consider a polymorphic method for moving graphical shapes on a screen, that accepts 
Integer coordinates and returns the moved object: 

move : ∀(τ <: GenShape[τ]) . τ → (Integer → Integer → τ) 
This method is defined for a polymorphic class of Shapes, expressed by τ <: GenShape[τ] 
in the style described in earlier articles [2, 4]. Below, we assume that Square and Circle 
are exact types that satisfy this F-bound constraint. Now, if move is legally invoked on 
different actual shapes on different occasions, say on a Square and a Circle, this will 
cause the two different type substitutions {Square/τ} and {Circle/τ}, yielding two 
differently-typed versions of the move method. These variants will have have the exact 
types: 

move : Square → (Integer → Integer → Square) 
move : Circle → (Integer → Integer → Circle) 
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for the duration of the binding of the (polymorphic) argument to the (exactly-typed) 
objects. Does this mean that we must compile two different versions of the source-code 
for move? 

Well, if Circle and Square were passed by value, then we should need multiple 
compilations of the source to handle the different physical layout of each type – this 
would be analogous to the template mechanism in C++, in which multiple copies of the 
template code are compiled, one copy for each distinct type-instantiation. However, it is 
more likely that the objects will be passed by reference and both will share the same 
physical layout (in the low-order bytes) for storing information about their screen 
location. This case therefore has more similarities with Java 1.5’s treatment of type 
parameters. They are used in the typechecker to eliminate the need for explicit type 
downcasting, but are erased later in the virtual machine, in which objects are treated in 
the same way as in the usual subtyping approach. So, having flexible typing for move 
does not necessarily require multiple compilations of this method. 

Nonetheless, the polymorphic typing situation is quite different from the kind of 
typing that is possible in a first-order type system. In the latter, the result of move can 
only ever have the general type Shape, which is typically not useful, especially if we want 
to do something else with the moved object (for which we would first have to perform a 
type downcast). But, in the second-order type system, we recover the exact type of the 
moved object straight away. This is good, from the point of view of expressiveness. 

Now, consider the context in which move was called. What does this context expect 
the result-type to be? It knows the result must be some type τ <: GenShape[τ], but, on 
different occasions, it receives back objects of the more specific types Square and Circle. 
It is possible to optimise further method invocations on these results, on the basis of this 
type analysis. For example, imagine that the Shape class declares an abstract method 
area(), which has distinct implementations in all subclasses. The method area() may be 
statically bound, if we can tell in advance that the target is definitely a Square or a Circle, 
rather than some unknown kind of Shape, for which we would have to insert a 
dynamically-bound call, to detect the exact type at run-time. However, using the more 
expressive polymorphic type system, we can propagate exact type information back into 
the calling context and choose to bind the area() method statically. The cost of this is that 
we must compile multiple versions of the context code. 

Simons et al. first analysed these kinds of parametric issues as part of a wider 
optimisation strategy for object-oriented compilers, using the experimental language 
Brunel as an exemplar for the techniques [7]. They discovered that a fully parametric type 
system gives you the choice of using more or less of the exact type information available, 
to tailor the optimisation of bindings. The early binding algorithm described in [7] bears 
some similarities to Chambers and Ungar’s notion of pre-emptive type analysis in the 
untyped language Self [8]. However, the trade-off is that the more type information you 
use, the more copies of the object-code you generate. In Brunel, a global compilation 
approach was adopted, in which a full type analysis of the whole program was performed 
and compiler switches could be set to control the amount of early binding and code 
duplication.  
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The early binding approach does not transfer over to a modular compilation strategy. 
When compiling modules incrementally, only partial type information is available. For 
example, we must compile the methods of the Shape class, without any knowledge that it 
will eventually have two subclasses Circle and Square, which we previously assumed 
were the “leaves” in the class hierarchy, becoming the exact types of objects used in the 
program. Obviously, the compiler could not know in advance whether these are in fact 
leaf-nodes, or whether they too might eventually be specialised further. The best that can 
be done is to insert a dynamically-bound call for abstract methods like area(). No further 
optimisation can be performed. However, the parametric type information can be retained 
and used to avoid type downcasting on the result of move(). 

