
Vol. 4, No. 7, September–October 2005

Using Reflection to Reduce the Size of .NET
Executables

Vasian Cepa, cepa@informatik.tu-darmstadt.de, Software Technology Group,
Darmstadt University of Technology, Germany

This article presents an object-oriented technique for reducing the size of .NET ex-
ecutables. Current binary compressors cannot be used to pack .NET executables
because .NET makes use of a specially modified PE file format.
We will rely on reflection capabilities supported by .NET to pack .NET binaries using
pure C# code. The solution is general and can be used with any .NET executable,
no matter in what front-end language it was written.

1 INTRODUCTION

In this article, we will show how reflection capabilities of the .NET framework [5]1

combined with data compression can be used to reduce the size of .NET executables.
Binary file compressors for Windows executables, such as UPX [14], use a similar
technique to decrease the size of binary files. However, binary compressors do not
work with .NET pseudo-executables. The pure .NET solution, we present here can
be implemented in any .NET language and does not require any native platform
code. Our prototype tool called .NETZ based on the idea presented here can be
downloaded from [8].

There are several benefits of reducing the size of executables. Section 6 explains
that smaller executables load faster because of fewer disk accesses. The compressed
executable files also consume less hard disk space. Compressed binaries make it also
more difficult to disassemble the code2, which is relatively easy for .NET because of
its metadata support.

The rest of this article is organized as follows. Section 2 discusses .NET executa-
bles file format. Section 3 explains the compression techniques used in the .NETZ
tool. Then, we explain how to use .NET specific reflection techniques to pack single
EXE files in section 4. Section 5 extents the technique to support also DLL files.
We give some performance measurements of our solution in section 6. Section 7
discusses related work and conclusions.

1All non-cited information about .NET comes from MSDN [7] documentation.
2Combined with encryption.

Cite this article as follows: Vasian Cepa: ”Using Reflection to Reduce the Size of .NET Ex-
ecutables”, in Journal of Object Technology, vol. 4, no. 7, September–October 2005, pp.
51–64,
http://www.jot.fm/issues/issues 2005 09/article1

mailto:cepa@informatik.tu-darmstadt.de
http://www.jot.fm/issues/issue_2005_09/article1

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

2 .NET EXECUTABLES

All .NET applications, despite of the front-end language used, are compiled into an
Intermediate Language (IL) format, part of .NET Common Language Infrastruc-
ture (CLI) [2], which contains instructions to be executed by a stack-based virtual
machine. The compiled IL is usually packed into Assemblies, which are physically
stored into PE (portable executable) files [9]. The PE format [10] is used by all
Windows executables. The CLI splits the code and resources of a .NET application
in several segments called sections (Fig. 1) inside the PE file [9]. When an assembly
is executed the data found in these segments is made available to the .NET runtime.
This work is carried out in the EXE files by a call to CorExeMain function exported
by mscoree.dll (Microsoft Common Object Runtime Execution Engine). For DLL
(Dynamic Link Libraries) files a similar function CorDllMain is called inside the
usual DllMain [13]. The job of these functions is to properly initialize the Execution
Engine (EE) of .NET framework and pass the CRI data found in the segments of
the PE file to the EE.

Figure 1: Sample of a .NET executable PE sections

Binary compressors, e.g, UPX [14], use a similar technique to store the data in
as compressed segments inside the EXE or DLL files (Fig. 2). The only difference is
that the binary data of the original application are placed compressed in one section.
Unlike .NET PE files, UPX places its own code in the first code section to access the
compressed section, decompress it in memory and map it to the application address
space.

Figure 2: Sample of a UPX packed DLL PE sections

The .NET Common Language Runtime (CLR) functions expect to be able to
access PE section data directly [2]. It is impossible to modify a tool, such as UPX,
to unzip the data from one section and make the data looks like as it originates from
the sections expected by the CLR functions. For these reason, there are currently

52 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

3 SELECTING A COMPRESSION LIBRARY

no binary compressors that work with .NET executables. A possible workaround
would to be to compress the data segments of .NET PE file and then place starter
code which decompresses the data at run-time and passes the decompressed data to
the CLR functions as byte arrays. However, the details may be different between
different .NET releases and platforms and may require CLR support. Ideally, it
would be better if Microsoft supported this as option in .NET in the future. This
would made .NET executables have size comparable to Java [6] JAR files.

