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Abstract 
In earlier papers qualifying types were presented as a technique for dynamically 
qualifying objects in a general way. This paper considers how such types can be 
composed statically into the definitions of other types. 

1 INTRODUCTION 

Qualifying types in Timor1 represent a new kind of software component, instances of 
which can qualify the behaviour of other objects in a general way by means of special 
methods known as bracket methods. A bracket method "catches" invocations of methods 
of other objects ("targets") and its code can replace that of the target methods. They can 
use the special body statement to invoke the target method and thus provide code which 
serves as a prelude and/or a postlude for it, e.g. to synchronise, monitor or protect the 
object to which the target method belongs [6, 7]. In many cases bracket methods can be 
defined and implemented without having a direct knowledge of the types which they will 
later qualify. Hence we expect that they will provide a significant contribution to the 
emergence of a genuine software components industry, as envisaged by McIlroy [14] 
more than three decades ago. 

Instances of qualifying types ("qualifiers") have a role analogous to adjectives in 
natural language which are used to qualify nouns (the "targets"), e.g. a "synchronised 
person" or a "protected list". Such adjectival qualification occurs in two forms in natural 
language. The first form is entirely dynamic. For example the nouns serving both as 
subject and as object of the following sentence are dynamically qualified by adjectives: 
"The nice old lady held the pretty little baby." The adjectives appear in noun phrases 
which are especially created for a particular sentence. This is loosely equivalent to using 
Timor qualifiers as described in our earlier papers [6, 7], whereby qualifiers can be 
associated with objects as the latter are instantiated, and even later in the life of the 
object. 
                                                           
1  see http://www.timor-programming.org 
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But it is also possible to use adjectives in a dictionary-like way, to define new nouns 
which then statically have the characteristics of the adjectives. Such definitions also take 
the form of noun phrases, but in this case they have a defining character, e.g. "a student is 
a studying person". In this way new nouns are defined which can be used statically in 
other contexts without the inconvenience of having to repeat the adjectives, e.g. "my 
brother is a student". The purpose of the present paper is to show how qualifiers can be 
statically incorporated into new types whose instances automatically have the appropriate 
qualification(s). 

There are many reasons for supporting static qualification alongside dynamic 
qualification. The first is convenience. For example if all the objects of a particular type 
in a particular program are to be synchronised, then it is convenient to define this once. 

A second reason is security, since the definer of a type into which qualifiers are 
statically composed can be sure that the qualification is always applied on all objects of 
the type. 

Another reason for providing a static qualification mechanism is efficiency. Static 
definition gives an optimising compiler the freedom, for example, to eliminate dynamic 
bracket scheduling from the run-time code. 

A further important reason is that static qualification allows separate aspects of a 
problem to be tackled independently and then brought together into a single result. In this 
sense the technique offers an alternative approach to that found in aspect oriented 
programming (AOP) [10], as represented in languages such as AspectJ [11] and Aspect 
C++ [16]. 

Supporting static qualification raises a number of issues which do not arise in the 
case of dynamic qualification, in particular how static types can be composed from 
existing qualifiers and substantival types, how such types can be implemented, to what 
extent qualifiers have the right to invoke methods of their target, how the target should be 
defined in cases involving multiple qualification, etc. 

In section 2 some examples of qualifying types are introduced to illustrate issues 
raised in following sections. Section 3 describes and illustrates type definitions which 
statically incorporate qualifying types. In section 4 it is shown how such types can be 
implemented. Section 5 discusses how the technique can be used to allow distinct aspects 
of a problem to be separately programmed. Section 6 provides a conclusion. 

A knowledge both of qualifying types (and their special feature, bracket methods) [6, 
7] and of the key features for defining and implementing types [3-5, 8, 9] in Timor is 
assumed in the rest of the paper. 

2 SOME EXAMPLES 

In order to illustrate some of the issues involved, five examples will be particularly 
useful: the types RWsync, ACLprotecting, Monitoring, DuplControlling and 
Studying. Type definitions and implementations for the first two of these were 
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presented in [7]. They respectively provide reader-writer synchronisation and protection 
via an access control list (ACL). In this paper three further examples are added, which are 
especially relevant for static type definitions. Monitoring simply counts in its bracket 
methods the number of times operations and enquiries of the target are invoked, and has 
instance methods which can return and optionally reset the counter values: 

 
type Monitoring { // the type definition 
qualifies any: 
 op bracket op(...);  // increments the op counter 
 op bracket enq(...); // increments the enq counter 
instance: 
 enq int opCount(); // returns value of the op counter 
 enq int enqCount(); // returns value of the enq counter 
 op int opCountWithReset(); // returns and resets op counter 
 op int enqCountWithReset();//returns and resets enq counter 
} 
 

It can be implemented as follows: 
 
impl MonitoringImpl of Monitoring { // an implementation 
state: 
 int opCount = 0; 
 int enqCount = 0; 
qualifies any: 
 op bracket op(...) { 
  opCount++; return body(...); 
 } 
 op bracket enq(...) { 
  enqCount++; return body(...); 
 } 
instance: 
 enq int opCount()  {return opCount;} 
 enq int enqCount() {return enqCount;} 
 op int opCountWithReset() { 
  try {return opCount;} 
  finally {opCount = 0;} 
 } 
 op int enqCountWithReset() { 
  try {return enqCount;} 
  finally {enqCount = 0;} 
 } 
} 
 

The three types considered so far are pure qualifying types, in the sense that their 
implementations do not need access to the methods of objects which they qualify. 
However some qualifying types can only function correctly if they can access the public 
methods of their target. The remaining two examples illustrate how such types can be 
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defined, by combining the features of both qualifying types and attribute types [9], i.e. the 
two adjectival types supported by Timor. 