3 A UNIFICATION APPROACH TO PARAMETRIC TYPING 

Java 1.5 is introducing a form of parametric type analysis that captures an aspect of the 
strategy we describe above. However, parameters will be used only for certain generic 
classes, like those in the Java Collections framework, and will only characterise the 
element-types of these collections. In our view, this same approach could be used to 
characterise all class-types, in the manner described in [3]. All variables marked with a 
“class-type” are polymorphic and so should be treated in a parametric way. The 
parametric type information could be used everywhere in the type-checker to obtain more 
exact type information, but erased in the runtime model. This would allow code modules 
(classes, in Java) to be incrementally compiled, provided that most calls were bound 
dynamically, as is usual in Java. But it would also allow some optimisations and static 
binding of methods for simple leaf-classes, like Integer and Boolean, for which the 
compiler could be told that no further specialisations were intended. (In fact, the Java 
simple types int, float, etc. could be merged with the class-types in a single-rooted class 
hierarchy). 

The most significant challenge to the development of proper, parametric type-
checkers is the problem of unifying different polymorphic types. This happens whenever 
one polymorphic variable is passed as an argument or result to another method, where the 
formal and actual types of the variables may be distinct. However, there exists at least 
one programming language, Prolog, which already has a similar algorithm at the heart of 
its interpreter. This is the most general unifier (MGU) algorithm, which calculates the 
most general term that can result from the unification of two other terms. 

For those unfamiliar with Prolog, this is a language in which the programmer 
constructs logical expressions, in a declarative style, and program execution is then 
analogous to solving the simultaneous equation expressed by all the terms. Terms are 
structured as predicates, which may contain grounded values (written in lowercase) or 
variables (written capitalised). So, the following two terms may exist: 

loves(john, Loved). loves(Lover, mary). 
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and it is possible to see that these terms may be unified, yielding the MGU: 

loves(john, mary). with substitutions: {john/Lover, mary/Loved} 
 

In this unification, the variable Loved in the left-hand term receives the value mary from 
the right-hand term; and the variable Lover in the right-hand term receives the value john 
from the left-hand term in a symmetrical act of merging. In logic, this is equivalent to 
saying: “these terms can be unified, provided that the Lover stands for john and the Loved 
person stands for mary”. The important thing to note is that both the left- and right-hand 
terms contributed some of the specific values to the resulting unified term. 

It is not difficult to see how this kind of substitution mirrors the process a 
polymorphic type checker must go through when a polymorphic variable receives an 
object of some exact type. However, this is an even better analogy for when two 
polymorphic variables have their types merged, for example when a polymorphic 
variable with the type τ <: F[τ] is passed into a method, whose formal argument has the 
type σ <: G[σ]. For the duration of the binding, σ == τ and therefore the dual constraint 
must apply: τ <: F[τ] ∧ τ <: G[τ]. In earlier articles dealing with inheritance and multiple 
inheritance, we called this an intersection type [9, 10] because the type variable τ is being 
constrained to accept two different, overlapping sets of types and therefore accepts the 
intersection of these sets. Accordingly, we used τ <: F[τ] ∧ G[τ] to denote an intersection 
on the parameter τ. 

The important thing to note is that this merging of type-constraints is even-handed: it 
doesn’t matter whether τ <: F[τ] or τ <: G[τ] is the more restricting F-bound, since any 
type replacing τ must satisfy both constraints. So, this mechanism is adequate to handle 
specialisation (when a polymorphic type is replaced by a more restricted polymorphic 
type [9]) and also the kind of symmetrical type-merger that happens with multiple 
inheritance (when the polymorphic types of two parent classes become unified in the 
child [10]). The latter case also extends to languages with a combination of single 
inheritance and multiple interface satisfaction (the λ-calculus model treats all class-like 
and interface-like types in the same way). So, parametric type checkers will in future 
need to perform unification on type variables and compute the pool of merged 
constraints; but fortunately this is no more difficult than unification in Prolog. 

