
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 7, September-October 2005

Cite this column as follows:Anthony J H Simons: “The Theory of Classification Part 20: Modular
Checking of Classtypes”, in Journal of Object Technology, vol. 4, no. 17, September-October
2005, pp. 7-18 http://www.jot.fm/issues/issue_2005_09/column1

The Theory of Classification Part 20:
Modular Checking of Classtypes

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

This is the final article in an informal series on the Theory of Classification, which has
considered the theoretical notions of type and class in object-oriented languages. The
series began by constructing models of objects, types, classes and inheritance, then
branched out into interesting areas such as mixins, multiple inheritance and generic
classes. The core of our argument has been that the notions of class and type are distinct,
but both can be described formally in the λ-calculus. Strongly-typed object-oriented
programming languages are largely based on the idea that “a class is a type” and
“subclassing is subtyping” [1]. In earlier articles, we demonstrated why this is not really
satisfactory as a formal model of classes and classification. A type system based on first-
order types and subtyping:

• fails to capture natural relationships between recursive types (whose methods
accept or return values of the same type as themselves), since recursive types can
have no proper subtypes [2];

• loses type information when methods are inherited [2], requiring the use of type
downcasting everywhere to recover the most specific type of the object returned
by a general method, which is tantamount to breaking the type-system;

• conflicts with the notion of type classes adopted elsewhere in functional
programming languages like Haskell, which use type parameters to express this
notion [3].

Instead, we have argued that a class is a family of related types, which can only be
expressed in a second-order type system with polymorphism [4]. Classical polymorphism
is represented using type parameters that range over many different actual types, but
object-oriented programming requires a kind of polymorphism where type parameters
receive only certain related types that satisfy a particular interface description.
Mathematically, this is constructed by placing constraints on type parameters, called
function bounds, or F-bounds, which have form: τ <: F[τ], where F is a type function,
describing the shape of the interface that the type τ is expected to satisfy [5]. However,

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_09/column1

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

8 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

while this gives a much more satisfying account of classes and classification, very few
programming languages have ventured into this new and exciting territory. In this final
article, we try to understand why this is so; and what practical problems remain to be
solved in the modular checking of class-types.

2 TRADING MODULARITY AND EXPRESSIVENESS

A first-order type system has two things to commend it. Firstly, it is quite simple to
implement a type-checker that can check types for exact correspondence, or for subtype
compatibility with a given type. The type of the source object can be compared with that
of the target variable to see if the former can be converted up to the latter, using
subtyping rules like those we discussed in [1]. Secondly, code that has been checked once
need never be checked again, or recompiled in new contexts. This is because the type
system can never reveal more specific information about an object that is passed into a
more general variable (which we have called the “type loss problem”), so the code need
only be checked once over the most general type that it can accept. This, more than any
other reason, is why object-oriented languages have been slow to take up the new insights
into the nature of classes and classification: the desire to have modular and incremental
compilation. Without this, it would not be possible to build industrial-scale systems.

In the last two articles, we showed that full support for the notion of classes and
subclassing requires a distinction to be drawn between simple, monomorphic types and
polymorphic classes, the latter formally expressed using type parameters [6]. However,
this means that type checking rules are more complicated. The compiler has to keep track
of sets of type parameters, one for each variable with a “class-type”, and has to know
how to substitute one parameter for another when values are passed, and also check that
the various constraints on the parameters will allow the given substitutions [3].

Now, different type substitutions may happen upon different occasions. For example,
consider a polymorphic method for moving graphical shapes on a screen, that accepts
Integer coordinates and returns the moved object:

move : ∀(τ <: GenShape[τ]) . τ → (Integer → Integer → τ)
This method is defined for a polymorphic class of Shapes, expressed by τ <: GenShape[τ]
in the style described in earlier articles [2, 4]. Below, we assume that Square and Circle
are exact types that satisfy this F-bound constraint. Now, if move is legally invoked on
different actual shapes on different occasions, say on a Square and a Circle, this will
cause the two different type substitutions {Square/τ} and {Circle/τ}, yielding two
differently-typed versions of the move method. These variants will have have the exact
types:

move : Square → (Integer → Integer → Square)
move : Circle → (Integer → Integer → Circle)

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 9

for the duration of the binding of the (polymorphic) argument to the (exactly-typed)
objects. Does this mean that we must compile two different versions of the source-code
for move?