The fourth example, DuplControlling, provides bracket methods capable of 
handling duplicates in the Timor Collection Library (TCL), cf. [4]. Here is a type 
definition: 

 
type DuplControlling<:ELEM:> for Collection<:ELEM:> { 
qualifies Collection<:ELEM:>: 
 enq void insert(ELEM e) throws DuplEx; 
 enq void insertAtPos(ELEM e, int pos) throws DuplEx; 
} 
 

The for clause indicates that DuplControlling is an attribute type [9]. This means 
inter alia that its methods can use the pseudo variable base to access the public methods 
of its attribute base (in the present example any subtype of the abstract type 
Collection<:ELEM:>). 

The qualifies clause indicates that (subtype) instances of Collection 
<:ELEM:> can be qualified by instances of this type. In particular the insertion methods 
of a collection object can be bracketed by bracket methods of DuplControlling. 

Here are two implementations. The first simply ignores duplicates while the second 
treats duplicates as an error and throws an exception. 

 
impl DuplIgnore<:ELEM:> of DuplControlling<:ELEM:> { 
qualifies Collection<:ELEM:>: 
 enq void insert(ELEM e) throws DuplEx { 
  if (!base.contains(e)) body(...);  
 } 
 enq void insertAtPos(ELEM e, int pos) throws DuplEx { 
  if (!base.contains(e)) body(...);  
 }  
} 
 
impl DuplSignal<:ELEM:> of DuplControlling<:ELEM:> { 
qualifies Collection<:ELEM:>: 
 enq void insert(ELEM e) throws DuplEx { 
  if (base.contains(e)) throw DuplEx.init(); 
  body(...); 
 } 
 enq void insertAtPos(ELEM e, int pos) throws DuplEx { 
  if (base.contains(e)) throw DuplEx.init(); 
  body(...);  
 } 
} 
 

The basic idea is that target collections which are designed to accept duplicates can be 
transformed into collections which are duplicate free, either by ignoring attempts to insert 
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duplicates or by throwing an exception when an attempt is made to insert a duplicate. 
Thus the TCL type Bag can be transformed either into a Set (first implementation) or 
into a Table (second implementation). Similarly the TCL type List can be transformed 
into an OrderedSet (first implementation) or an OrderedTable (second 
implementation). Finally the TCL type SortedList can be transformed into a 
SortedSet (first implementation) or a SortedTable (second implementation). 

Our final example is a type Studying, which has been modified from the 
description in [9] to test via a bracket method that persons with a Studying attribute are 
at least 17 years old. 

 
type Studying for Person { 
instance: 
 String uni; 
 Date matriculationDate; 
 enq int ageAtMatriculation(); 
 enq String toString(); 
qualifies Person: 
 enq Date dob(Date dob) throws SemanticError; 
maker: 
 init(String uni, Date matriculationDate) 
                                 throws SemanticError; 
} 
impl StudyingImpl of Studying { 
state: 
 final int minAge = 17; 
 String uni; 
 Date matriculationDate; 
instance: 
 enq int ageAtMatriculation() {...} 
 enq String toString() {...} 
qualifies Person: 
 enq Date dob(Date dob) throws SemanticError { 
  if (Date.yearDifference(matriculationDate, base.dob) 
      < minAge) throw SemanticError.init(); 
 } 
maker: 
 init(String uni, Date matriculationDate) 
                                 throws SemanticError { 
  if (Date.yearDifference(matriculationDate, base.dob) 
      < minAge) throw SemanticError.init(); 
  this.uni = uni; 
  this.matriculationDate = matriculationDate; 
 } 
} 
 

This example illustrates how semantic constraints can be checked using bracket methods, 
when an attribute is added to its base (i.e. when the attribute's maker is invoked) and 
when methods of the base are called. It also illustrates why it is important in Timor that 
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"variables" declared in type definitions (here Date dob in Person, cf. [9]) are actually 
considered to be method pairs [5, 8]). Note that SemanticError is an unchecked 
exception. New checked exceptions cannot be added in bracket methods (cf. [7]). 

In [9] we observed that attribute types are usually behaviourally conform [13] with 
their attribute bases. Examples such as this (where an attribute applies constraints on the 
attribute base (or other attributes) are clearly an exception2, because from a client's 
viewpoint he does not normally expect a restriction on an item such as the age of a 
person, since this is not defined as an exception in the definition of the type Person 
(which is why an unchecked exception is used - a situation which often arises with 
bracket methods). This is a deliberate policy. To insist that constraints associated with all 
attributes are defined in the attribute base (and possibly in other attributes for the same 
base) would inhibit the modularity and the flexibility of attributes, since they would then 
all have to be defined at the latest when the attribute base is defined. 

In the following sections we discuss various issues which arise out of these 
examples, beginning with the way they can be integrated statically into other types and 
their implementations. 

3 STATIC TYPE DEFINITIONS 

Like Timor's attribute types, qualifying types have a role in programs similar to that of 
adjectives in natural language. Just as adjectives extend and modify the meaning of 
nouns, so attributes extend and qualifiers modify the semantics of objects in a modular 
way. As the last two examples in the previous section illustrate, a type can serve as both 
an attribute and a qualifier for the same base object. Hence these must be treated 
uniformly at the syntax level in definitions of other types (i.e. in clauses which can be 
regarded as equivalent to noun phrases, corresponding in the following grammar to 
inheritedItems). The basic structure of such "adjectival" type definitions has already 
been outlined informally for attributes in [9]. Part names can be used, but are not 
explicitly illustrated here, except where this is necessary to handle repeated inheritance. 