4 DISGUISING THE TYPE PARAMETERS 

Another of the challenges to be faced is how to make genuinely polymorphic1 languages 
attractive to programmers. The previous article [3] reported how such languages tend to 
become swamped by the proliferation of type parameters. If each class requires its own 
self-type parameter, then a class with “class-typed” polymorphic variables in its attributes 
and methods needs a distinct parameter for each such variable that could eventually be 
                                                           
1 By this, we mean languages with second-order type systems; the kind of type aliasing performed in first-order 
subtyping is not technically polymorphism, but something much weaker. 
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bound to a distinct type. If the classes describing these elements also contain further 
“class-typed” variables of their own, then our original class has a declaration which is 
already three layers of parameters deep! We showed how the order of declaration was 
significant, in that the type parameters for the inner element classes have to be declared 
first, on the outside, and the dependent type parameters standing for the outer composite 
classes have to be declared within their scope (in a second-order type system). 
Essentially, any polymorphic structure must expose, in its interface, all of the different 
type parameters which could be bound to a different type at some point during the 
execution of the program. 

Various attempts have therefore been made to disguise the existence of type 
parameters and the many substitution operations that must be performed on them. 
Perhaps the most careful and thorough of these treatments is Bruce’s matching. This is an 
alternative to F-bounds that establishes flexible type compatibility relationships between 
class-types. Bruce and his co-workers started building type-safe experimental object-
oriented languages in the early 1990s. TOOPL and TOOPLE were functional-style object 
languages (rather like the λ-calculus models we have used in this series), which 
supported both simple subtyping and a new treatment of the self-type using a 
distinguished type variable called MyType [11]. Originally, the motivation for MyType 
arose from considering the same problems with subtyping in the presence of recursive 
types that led Cook to devise F-bounded quantification [5]; and Bruce’s early treatments 
relied on an F-bounded explanation. However, in later work, Bruce defined complete and 
consistent type rules for MyType which dispensed with explicit F-bounds altogether. The 
later languages TOIL and PolyTOIL were styled more like imperative object-oriented 
languages, with variable reassignment [12]. 

The first advantage gained through using a distinguished MyType is that this type 
variable is implicitly defined within each class-type. The meaning of MyType is rather 
like the type parameter σ in F-bounded constructions like: σ <: GenMyType[σ], but for 
each new class, MyType is implicitly rebound to refer to the self-type of the new class-
type. The implicit declaration of MyType can be seen below in the type declaration of the 
abstract Comparable, which defines abstract methods lessThan and equal; and in the type 
declaration of the concrete BoxedInteger, which is essentially a wrapper for a simple int 
type: 

Comparable = ObjectType { lessThan : MyType → bool; equal : MyType → bool } 

BoxedInteger = ObjectType { lessThan : MyType → bool; equal : MyType → bool; 
       getValue : void → int; setValue : int → void } 

 

where ObjectType is the keyword introducing the new object types (these examples are 
adapted from [12]). Notice how MyType occurs freely inside both definitions, but stands 
in each case for a different polymorphic type. In our approach using F-bounds, we would 
introduce two generators, which declare two self-type parameters σ and τ up-front, and 
then construct F-bounds to use in type expressions: 
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GenComparable = λσ.{ lessThan : σ → bool; equal : σ → bool } 
GenBoxedInteger = λτ.{lessThan : τ → bool; equal : τ → bool;  
  getValue : void → int; setValue : int → void } 

∀(σ <: GenComparable[σ]).some_type_expr_using(σ) 
∀(τ <: GenNumType[τ]).some_type_expr_using(τ) 

 

Now, in PolyTOIL you can declare variables with object types directly, for example, it is 
legal to declare myInteger : BoxedInteger, in which all internal occurrences of MyType 
are eventually resolved (in the type rules) to refer to a BoxedInteger, recursively. The 
parameter MyType is replaced by the actual type of the object receiver, when a method is 
invoked upon it. In our approach using F-bounds, this requires taking a fixpoint first: 

BoxedInteger = Y GenBoxedInteger;  recursively bind {BoxedInteger/τ} 
myInteger : BoxedInteger 

 

The second innovation in Bruce’s approach is the way in which subclass relationships can 
be expressed directly between these object types, using the novel matching mechanism. 
You can assert the usual subclass relationship as: BoxedInteger <# Comparable (read this 
as “BoxedInteger matches Comparable”), where “<#” is the new matching operator. 
Bruce describes the matching relation as: 

“the same as subtyping in the absence of the MyType construct, but differs in the 
presence of MyType, because MyType implicitly has different meanings in 
different types.” [13]. 