Well, if Circle and Square were passed by value, then we should need multiple
compilations of the source to handle the different physical layout of each type – this
would be analogous to the template mechanism in C++, in which multiple copies of the
template code are compiled, one copy for each distinct type-instantiation. However, it is
more likely that the objects will be passed by reference and both will share the same
physical layout (in the low-order bytes) for storing information about their screen
location. This case therefore has more similarities with Java 1.5’s treatment of type
parameters. They are used in the typechecker to eliminate the need for explicit type
downcasting, but are erased later in the virtual machine, in which objects are treated in
the same way as in the usual subtyping approach. So, having flexible typing for move
does not necessarily require multiple compilations of this method.

Nonetheless, the polymorphic typing situation is quite different from the kind of
typing that is possible in a first-order type system. In the latter, the result of move can
only ever have the general type Shape, which is typically not useful, especially if we want
to do something else with the moved object (for which we would first have to perform a
type downcast). But, in the second-order type system, we recover the exact type of the
moved object straight away. This is good, from the point of view of expressiveness.

Now, consider the context in which move was called. What does this context expect
the result-type to be? It knows the result must be some type τ <: GenShape[τ], but, on
different occasions, it receives back objects of the more specific types Square and Circle.
It is possible to optimise further method invocations on these results, on the basis of this
type analysis. For example, imagine that the Shape class declares an abstract method
area(), which has distinct implementations in all subclasses. The method area() may be
statically bound, if we can tell in advance that the target is definitely a Square or a Circle,
rather than some unknown kind of Shape, for which we would have to insert a
dynamically-bound call, to detect the exact type at run-time. However, using the more
expressive polymorphic type system, we can propagate exact type information back into
the calling context and choose to bind the area() method statically. The cost of this is that
we must compile multiple versions of the context code.

Simons et al. first analysed these kinds of parametric issues as part of a wider
optimisation strategy for object-oriented compilers, using the experimental language
Brunel as an exemplar for the techniques [7]. They discovered that a fully parametric type
system gives you the choice of using more or less of the exact type information available,
to tailor the optimisation of bindings. The early binding algorithm described in [7] bears
some similarities to Chambers and Ungar’s notion of pre-emptive type analysis in the
untyped language Self [8]. However, the trade-off is that the more type information you
use, the more copies of the object-code you generate. In Brunel, a global compilation
approach was adopted, in which a full type analysis of the whole program was performed
and compiler switches could be set to control the amount of early binding and code
duplication.

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

10 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

The early binding approach does not transfer over to a modular compilation strategy.
When compiling modules incrementally, only partial type information is available. For
example, we must compile the methods of the Shape class, without any knowledge that it
will eventually have two subclasses Circle and Square, which we previously assumed
were the “leaves” in the class hierarchy, becoming the exact types of objects used in the
program. Obviously, the compiler could not know in advance whether these are in fact
leaf-nodes, or whether they too might eventually be specialised further. The best that can
be done is to insert a dynamically-bound call for abstract methods like area(). No further
optimisation can be performed. However, the parametric type information can be retained
and used to avoid type downcasting on the result of move().

3 A UNIFICATION APPROACH TO PARAMETRIC TYPING

Java 1.5 is introducing a form of parametric type analysis that captures an aspect of the
strategy we describe above. However, parameters will be used only for certain generic
classes, like those in the Java Collections framework, and will only characterise the
element-types of these collections. In our view, this same approach could be used to
characterise all class-types, in the manner described in [3]. All variables marked with a
“class-type” are polymorphic and so should be treated in a parametric way. The
parametric type information could be used everywhere in the type-checker to obtain more
exact type information, but erased in the runtime model. This would allow code modules
(classes, in Java) to be incrementally compiled, provided that most calls were bound
dynamically, as is usual in Java. But it would also allow some optimisations and static
binding of methods for simple leaf-classes, like Integer and Boolean, for which the
compiler could be told that no further specialisations were intended. (In fact, the Java
simple types int, float, etc. could be merged with the class-types in a single-rooted class
hierarchy).