More formally, the syntax can be understood in terms of the following EBNF: 
 
derivationClause = ( "extends:" | "includes:" ) inheritedItems. 
inheritedItems   = { [qualifyingList]  simpleItem ";"  
                    | qualifyingList  compositeItem ";" }. 
qualifyingList       = "{" inheritedItems "}". 
compositeItem    = "(" inheritedItems ")". 
 

The basic bracketing rule is that the public methods of inheritedItems (whether 
simple or composite) are qualified by the bracket methods of their qualifyingList (if 

                                                           
2 The programmer of a Timor type has the opportunity to define subtypes which can be used 
polymorphically (using the keyword extends) and other derived types (using includes). This choice 
can also be made when composing qualifying types (such as Studying) statically into new types. 
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any), but public methods added by other items in the same qualifyingList are not. 
When a client invokes a method of a qualified item, the appropriate bracket method (if 
any) of each item in its qualifyingList is scheduled in turn (from left to right) at the 
point where the predecessor executes a body statement. 

Examples of Type Definitions 

Applying this syntax to qualifying types, a SynchronisedPerson can be defined as 
follows: 

 
type SynchronisedPerson { 
extends: 
 {RWsync;} Person; 
 // the simpleItem Person is statically qualified by a 
 // qualifyingList containing a single qualifier (the 
 // reader-writer qualifier RWsync) 
} 
 

This shows how the qualifier RWsync reader can be statically combined with another 
type to produce a new type with instances which are always synchronised. 

It would be possible to define types for the duplicate-free collections in the TCL 
along the same lines, using the qualifying type DuplControlling, e.g. 

 
type Set<:ELEM:> { 
includes: // indicates that Set is not a subtype of Bag 
 {DuplControlling<:ELEM:>;} Bag<:ELEM:>; 
} 
 

However, we consider it inappropriate to define a Set in terms of a Bag, inter alia 
because it would result in considerable restrictions from the viewpoint of polymorphism 
when compared to the definition given in [4]. As that paper illustrates, Set is better 
defined as part of a more comprehensive collection hierarchy based on the combining of 
orthogonal properties, as this creates more opportunities to take advantage of subtyping. 
However, because of the separation of types and implementations in Timor it is possible 
for a type definition which does not rely on qualifying types to be implemented using 
implementations of qualifying types. In a later section we illustrate how the first 
implementation of DuplControlling can be used to implement Set. 

Multiple Qualification 

Types bracketed by more than one qualifier are expressed as follows with the above 
syntax: 
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type SynchronisedMonitoredPerson { 
extends: 
 {RWsync; Monitoring;} Person;   
} 
 

In this example the type Person is statically qualified by both RWsync and Monitoring 
such that a client method invocation of a Person method results in the appropriate 
RWsync bracket being applied. When this executes a body(...) statement the 
appropriate Monitoring bracket is applied. When this in turn executes a body(...) 
statement the target method originally invoked by the client is called. 

Mixing Attributes and Qualifiers 

The syntax can be used to mix attributes and qualifiers, e.g. 
 
type StudyingSynchronisedPerson { 
extends: 
  {RWsync; Studying;} Person; 
} 
 

In this example the bracket methods are applied to methods of the target type (i.e. 
RWsync qualifies Person) but not to the methods of its attributes (i.e. in this example not 
to the instance methods of Studying, which are also instance methods of the new type 
[9]). Since Studying is itself a specialised qualifier, when a client invokes the method 
for setting the dob value of Person, the op bracket of RWsync is first scheduled and 
when this invokes body(...), the specialised bracket of Studying is run to check 
whether the date of birth being set is appropriate. 

Adverbial Qualification 

Adverbial qualification (i.e. qualification of qualifiers) is possible, because items in a 
qualifying list can themselves have a qualifying list, e.g. 

 
type SynchronisedlyStudyingPerson { 
extends: 
  {{RWsync;} Studying;} Person; 
} 
 

Here the methods of Studying are synchronised, but not those of Person. This applies 
both to the instance methods of Studying and to its bracket methods. Thus if a client 
invokes the method for setting the dob value of Person, the op bracket of RWsync is 
scheduled to synchronise the specialised bracket of Studying before the dob method of 
Person is invoked. 

Adverbial qualification which involves multiple levels of bracketing is non-trivial, 
because, for example, the synchronisation has to be released before the Person method 
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(which is not synchronised in this example) is actually called, and then it has to be 
reclaimed for the Studying bracket postlude. A full discussion of adverbial bracket 
scheduling is beyond the scope of this paper and will be the subject of a separate paper. 

Composite Targets  

Assuming that Employed is another for Person attribute type, the methods of 
Studying, Employed and Person, are all synchronised by RWsync in this example: 

 
type SynchronisedStudyingEmployedPerson { 
extends: 
  {RWsync;} ({Studying; Employed;} Person;); 
} 
 

Here Studying, Employed and Person are grouped to define a compositeItem 
qualified by RWsync. 