 

In fact, matching behaves in a similar manner to F-bounded inclusion, in the presence of 
MyType, but in a similar manner to simple subtyping elsewhere. In our approach, we 
would have to establish a second-order pointwise subtyping relationship between the two 
corresponding type generators, to ensure that the two parameters were unified before 
interfaces were compared, and then that one interface were longer than the other: 

∀τ . GenBoxedInteger[τ] <: GenComparable[τ] 
 

Bruce’s rules simply compare the structure of object types, in which all occurrences of 
MyType are considered equivalent when determining if one type matches another. This 
dispenses with some of the fiddly detail of parameters. Matching has the same expressive 
power as F-bounds, for example, note that while BoxedInteger <# Comparable, the 
subtyping relationship BoxedInteger <: Comparable does not hold, because MyType 
occurs as a method argument type (in contravariant position). The type rules for 
inheritance ensure that MyType evolves smoothly to represent the self-type of inheriting 
classes, which dispenses with another layer of type substitutions in the explicit approach. 
Finally, if the programmer so wishes, it is also possible to declare explicit type 
parameters in PolyTOIL. For example, the element-type of a SortedList may be given as 
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elt : T <# Comparable, to denote any type which matches Comparable. This is the 
analogue of ∀(τ <: GenComparable[τ]). elt : τ in our approach. In later work, Bruce 
developed a version of matching with “hash types” that was sufficiently expressive that 
subtyping could be dropped altogether [14]. This is closer to our approach, which 
recognises only exact simple types, or parametric polymorphic types. 

5 IMPLICIT CLASS-TYPE SUBSTITUTIONS 

Perhaps the trickiest issue for future compilers, with the more thorough kind of type 
analysis we have been proposing here, is to keep track of all the subtle changes to type 
descriptions that happen as a result of objects being mutually related to each other. This 
can lead to some hidden evolution in the types of expressions, of which the programmer 
may not be aware! Consider a class hierarchy describing the various kinds of Vehicle that 
exist, together with the different kinds of Location in which such vehicles are typically 
kept. The root concepts could be described in Java as: 
 

class Vehicle { 
  private Person myOwn; 
  private Location myLoc; 
  public Vehicle(Person p) { myOwn = p; myLoc = null; } 
  public Vehicle(Person p, Location c) {  
    myOwn = p; myLoc = c; c.keep(this); } 
  public Person owner() { return myOwn; } 
  public Location keptAt() { return myLoc; } 
  public void keepAt(Location c) {  
    myLoc = c; if (c.keeps() != this) c.keep(this); } 
} 
 
class Location { 
  private String myAdr; 
  private Vehicle myVeh; 
  public Location(String a) { myAddr = a; myVeh = null; } 
  public Location(String a, Vehicle v) {  
    myAdr = a; myVeh = v; v.keepAt(this); } 
  public String address() { return myAdr; } 
  public Vehicle keeps() { return myVeh; } 
  public void keep(Vehicle v) {  
    myVeh = v; if (v.keptAt() != this) v.keepAt(this); } 
} 
 

We can build a pair of mutually-referencing objects by constructing a Vehicle and a 
Location in either order, since their constructors set up the reciprocal references: 
 

Person wal = new Person(“Wallace”); 
Location lcn = new Location(“42 West Wallaby Street”); 
Vehicle veh = new Vehicle(wal, lcn); 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 15 

Now, the intention is that these classes should be specialised in pairs, for example, we 
might create Car/Garage, or Aircraft/Hangar, or Ship/Port pairs. But what happens if the 
programmer only specialises one half of this mutual relationship? 

 
class Car extends Vehicle { 
  public Car(Person p, Location c) { super(p, c); } 
} 
Person wen = new Person(“Wendolene”); 
Car car = new Car(wen); 
Location loc = new Location(“3 Town Square”, car); 
 

In Java, the result of enquiring loc.keeps() always has the type Vehicle (we are suffering 
from the “type-loss” problem again), but dynamically it contains an instance of Car. In a 
parametric type system, we would expect to be able to recover the exact vehicle-type. 
This is because, when the Location is constructed with a value of the exact type Car, this 
type is propagated into the vehicle-type parameter τ of Location’s polymorphic variable 
myVeh, which we imagine might have the type: 

∀(τ <: GenVehicle[τ]) . myVeh : τ  which then becomes… 
myVeh : Car     …after substituting {Car/τ}. 