The most significant challenge to the development of proper, parametric type-
checkers is the problem of unifying different polymorphic types. This happens whenever
one polymorphic variable is passed as an argument or result to another method, where the
formal and actual types of the variables may be distinct. However, there exists at least
one programming language, Prolog, which already has a similar algorithm at the heart of
its interpreter. This is the most general unifier (MGU) algorithm, which calculates the
most general term that can result from the unification of two other terms.

For those unfamiliar with Prolog, this is a language in which the programmer
constructs logical expressions, in a declarative style, and program execution is then
analogous to solving the simultaneous equation expressed by all the terms. Terms are
structured as predicates, which may contain grounded values (written in lowercase) or
variables (written capitalised). So, the following two terms may exist:

loves(john, Loved). loves(Lover, mary).

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 11

and it is possible to see that these terms may be unified, yielding the MGU:

loves(john, mary). with substitutions: {john/Lover, mary/Loved}

In this unification, the variable Loved in the left-hand term receives the value mary from
the right-hand term; and the variable Lover in the right-hand term receives the value john
from the left-hand term in a symmetrical act of merging. In logic, this is equivalent to
saying: “these terms can be unified, provided that the Lover stands for john and the Loved
person stands for mary”. The important thing to note is that both the left- and right-hand
terms contributed some of the specific values to the resulting unified term.

It is not difficult to see how this kind of substitution mirrors the process a
polymorphic type checker must go through when a polymorphic variable receives an
object of some exact type. However, this is an even better analogy for when two
polymorphic variables have their types merged, for example when a polymorphic
variable with the type τ <: F[τ] is passed into a method, whose formal argument has the
type σ <: G[σ]. For the duration of the binding, σ == τ and therefore the dual constraint
must apply: τ <: F[τ] ∧ τ <: G[τ]. In earlier articles dealing with inheritance and multiple
inheritance, we called this an intersection type [9, 10] because the type variable τ is being
constrained to accept two different, overlapping sets of types and therefore accepts the
intersection of these sets. Accordingly, we used τ <: F[τ] ∧ G[τ] to denote an intersection
on the parameter τ.

The important thing to note is that this merging of type-constraints is even-handed: it
doesn’t matter whether τ <: F[τ] or τ <: G[τ] is the more restricting F-bound, since any
type replacing τ must satisfy both constraints. So, this mechanism is adequate to handle
specialisation (when a polymorphic type is replaced by a more restricted polymorphic
type [9]) and also the kind of symmetrical type-merger that happens with multiple
inheritance (when the polymorphic types of two parent classes become unified in the
child [10]). The latter case also extends to languages with a combination of single
inheritance and multiple interface satisfaction (the λ-calculus model treats all class-like
and interface-like types in the same way). So, parametric type checkers will in future
need to perform unification on type variables and compute the pool of merged
constraints; but fortunately this is no more difficult than unification in Prolog.

4 DISGUISING THE TYPE PARAMETERS

Another of the challenges to be faced is how to make genuinely polymorphic1 languages
attractive to programmers. The previous article [3] reported how such languages tend to
become swamped by the proliferation of type parameters. If each class requires its own
self-type parameter, then a class with “class-typed” polymorphic variables in its attributes
and methods needs a distinct parameter for each such variable that could eventually be

1 By this, we mean languages with second-order type systems; the kind of type aliasing performed in first-order
subtyping is not technically polymorphism, but something much weaker.