To synchronise the methods of Studying and Employed (but not those of Person) 
with the same qualifier, i.e. using the same synchronising variables, the following 
definition can be used: 

 
type SynchronisedlyStudyingEmployedPerson { 
extends: 
  {{RWsync;}(Studying; Employed;);} Person; 
} 
 

while in the next example each attribute (but not Person) is synchronised, but using 
separate synchronisation variables: 

 
type SyncStudyingSyncEmployedPerson { 
extends: 
 {{RWsync rws1;} Studying; {RWsync rws2;} Employed;} Person; 
 // the part names are necessary for the RWsync items, 
 // as described in [9]. 
} 
 

Methods of Qualifiers 

So far qualifiers have been considered from the viewpoint of their bracket methods, but 
types such as RWsync are exceptions in not having their own instance methods. For 
example the type Monitoring has instance methods which provide the monitoring agent 
with the monitoring details gathered by the bracket methods and which reset the counts to 
zero. 
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When defined statically in derivation clauses, such methods become additional 
instance methods of the target. But they are not qualified by their own bracket methods, 
nor by any other qualifiers defined in the same qualifyingList. For example 
instances of a type MonitoredPerson, defined as: 

 
type MonitoredPerson { 
extends: 
 {RWsync; Monitoring;} Person; 
} 
 

have instance methods inherited from Person which are bracketed by the RWsync and 
Monitoring brackets, and instance methods of Monitoring which are not bracketed. 
This interpretation can be understood as follows. The instance methods of a qualifier can 
be regarded as equivalent to the public methods of an attribute type Monitoringi and 
the bracket methods as those of a qualifying type Monitoringb. Then the type 
MonitoredPerson is equivalent to: 

 
type MonitoredPerson { 
extends: 
 {RWsync; Monitoringi; Monitoringb} Person; 
} 
 

External Qualifiers 

Not all qualifying types are semantically suitable for direct use in static type definitions 
along the lines described in the previous section. For example the type ACLprotecting, 
which provides access control list protection to a target object, has instance methods 
which set up and modify entries in the ACL. Inheriting such instance methods statically 
alongside the methods to be protected would normally make no sense (except perhaps for 
testing purposes) because clients of the new type could then manipulate the ACL to 
provide themselves with access to the supposedly protected methods of the target. 

To accommodate such cases in an appropriate way, a simpleItem can be defined 
by reference, e.g. 

 
type ProtectedPerson { 
extends: 
 {ACLprotecting*;} Person; 
maker: 
 init(ACLprotecting* anACL); 
} 
 

The reference must be linked via a parameter referring to an external object which is 
passed to a maker, as the example illustrates. This enables the invoker of the maker (i.e. 
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the creator of the object) to maintain a separate ACL to which he might have private 
access, while passing references for the protected object to other clients. 

External qualifiers can be used to good effect in other cases. For example if all the 
Person activities in a program are to be synchronised and monitored as a group, the 
following type definition could be used: 

 
type GroupControlledPerson { 
extends: 
 {RWsync*; Monitoring*;} Person; 
maker: 
 init(RWsync* rWsync; Monitoring* monitoring); 
} 
 

This might then be used in a program as follows: 
 
RWsync* personSync = new RWsync.init(); 
Monitoring* personMon = new Monitoring.init(); 
... 
GroupControlledPerson* newPerson = 
 new GroupControlledPerson.init(personSync, personMon); 
} 
 

External qualifiers are independent objects whose methods can be accessed via references 
independently of the objects which they qualify. 

In contrast with qualifying types inherited by value, the instance methods of an 
object inherited by reference do not become part of the type containing the reference. 
Hence clients of objects of type GroupControlledPerson cannot use a cast statement 
to gain access to their instance methods (e.g. those of Monitoring). But their bracket 
methods are applied to the methods of the appropriate target, here the Person item. 
However, in an implementation of the type an actual reference passed in (as a parameter 
to a maker) can be used as a normal reference. This means that an implementor of a type 
such as ProtectedPerson has to be trusted, but not the clients of the type. 

If a reference item is itself adverbially qualified by some other qualifier, this has no 
effect, i.e. its bracket methods are not subject to the bracket methods of the other 
qualifier(s). However, adverbial qualification of external objects is possible, by 
qualifying the external object (not the reference), as is described in [7]. 

Adding New Methods in a Type Definition with Static Qualifiers 

If new instance methods are added in an instance section to a type whose definition 
includes a qualifyingList containing qualifying types, the new instance methods are 
not bracketed. Technically it would be difficult to bracket these, because a 
qualifyingList qualifies a base type inherited in an extends or includes clause, 
not the type currently being defined. Furthermore a derivationClause can contain 
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multiple inherited bases (to enable the definition of multiple inheritance), and these 
multiple bases can be defined to be bracketed in different ways. Hence it would not be 
clear how the new methods should be qualified. 

This "limitation" accords with the basic philosophy behind the design of Timor, 
whereby separate aspects should be handled separately. In this respect the definition of 
types corresponding to noun phrases should be seen as a two stage activity: 

a) First, the individual components (attribute types, qualifying types and the 
components which they are defined to qualify) are defined and implemented. 

b) Second, these should be used along the lines discussed in section 3 to compose 
new types, without adding new instance methods. 

Redefining Methods in a Type Definition with Static Qualifiers 

Inherited methods can be redefined in the usual way. Because the methods being 
redefined must be inheritedItems, their static bracketing is also defined, and the 
corresponding definition applies to the redefined method. However, methods which are 
separately bracketed cannot be merged, since it would not be clear how the merged 
methods should be qualified. 