 

This is exciting from the viewpoint of type analysis; but notice that we have created a 
new, unforeseen type. We expected eventually to specialise Vehicle and Location in step 
with each other, producing Car and Garage, such that the Garage.keeps() method returns 
a Car, and the Car.keptAt() method returns a Garage. Because we only specialised one 
half of the mutual relationship, we created a new intermediate type variant, a Location’ 
whose keeps() method returns a Car, rather than a Vehicle. This type is neither a 
Location, nor a Garage, but something in between. 

Palsberg and Schwartzbach were the first to report such intermediate types in object-
oriented languages [15]. They were using a type substitution mechanism, which has only 
slightly less expressive power than the full parametric mechanism used in our approach2. 
They discovered that checkers which perform full type analysis will inevitably synthesise 
many intermediate versions of types, as a result of the evolution of other closely-related 
types. The consensus nowadays is that a mutually-referring set of types creates another 
enclosing formal structure, a closure, which is specialised as a whole, when any one of 
the related types is specialised. This, then, is the challenge facing the designers of future 
object-oriented compilers with smart type analysis, implicit type evolution and 
incremental compilation. 

                                                           
2 If you systematically substitute type X by type Y within some scope, then all Xs must change into Ys. But with type 
parameters, you can declare different parameters P <# X and Q <# X, choosing to substitute {Y/P} and {Z/Q}, so this 
gives you slightly finer control over which substitutions happen together. 
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6 CONCLUSIONS 

Maybe in the future we will see object-oriented languages that exemplify the Theory of 
Classification in full. I’d like to think that one day, we could have a programming 
language that is based on a few simple concepts, which is as type-safe as Pascal and as 
expressive as Eiffel (or Algol-68, or whatever the last really good programming language 
was). In my crystal ball, this language has to distinguish the theoretical notions of class 
and type, to allow programmers to understand clearly when simple, or polymorphic 
typing is intended. It will relate all built-in and programmer-defined types and support 
obvious, intuitive notions of classification, for example, that the simple types Integer and 
Boolean are first-class members of the class/type hierarchy and fit underneath an abstract 
class of Numbers, whose abstract arithmetic-methods are appropriately specialised when 
they are implemented in Integer and Real. Multiple classification will be possible, such 
that both Complex numbers and Sets will be considered PartiallyOrdered types, Complex 
and Integer numbers will be considered kinds of Number, and Sets and Bags kinds of 
UnorderedCollection. Interfaces will be the same thing as abstract classes. 

Incremental compilation will continue to be supported and dynamic binding will be 
the norm, with some static optimisations performed on the standard leaf-types. The 
syntax of these languages may start out using explicit type parameters everywhere (such 
as the cutting-edge work on Haskell type classes), but the parameters may eventually 
disappear inside the compiler, maybe at the loss of a small amount of flexibility and 
expressiveness. The compiler’s ability to perform early type analysis will improve and I 
expect that in future, code modules will be compiled, which retain their type parameters, 
such that when the modules are linked and bound at their call-sites, exact type 
information will be propagated throughout the web of type-constraints, allowing the call-
site to extract precisely-typed results. The binding of such parametric modules will result 
in a bi-directional flow of type-information, yielding solutions such as the “most general 
intersecting type”, computed using unification algorithms. 

Throughout my work in this area, I have been standing on the shoulders of giants. I 
owe particular thanks to Willam Cook, Kim Bruce and Luca Cardelli for formative 
conversations in the early 1990s and occasional exchanges since then. If you have been 
stimulated by this informal series of articles on the typing and semantics of object-
oriented languages, the next stage might be to get to grips with the details of the type 
rules, perhaps in [13, 16]. If you have comments, insights or critiques to make, please feel 
free to contact me by email. If you would like to help bring about the “language with 
class”, then I have a PhD project in this area that needs a good student. 
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