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

12 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

bound to a distinct type. If the classes describing these elements also contain further
“class-typed” variables of their own, then our original class has a declaration which is
already three layers of parameters deep! We showed how the order of declaration was
significant, in that the type parameters for the inner element classes have to be declared
first, on the outside, and the dependent type parameters standing for the outer composite
classes have to be declared within their scope (in a second-order type system).
Essentially, any polymorphic structure must expose, in its interface, all of the different
type parameters which could be bound to a different type at some point during the
execution of the program.

Various attempts have therefore been made to disguise the existence of type
parameters and the many substitution operations that must be performed on them.
Perhaps the most careful and thorough of these treatments is Bruce’s matching. This is an
alternative to F-bounds that establishes flexible type compatibility relationships between
class-types. Bruce and his co-workers started building type-safe experimental object-
oriented languages in the early 1990s. TOOPL and TOOPLE were functional-style object
languages (rather like the λ-calculus models we have used in this series), which
supported both simple subtyping and a new treatment of the self-type using a
distinguished type variable called MyType [11]. Originally, the motivation for MyType
arose from considering the same problems with subtyping in the presence of recursive
types that led Cook to devise F-bounded quantification [5]; and Bruce’s early treatments
relied on an F-bounded explanation. However, in later work, Bruce defined complete and
consistent type rules for MyType which dispensed with explicit F-bounds altogether. The
later languages TOIL and PolyTOIL were styled more like imperative object-oriented
languages, with variable reassignment [12].

The first advantage gained through using a distinguished MyType is that this type
variable is implicitly defined within each class-type. The meaning of MyType is rather
like the type parameter σ in F-bounded constructions like: σ <: GenMyType[σ], but for
each new class, MyType is implicitly rebound to refer to the self-type of the new class-
type. The implicit declaration of MyType can be seen below in the type declaration of the
abstract Comparable, which defines abstract methods lessThan and equal; and in the type
declaration of the concrete BoxedInteger, which is essentially a wrapper for a simple int
type:

Comparable = ObjectType { lessThan : MyType → bool; equal : MyType → bool }

BoxedInteger = ObjectType { lessThan : MyType → bool; equal : MyType → bool;
 getValue : void → int; setValue : int → void }

where ObjectType is the keyword introducing the new object types (these examples are
adapted from [12]). Notice how MyType occurs freely inside both definitions, but stands
in each case for a different polymorphic type. In our approach using F-bounds, we would
introduce two generators, which declare two self-type parameters σ and τ up-front, and
then construct F-bounds to use in type expressions:

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 13

GenComparable = λσ.{ lessThan : σ → bool; equal : σ → bool }
GenBoxedInteger = λτ.{lessThan : τ → bool; equal : τ → bool;
 getValue : void → int; setValue : int → void }

∀(σ <: GenComparable[σ]).some_type_expr_using(σ)
∀(τ <: GenNumType[τ]).some_type_expr_using(τ)

Now, in PolyTOIL you can declare variables with object types directly, for example, it is
legal to declare myInteger : BoxedInteger, in which all internal occurrences of MyType
are eventually resolved (in the type rules) to refer to a BoxedInteger, recursively. The
parameter MyType is replaced by the actual type of the object receiver, when a method is
invoked upon it. In our approach using F-bounds, this requires taking a fixpoint first:

BoxedInteger = Y GenBoxedInteger; recursively bind {BoxedInteger/τ}
myInteger : BoxedInteger

The second innovation in Bruce’s approach is the way in which subclass relationships can
be expressed directly between these object types, using the novel matching mechanism.
You can assert the usual subclass relationship as: BoxedInteger <# Comparable (read this
as “BoxedInteger matches Comparable”), where “<#” is the new matching operator.
Bruce describes the matching relation as:

“the same as subtyping in the absence of the MyType construct, but differs in the
presence of MyType, because MyType implicitly has different meanings in
different types.” [13].