Adding New Methods and Redefining Methods in Derived Types 

In accordance with the philosophy for handling new instance methods, if a type which 
includes static bracketing is itself extended, any new methods which are added in the 
derived type are not automatically bracketed with the brackets of the base type. However, 
any methods of the new type which redefine methods of the base type are bracketed in 
the same way that the original method is bracketed. 

4 IMPLEMENTATIONS 

In contrast with the standard OO paradigm an implementation in Timor does not 
automatically inherit code. It can optionally include re-use variables of any appropriate 
type. These may, but need not, be defined in terms of the type in question or in terms of a 
specific implementation of that type. Such re-use variables are characterised by the hat 
symbol (^) preceding the type or implementation name associated with the variable. The 
compiler compares the public methods of re-use variables with those methods of the type 
being implemented which do not appear in the instance section, matching them in the 
order of their appearance. When a match is found, the corresponding method of the re-use 
variable is treated as the implementation of a public method of the type being 
implemented. 

This technique implies, for example, that a type defined in terms of qualifiers can, 
but need not, be implemented using implementations of these (or other) qualifiers. 
Conversely it implies that a type not defined in terms of qualifiers can (but need not) be 
implemented using qualifier implementations. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 127 

An Implementation of a Statically Qualified Type without using Qualifiers 

The type SynchronisedPerson, defined earlier in terms of the qualifying type 
RWsync, can be implemented without re-use variables as follows: 

 
impl SynchronisedPersonImpl1 of SynchronisedPerson { 
state: 
 Person p; 
 Semaphore mutex = Semaphore.init(1); 
 Semaphore readers = Semaphore.init(1); 
 int readcount = 0; 
instance: 
 op String name(String name) { 
  mutex.p();    // prelude for writer synchronisation 
  p.name(name); // invoke the overridden name op of Person p 
  mutex.v();    // postlude for writer synchronisation 
 } 
 enq String name() { 
  readers.p();  // prelude for reader synchronisation 
  readcount++; 
  if (readcount == 1) mutex.p(); 
  readers.v();    
  try {return p.name();} // invoke the name enq of Person p 
  finally { 
   readers.p();  // postlude for reader synchronisation 
   readcount--; 
   if (readcount == 0) mutex.v(); 
   readers.v();    
  } 
 } 
 ... // similar coding for each instance method of Person 
} 
 

This implementation is tedious, because every method of the type Person has to be 
overridden to add the appropriate reader or writer synchronisation protocol. It is loosely 
equivalent to defining a subclass of Person in the standard OO paradigm in which each 
method is overridden and calls "super". We have illustrated this to show that it is possible 
to implement a type defined in terms of qualifying types without using qualifiers in the 
implementation. It is clear that a more efficient approach is desirable. 

Automatic Implementations with Qualifiers 

As was already described in [9], a type which consists only of derivation clauses can be 
transformed automatically into an implementation using the following basic rules: 

a) Change each extends or includes clause into a state clause. 
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b) For each type which does not already have a part name in the type definition, add 
a part name (the same as the type name, but beginning with a small letter) to form 
a variable declaration. 

c) For each type which already has a part name in the type definition, use that part 
name to form a variable declaration. 

d) Prefix the hat symbol to each type name of a variable declaration which provides 
public methods. 

e) Add a parameterless maker or makers which conform to the requirements for 
producing automatic makers (see below). 

Here is an example of an automatic implementation for the type Sync-
StudyingSyncEmployedPerson: 

 
impl SyncStudyingSyncEmployedPersonImpl 
                        of SyncStudyingSyncEmployedPerson { 
state: 
 {{RWsync rws1;} ^Studying studying; 
  {RWsync rws2;} ^Employed employed; 
 } 
 ^Person person; 
} 
 

If explicit makers are provided in the type definition and their parameters correspond in 
name and type to those of the variables automatically produced, then a maker is 
automatically added which assigns the values of the parameters to the corresponding state 
variables (cf. [9]). This applies also to reference parameters. Thus the automatic 
implementation of GroupControlledPerson is: 

 
impl GroupControlledPersonImpl of GroupControlledPerson { 
state: 
 {RWsync* rWsync; 
  Monitoring* monitoring;} 
 ^Person person; 
maker: 
 init(RWsync* rWsync; Monitoring* monitoring) { 
  this.rWsync = rWsync; 
  this.monitoring = monitoring; 
 } 
} 
 

Explicitly Programmed Implementations with Qualifiers 

The pattern for automatic implementations illustrates how explicit implementations of 
types which use derivation clauses for bracketing can be defined. However, the 
programmer can choose his own variable names (except where re-use variables must 
have the correct part name, e.g. for repeated inheritance). 
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Otherwise the implementation is like any other implementation. It can for example 
have additional instance methods and it can implement redefinitions of existing methods. 
As mentioned earlier, new instance methods are not bracketed by statically defined 
brackets, and redefined methods are handled by the compiler (from the viewpoint of 
bracketing) as if they were the method being redefined. 

If an explicitly coded instance method invokes methods of state variables (including 
re-use variables) which are defined to be bracketed, the bracketing does not occur, i.e. 
inheritedItems define only how public methods are bracketed when invoked by a 
client. When invoked in an implementation no bracketing takes place. 

Using Qualifiers which do not Occur in the Type Definition 

It can be advantageous for an implementor to use qualifier implementations even where 
the type being implemented was not defined using qualifiers. In this case there is no 
appropriate pattern in the type definition which can be used in the implementation. 
Nevertheless implementations can be structured in terms of inheritedItems to achieve 
the same compositional effect as at the type level. 

Thus given (any) implementations of List and SortedList (cf. [4]), the entire 
duplicate-free types in the TCL can easily be implemented with re-use variables of 
DuplControlling's implementations, as follows: 

 
impl SetImpl<:ELEM:> of Set<:ELEM:> { 
state: {DuplIgnore<:ELEM:> di;} ^List<:ELEM:> l; 
} 
impl OrderedSetImpl<:ELEM:> of OrderedSet<:ELEM:> { 
state: {DuplIgnore<:ELEM:> di;} ^List<:ELEM:> l; 
} 
impl SortedSetImpl<:ELEM:> of SortedSet<:ELEM:> { 
state: {DuplIgnore<:ELEM:> di;} ^SortedList<:ELEM:> sl; 
} 
impl TableImpl<:ELEM:> of Table<:ELEM:> { 
state: {DuplSignal<:ELEM:> ds;} ^List<:ELEM:> l; 
} 
impl OrderedTableImpl<:ELEM:> of OrderedTable<:ELEM:> { 
state: {DuplSignal<:ELEM:> ds;} ^List<:ELEM:> l; 
} 
impl SortedTableImpl<:ELEM:> of SortedTable<:ELEM:> { 
state: {DuplSignal<:ELEM:> ds;} ^SortedList<:ELEM:>; 
} 
 

The qualifiers DuplIgnore and DuplSignal are not marked as re-use variables (with 
the ^ symbol) because they have no instance methods which are re-used to match the 
interface definitions of the types being defined. 

In [4] a different, more complicated technique was used to implement the duplicate 
free types of the TCL. In view of the relative simplicity of the above examples, which 
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achieve the same result in a more straightforward manner, it has been decided to abandon 
the more complicated requires clause defined there. 

5 PROGRAMMING SEPARATE ASPECTS 

As was mentioned in the introduction, Timor's adjectival types can be viewed as an 
alternative approach to AOP for programming distinct aspects of programs separately. 
The type DuplControlling and its two implementations (see section 2) illustrates a 
simple example of this, whereby the aspect "duplicate-freeness" is separately 
programmed from other aspects of collections in the TCL. 

Consider now another possible aspect, relevant for collections of integers, i.e. where 
Collection<:ELEM:> is instantiated to Collection<:int:>. For these it might be 
desirable to have an additional method enq int sum(), which returns the sum of the 
values of all elements in a particular collection. (The collection might be any of the nine 
concrete collection types.) 

We can envisage two implementation techniques for this. The first would have an 
integer variable which is continuously updated with each insertion into and removal from 
the collection, using bracket methods; in this case the enquiry sum simply returns the 
current value of the variable. The second implementation calculates the required value 
when the client invokes sum, by iterating through all elements in the collection, which it 
accesses via base. 

With the first implementation in mind it might be tempting to define the aspect as a 
qualifying type, as follows: 

 
type IntSumming { 
qualifies Collection<:int:>: 
 enq void insert(int e) throws DuplEx; 
 enq void insertAtPos(int e, int pos) throws DuplEx; 
 enq void remove(int e) throws NotFoundEx; 
 enq void removeAtPos(int pos)throws NotFoundEx; 
instance: 
 enq int sum(); 
} 
 

But with the second implementation in mind an attribute type definition would be more 
appropriate, i.e. 

 
type IntSumming for Collection<:int:> { 
instance: 
 enq int sum(); 
} 
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Type definitions are intended to be on a higher plane than implementations, and should 
not reveal or favour a particular implementation strategy. Hence two different type 
definitions should not be needed for what is logically a single type. 

The appropriate way to define such types is to regard possible bracket methods as an 
implementation technique which need not appear at the type level. Hence the second type 
definition, without the bracket methods, is the more appropriate3. 

Here is an implementation of IntSumming which updates an internal variable 
whenever an integer is added to or removed from the collection: 
 

impl IntSummingImpl of IntSumming { 
state: 
 int theSum = 0; 
qualifies Collection<:int:>: 
 op void insert(int e) throws DuplEx { 
  int n = base.size(); 
  body(e); 
  if (base.size() > n) theSum += e; 
 } 
 op void insertAtPos(int e, pos) throws DuplEx { 
  int n = base.size(); 
  body(e, pos); 
  if (base.size() > n) theSum += e; 
 } 
 op void remove(int e) throws NotFoundEx { 
  int n = base.size(); 
  body(e); 
  if (base.size() < n) theSum -= e; 
} 
 op void removeAtPos(int pos) throws OutOfBoundsEx { 
  int temp = base.getAtPos(pos); 
  int n = base.size(); 
  body(pos); 
  if (base.size() < n) theSum -= temp; 
} 
instance: 
 enq int sum() { 
  return theSum; 
 } 
} 
 

The following alternative implementation shows how the sum of the integers might be 
calculated at the time the client invokes the new method: 

 

                                                           
3 At a later stage we intend to add a more formal specification technique, which might be used to enhance 
the type definition. 
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impl IntSummingImpl2 of IntSumming { 
state: 
 int theSum = 0; 
instance: 
 enq int sum() { 
  Handle iter = base.startLoop(); 
  while (base.hasMore(iter)) theSum += base.next(iter); 
  return theSum; 
 } 
} 
 

In this implementation bracket methods are not used, but access to base is essential4. 
While in the IntSumming example it is not appropriate to indicate the possibility of 

bracketing at the type level (as this is merely an implementation alternative), in other 
examples it can be appropriate to define a type both as an attribute of another type and as 
qualifying its methods. Thus the type Studying, as defined in section 2, needs to 
indicate at the type level both its dependence (for Person) and its qualification of the 
method for setting the dob value. The latter is important because it warns the client that 
the unchecked exception SemanticError can be thrown. 