In fact, matching behaves in a similar manner to F-bounded inclusion, in the presence of
MyType, but in a similar manner to simple subtyping elsewhere. In our approach, we
would have to establish a second-order pointwise subtyping relationship between the two
corresponding type generators, to ensure that the two parameters were unified before
interfaces were compared, and then that one interface were longer than the other:

∀τ . GenBoxedInteger[τ] <: GenComparable[τ]

Bruce’s rules simply compare the structure of object types, in which all occurrences of
MyType are considered equivalent when determining if one type matches another. This
dispenses with some of the fiddly detail of parameters. Matching has the same expressive
power as F-bounds, for example, note that while BoxedInteger <# Comparable, the
subtyping relationship BoxedInteger <: Comparable does not hold, because MyType
occurs as a method argument type (in contravariant position). The type rules for
inheritance ensure that MyType evolves smoothly to represent the self-type of inheriting
classes, which dispenses with another layer of type substitutions in the explicit approach.
Finally, if the programmer so wishes, it is also possible to declare explicit type
parameters in PolyTOIL. For example, the element-type of a SortedList may be given as

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

14 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

elt : T <# Comparable, to denote any type which matches Comparable. This is the
analogue of ∀(τ <: GenComparable[τ]). elt : τ in our approach. In later work, Bruce
developed a version of matching with “hash types” that was sufficiently expressive that
subtyping could be dropped altogether [14]. This is closer to our approach, which
recognises only exact simple types, or parametric polymorphic types.

5 IMPLICIT CLASS-TYPE SUBSTITUTIONS

Perhaps the trickiest issue for future compilers, with the more thorough kind of type
analysis we have been proposing here, is to keep track of all the subtle changes to type
descriptions that happen as a result of objects being mutually related to each other. This
can lead to some hidden evolution in the types of expressions, of which the programmer
may not be aware! Consider a class hierarchy describing the various kinds of Vehicle that
exist, together with the different kinds of Location in which such vehicles are typically
kept. The root concepts could be described in Java as:

class Vehicle {
 private Person myOwn;
 private Location myLoc;
 public Vehicle(Person p) { myOwn = p; myLoc = null; }
 public Vehicle(Person p, Location c) {
 myOwn = p; myLoc = c; c.keep(this); }
 public Person owner() { return myOwn; }
 public Location keptAt() { return myLoc; }
 public void keepAt(Location c) {
 myLoc = c; if (c.keeps() != this) c.keep(this); }
}

class Location {
 private String myAdr;
 private Vehicle myVeh;
 public Location(String a) { myAddr = a; myVeh = null; }
 public Location(String a, Vehicle v) {
 myAdr = a; myVeh = v; v.keepAt(this); }
 public String address() { return myAdr; }
 public Vehicle keeps() { return myVeh; }
 public void keep(Vehicle v) {
 myVeh = v; if (v.keptAt() != this) v.keepAt(this); }
}

We can build a pair of mutually-referencing objects by constructing a Vehicle and a
Location in either order, since their constructors set up the reciprocal references:

Person wal = new Person(“Wallace”);
Location lcn = new Location(“42 West Wallaby Street”);
Vehicle veh = new Vehicle(wal, lcn);

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 15

Now, the intention is that these classes should be specialised in pairs, for example, we
might create Car/Garage, or Aircraft/Hangar, or Ship/Port pairs. But what happens if the
programmer only specialises one half of this mutual relationship?

class Car extends Vehicle {
 public Car(Person p, Location c) { super(p, c); }
}
Person wen = new Person(“Wendolene”);
Car car = new Car(wen);
Location loc = new Location(“3 Town Square”, car);

In Java, the result of enquiring loc.keeps() always has the type Vehicle (we are suffering
from the “type-loss” problem again), but dynamically it contains an instance of Car. In a
parametric type system, we would expect to be able to recover the exact vehicle-type.
This is because, when the Location is constructed with a value of the exact type Car, this
type is propagated into the vehicle-type parameter τ of Location’s polymorphic variable
myVeh, which we imagine might have the type:

∀(τ <: GenVehicle[τ]) . myVeh : τ which then becomes…
myVeh : Car …after substituting {Car/τ}.