Either of the implementations of IntSumming can be used to implement types 
corresponding to the nine concrete types of the TCL with the additional summing 
functionality, as the following example for SetIntSumming (a Set<:int:> which can 
be summed) shows: 

 
type SetIntSumming { 
extends: {IntSumming;} Set<:int:>; 
} 
 
impl SetIntSummingImpl of SetIntSumming { 
state: {^IntSumming is; DuplIgnore<:int:> di;} 
                                            ^List<:int:> l; 
} 
 

The implementations of IntSumming were programmed - as separate aspects should be - 
without consideration for the "duplicate-free" aspect. In this example the result is that the 
order of the bracketing (from the viewpoint of body invocations) is irrelevant, because 
the throwing of an exception (in the case of the use of DuplSignal) or the ignoring of a 
duplicate (in the case of the use of DuplIgnore) in inner brackets is properly handled. In 
the above implementations the IntSumming attribute has been provocatively placed 
before the duplicate free qualifier to emphasize this. 

A simpler version of the qualifier's first implementation, which might simply update 
the current sum before or after invoking body without ensuring (by comparing the 

                                                           
4 The conventional iterator technique has been modified slightly for reasons which will be discussed in a 
future paper. Using the conventional technique would also require access to base. 
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number of integers in the set before and after the operation) that the operation had 
actually taken place, would create a problem for the above implementation, because it 
would increment the sum with values of duplicates which are rejected by DuplIgnore. 
(Similarly, an attempt to achieve the same effect by checking for exceptions would only 
work for implementations of types in which DuplSignal were used.) Such 
implementations would violate the principle that different aspects (i.e. different 
qualifiers) should be freely mixable and matchable, without needing a knowledge of each 
others' implementations. 

Notice that a general purpose qualifier such as RWsync or ACLprotecting, 
although modularly written, could not simply be placed in any position in the qualifying 
list of SetIntSummingImpl, because in contrast with the specialised qualifiers used in 
this example, they have no knowledge of the semantics of the objects which they qualify, 
nor would they then be in a position to control access to the entire object. In order to 
achieve the required effects such qualifiers typically need to view the specialised object 
in its entirety and are therefore appropriately placed in a qualifying list which achieves 
this effect, typically by treating the more specialised attributes and qualifiers, together 
with the base item, as a compositeItem, e.g. 

 
type SyncSetIntSumming { 
extends: {RWsync} ({IntSumming;} Set<:int:>;); 
} 
 
impl SyncSetIntSummingImpl of SyncSetIntSumming { 
state: {RWsync} 
  ({^IntSumming is; DuplIgnore<:int:> di;} ^List<:int:> l;) 
} 
 

Alternatively, and more flexibly, they can be added dynamically, e.g. when an object of 
the type is created (cf. [7]), e.g. 

SetIntSumming sis = new {RWsync} SetIntSumming.init(); 

In either case it is guaranteed, for example, that client accesses to the object are properly 
synchronised, including accesses to all new semantic routines, such as enq int 
sum(); in the present example, since the additional level of bracketing guarantees that 
the state of the target and the state of its specialised attributes and qualifiers (e.g. the 
variable theSum in IntSummingImpl or in IntSummingImpl2) are viewed as a single 
state. 

6 RELATED WORK 

A comparison between qualifying types and other bracketing approaches, such as inner 
in Beta [12], mixins [1, 2], encapsulators [15], Java proxies and AOP [11], has already 
been provided in [7], and need not be repeated here. 
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One additional difference, which has become evident in this paper, is that Timor's 
qualifying types can be associated with the types which they qualify dynamically (as 
described in [7]) or statically, as described here, or even (as illustrated at the end of the 
previous section) in combination. To our knowledge no other bracketing technique 
supports a similar level of flexibility. 

7 CONCLUSION 

Qualifying types in Timor (along with attribute types) are a programming language 
counterpart for adjectives in natural languages. Just as natural languages can use a 
dynamic combination of adjectives and nouns to describe objects in the real world on a 
one-off basis, or can use them to define new nouns statically, so Timor's adjectival types 
can be combined with substantival types either dynamically or statically (or in 
combination). The grammar used to achieve static definitions of new types is closely 
analogous in structure to that of noun phrases in natural languages and adds a similar 
level of power and flexibility, providing a basis for a new programming paradigm, which 
we call component oriented programming, which builds on but goes beyond the object 
oriented paradigm. 

ACKNOWLEDGEMENTS 

Special thanks are due to Dr. Axel Schmolitzky for his invaluable contributions to 
discussions of Timor and to the ideas which have been taken over from earlier projects. 
Without his ideas and comments Timor would not have been possible. 

REFERENCES 

[1] G. Bracha and W. R. Cook, "Mixin-based Inheritance," ECOOP/OOPSLA '90, 
Ottawa, Canada, 1990, ACM SIGPLAN Notices, vol. 25, no. 10, pp. 303-
311. 

[2] L. G. DeMichiel and R. P. Gabriel, "The Common Lisp Object System: An 
Overview," ECOOP '87, Paris, 1987, Springer-Verlag, LNCS, vol. 276, pp. 
151-170. 

[3] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code Re-use in 
Timor," 40th International Conference on Technology of Object-Oriented 
Languages and Systems (TOOLS Pacific 2002), Sydney, Australia, 2002, 
Conferences in Research and Practice in Information Technology, vol. 10, pp. 
35-43. 



 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 135 

[4] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common Abstract 
Ancestor in Timor," in Journal of Object Technology, vol. 1, no. 1, May-June 
2002, pp. 81-106, http://www.jot.fm/issues/issue_2002_05/article2. 

[5] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding Seriously in an 
Object Oriented Context," Net.ObjectDays, Erfurt, Germany, 2003, pp. 51-
65. 

[6] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types Illustrated 
by Synchronisation Examples," in Objects, Components, Architectures, 
Services and Applications for a Networked World, International Conference 
NetObjectDays, NODe 2002, Erfurt, Germany, vol. LNCS 2591, M. Aksit, 
M. Mezini, and R. Unland, Eds.: Springer, 2003, pp. 330-344. 

[7] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types with 
Bracket Methods in Timor," in Journal of Object Technology, vol. 3, no. 1, 
January-February 2004, pp. 101-121. 
http://www.jot.fm/issues/issue_2004_01/article1. 

[8] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting Multiple and Repeated Parts in 
Timor," Journal of Object Technology, November-December, 2004 vol. 3, no 
10, http://www.jot.fm/issues/issue_2004_11/article1 

[9] J. L. Keedy, G. Menger, and C. Heinlein, "Diamond Inheritance and Attribute Types 
in Timor," Journal of Object Technology, November-December, 2004 vol. 3, 
no 10, http://www.jot.fm/issues/issue_2004_11/article2 

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. 
Irwin, "Aspect-Oriented Programming," ECOOP '97, 1997, pp. 220-242. 

[11] G. Kiczales, E. Hilsdale, J. Hugonin, M. Kersten, J. Palm, and W. G. Griswold, "An 
Overview of AspectJ," ECOOP 2001 - Object-Oriented Programming, 2001, 
Springer Verlag, LNCS, vol. 2072, pp. 327-353. 

[12] B. B. Kristensen, O. L. Madsen, B. Moller-Pedersen, and K. Nygaard, "The Beta 
Programming Language," in Research Directions in Object-Oriented 
Programming: MIT Press, 1987, pp. 7-48. 

[13] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM Transactions 
on Programming Languages and Systems, vol. 16, no. 6, pp. 1811-1841, 
1994. 

[14] M. D. McIlroy, "Mass Produced Software Components," NATO Conference on 
Software Engineering, NATO Science Committee, Garmisch, Germany, 
1968, Petrocelli-Charter, pp. 88-98. 

[15] G. A. Pascoe, "Encapsulators: A New Software Paradigm in Smalltalk-80," 
OOPSLA '86, 1986, pp. 341-346. 

[16] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, "AspectC++: An Aspect-Oriented 
Extension to the C++ Programming Language," 40th International 

http://www.jot.fm/issues/issue_2002_05/article2
http://www.jot.fm/issues/issue_2004_01/article1
http://www.jot.fm/issues/issue_2004_11/article1
http://www.jot.fm/issues/issue_2004_11/article2


 
STATICALLY QUALIFIED TYPES IN TIMOR 

 
 
 
 

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 7 

Conference on Technology of Object-Oriented Languages and Systems 
(TOOLS Pacific 2002), Sydney, Australia, 2002, Conferences in Research 
and Practice in Information Technology, vol. 10, pp. 53 - 60. 

About the authors 

 

 

J. Leslie Keedy is Professor and Head, Department of Computer
Structures, University of Ulm, Germany, where he leads the Timor
language design and the Speedos operating system design groups. His 
email address is keedy@jlkeedy.net. His biography can be visited at 
http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/ 

   

 

 

Klaus Espenlaub received a Ph.D. in Computer Science from the 
University of Ulm in 2005. Currently he works as a research assistant 
in the Department of Computer Structures at the University of Ulm.
His research interests include secure operating systems, protection
mechanisms and computer architecture. His email address is 
klaus.espenlaub@uni-ulm.de. 

   

 

 

Christian Heinlein received a Ph.D. in Computer Science from the 
University of Ulm in 2000. Currently, he works as a scientific 
assistant in the Department of Computer Structures at the University
of Ulm. His research interests include programming language design
in general, especially genericity, extensibility and non-standard type 
systems. His email address is christian.heinlein@uni-ulm.de. 

   

 

 

Gisela Menger received a Ph.D. in Computer Science from the
University of Ulm in 2000. Currently she works as a scientific
assistant in the Department of Computer Structures at the University
of Ulm. Her research interests include programming language design 
and software engineering. Her email address is gisela.menger@uni-
ulm.de. 

 

http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/
mailto:keedy@jlkeedy.net
mailto:klaus.espenlaub@uni-ulm.de
mailto:christian.heinlein@uni-ulm.de
mailto:gisela.menger@uni-ulm.de
mailto:gisela.menger@uni-ulm.de


 
 
 
 
 
 

VOL. 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 137 

 

 

Mark Evered is a Senior Lecturer in the School of Mathematics,
Statistics and Computer Science at the University of New England in 
Armidale, Australia. He completed his PhD at the Technical
University of Darmstadt in Germany. His research interests include
Object-based Systems, Security, Persistence and Programming
Language Design and Implementation. His email address is 
markev@mcs.une.edu.au. 
 

 

mailto:markev@mcs.une.edu.au