This is exciting from the viewpoint of type analysis; but notice that we have created a
new, unforeseen type. We expected eventually to specialise Vehicle and Location in step
with each other, producing Car and Garage, such that the Garage.keeps() method returns
a Car, and the Car.keptAt() method returns a Garage. Because we only specialised one
half of the mutual relationship, we created a new intermediate type variant, a Location’
whose keeps() method returns a Car, rather than a Vehicle. This type is neither a
Location, nor a Garage, but something in between.

Palsberg and Schwartzbach were the first to report such intermediate types in object-
oriented languages [15]. They were using a type substitution mechanism, which has only
slightly less expressive power than the full parametric mechanism used in our approach2.
They discovered that checkers which perform full type analysis will inevitably synthesise
many intermediate versions of types, as a result of the evolution of other closely-related
types. The consensus nowadays is that a mutually-referring set of types creates another
enclosing formal structure, a closure, which is specialised as a whole, when any one of
the related types is specialised. This, then, is the challenge facing the designers of future
object-oriented compilers with smart type analysis, implicit type evolution and
incremental compilation.

2 If you systematically substitute type X by type Y within some scope, then all Xs must change into Ys. But with type
parameters, you can declare different parameters P <# X and Q <# X, choosing to substitute {Y/P} and {Z/Q}, so this
gives you slightly finer control over which substitutions happen together.

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

6 CONCLUSIONS

Maybe in the future we will see object-oriented languages that exemplify the Theory of
Classification in full. I’d like to think that one day, we could have a programming
language that is based on a few simple concepts, which is as type-safe as Pascal and as
expressive as Eiffel (or Algol-68, or whatever the last really good programming language
was). In my crystal ball, this language has to distinguish the theoretical notions of class
and type, to allow programmers to understand clearly when simple, or polymorphic
typing is intended. It will relate all built-in and programmer-defined types and support
obvious, intuitive notions of classification, for example, that the simple types Integer and
Boolean are first-class members of the class/type hierarchy and fit underneath an abstract
class of Numbers, whose abstract arithmetic-methods are appropriately specialised when
they are implemented in Integer and Real. Multiple classification will be possible, such
that both Complex numbers and Sets will be considered PartiallyOrdered types, Complex
and Integer numbers will be considered kinds of Number, and Sets and Bags kinds of
UnorderedCollection. Interfaces will be the same thing as abstract classes.

Incremental compilation will continue to be supported and dynamic binding will be
the norm, with some static optimisations performed on the standard leaf-types. The
syntax of these languages may start out using explicit type parameters everywhere (such
as the cutting-edge work on Haskell type classes), but the parameters may eventually
disappear inside the compiler, maybe at the loss of a small amount of flexibility and
expressiveness. The compiler’s ability to perform early type analysis will improve and I
expect that in future, code modules will be compiled, which retain their type parameters,
such that when the modules are linked and bound at their call-sites, exact type
information will be propagated throughout the web of type-constraints, allowing the call-
site to extract precisely-typed results. The binding of such parametric modules will result
in a bi-directional flow of type-information, yielding solutions such as the “most general
intersecting type”, computed using unification algorithms.

Throughout my work in this area, I have been standing on the shoulders of giants. I
owe particular thanks to Willam Cook, Kim Bruce and Luca Cardelli for formative
conversations in the early 1990s and occasional exchanges since then. If you have been
stimulated by this informal series of articles on the typing and semantics of object-
oriented languages, the next stage might be to get to grips with the details of the type
rules, perhaps in [13, 16]. If you have comments, insights or critiques to make, please feel
free to contact me by email. If you would like to help bring about the “language with
class”, then I have a PhD project in this area that needs a good student.

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 17

REFERENCES

[1] A J H Simons, “The theory of classification, part 4: Object types and
subtyping”, Journal of Object Technology, 1(5), November-December 2002,
pp 27-35 http://www.jot.fm/jot/issues/issue_2002_11/column2/index_html

[2] A J H Simons, “The theory of classification, part 7: A class is a type family”,
Journal of Object Technology, 2(3), May-June 2003, pp 13-22,
http://www.jot.fm/issues/issue_2003_05/column2

[3] A J H Simons, “The theory of classification, part 19: The proliferation of
parameters”, Journal of Object Technology, 4(5), July-August 2005, pp 37-
48, http://www.jot.fm/issues/issue_2005_07/column4

[4] A J H Simons, “The theory of classification, part 8: Classification and
inheritance”, Journal of Object Technology, 2(4), July-August 2003, pp 55-
64, http://www.jot.fm/jot/issues/issue_2003_07/column4/index_html.

[5] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, “F-bounded
polymorphism for object-oriented programming”, Proc. 4th Int. Conf. Func.
Prog. Lang. and Arch. (Imperial College, London, 1989), 273-280.

[6] A J H Simons, “The theory of classification, part 18: Polymorphism through
the looking glass”, Journal of Object Technology, 4 (4), May-June 2005, pp
7-18, http://www.jot.fm/issues/issue_2005_05/column1

[7] A J H Simons, Low E-K and Ng Y-M, “An optimising delivery system for
object-oriented software”, Object-Oriented Systems, 1 (1), (1994), 21-44.

[8] C Chambers and D Ungar, “Iterative type analysis and extended message
splitting: optimizing dynamically-typed object-oriented programs”, Proc. 5th
ACM Conf. Prog. Lang. Design and Impl., pub. ACM Sigplan Notices, 25(6),
(1990), 150-164. Reprinted in: Lisp and Symbolic Computation, 4(3), (1991),
283-310.

[9] A J H Simons, “The theory of classification, part 16: Rules of extension and
the typing of inheritance”, Journal of Object Technology, 4 (1), January-
February 2005, pp 13-25, http://www.jot.fm/issues/issue_2005_01/column2

[10] A J H Simons, “The theory of classification, Part 17: Multiple inheritance and
the resolution of inheritance conflicts”, Journal of Object Technology, 4 (2),
March - April 2005, pp 15-26, http://www.jot.fm/issues/issue_2005_03/-
column2.

[11] K Bruce, J Crabtree, A Dimock, R Muller, T Murtaugh and R van Gent, “Safe
and decidable type checking in an object-oriented language”, Proc. 8th ACM
Conf. Obj.-Oriented. Prog. Sys., Lang. and Appl., (1993), 29-46.

http://www.jot.fm/issues/issue_2002:11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2005_07/column4
http://www.jot.fm/jot/issues/issue_2003_07/column4/index_html.
http://www.jot.fm/issues/issue_2005_05/column1
http://www.jot.fm/issues/issue_2005_01/column2
http://www.jot.fm/issues/issue_2005_03/column2
http://www.jot.fm/issues/issue_2005_03/column2

THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7

[12] K Bruce, A Schuett and R van Gent, “PolyTOIL: A type-safe, polymorphic
object-oriented language,” ACM Trans. Prog. Langs. and Sys., 25(2), March
(2003), 225-290.

[13] K B Bruce, Foundations of Object-Oriented Languages: Types and
Semantics, (Cambridge MA: MIT Press, 2002).

[14] K Bruce, A Fiech and L Petersen, “Subtyping is not a good ‘match’ for
object-oriented languages”, Proc. European Conf. Obj.-Oriented Prog., pub.
LNCS, 1241, (New York: Springer Verlag, 1997), 104-127.

[15] J Palsberg and M I Schwartzbach, Object-Oriented Type Systems (Chichester:
John Wiley, 1994).

[16] M Abadi and L Cardelli. A Theory of Objects. Monographs in Computer
Science, Springer-Verlag, 1996.

About the author
Anthony Simons is a Senior Lecturer and Director of Teaching Quality
in the Department of Computer Science, University of Sheffield, where
he leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

mailto:a.simons@dcs.shef.ac.uk