There exists, however, another generic .NET alternative to this problem, which
does not use any native platform code. We will present this pure .NET solution in
this article. The technique does not modify the PE files. It works at a higher level
and makes use of the fact that .NET CRI executables contain metadada and that
.NET allows accessing those metadata via its Reflection API [1]. We will show first
how to pack the main executable file of an application. Then, we will describe how
the technique can be extended for .NET DLL files.

3 SELECTING A COMPRESSION LIBRARY

The first step for packing the .NET executable data is selection of a data compres-
sion library. The compression library should support data decompression in RAM
and should input and output the data as byte arrays. The decompression library
should also be relatively small is size given that it needs to be distributed with
the compressed applications. The compression library does not need to be a .NET
library. A native platform library can be accessed with a managed wrapper using
.NET platform invoke (PInvoke). A .NET library is, however, preferable if it di-
rectly supports .NET types, e.g., System.IO.Stream, so that we can directly use
System.IO.MemoryStream objects.

In our tool .NETZ, we used #ziplib [16] an open source implementation of several
data compression algorithms implemented in .NET C#. The #ziplib library fulfills
all the criteria above. The #ziplib’s license is also flexible to allow distribution of
the decompression DLL as part of any open or closed source application. We chose
to use the usual ZIP format [15] from the compression algorithms supported by
#ziplib. The selection of the ZIP format was arbitrary and any other compression
algorithm can be used.

The usual ZIP compression ratio for .NET executables is around 60%. We also
need to distribute also the unzip code with the zipped version of an a .NET applica-
tion. The size of #ziplib DLL (ICSharpCode.SharpZipLib.dll) is about 115KB. If
we remove all other supported compression formats, apart from the ZIP format sup-
port and leave only the code to support unzipping, we will end up with a .NET DLL
library of only 60KB3. This reduced version of the #ziplib library, named zip.dll,
comes with the .NETZ tool for distribution with the compressed applications.

3We cannot compress the zip.dll library, because we need it to unzip the rest of the code.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 53

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

The 60KB of zip.dll are the only size overhead of this method. If a .NET
application is over 200KB, which is normally the case for a small .NET GUI exe-
cutable, then the size of the compressed application plus the unzip library will still
be under 200 KB. One could do better, however, with compression libraries written
especially for this technique.

4 PACKING .NET EXECUTABLES

The process of creating a .NET self-contained packed executable follows the logical
steps shown in Fig. 3. The .NETZ tool automates all the steps explained next and
produces as output directly only the packed EXE file.

ZIP the application

Pack as resource

Link the resource with
starter application

build time

Get the resource data

Unzip the data

Use reflection to start the
original application

starter application / run-time

1

2

3

4

5

6

Figure 3: Steps for packing a .NET executable file

To ease the discussion of Fig. 3, we will suppose we have a .NET application
named app.exe. As a first step, we compress app.exe as app.zip by using #zi-
plib programmaically. The .NETZ tool compresses the .NET executables as raw
ZIP streams, without any ZIP directory information to keep the end size smaller.
The .NETZ’s compressed files cannot be read directly by normal ZIP applications
expecting the ZIP file directory to be present.

The compressed data will be packed as part of a starter application starter.exe,
which will decompress and start the original app.exe at run-time. The easiest way
to pack app.zip as part of the starter.exe in .NET is to pack it as a .NET
managed resource file. Managed resources of a .NET application are packed along
with other IL data in the .text section of the PE file [9]. Other resources are
packed in the data section. The following code will produce a valid .NET resource
file app.resources (step 2 of Fig. 3):

FileStream fs = new FileStream("app.zip",

FileMode.Open, FileAccess.Read);

byte[] data = new byte[fs.Length];

fs.Read(data, 0, data.Length);

54 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

4 PACKING .NET EXECUTABLES

fs.Close();

ResourceWriter rm = new ResourceWriter("app.resources");

rm.AddResource("appdata1", data);

rm.Close();

We have omitted the error handing code from all the C# examples to keep them
simple. We named the packed resource to appdata1 in order to access it later4.
After we created the resource file, we need to create the starter.exe application.
The starter application will load the resource file, get the compressed data, unzip
them in memory and use reflection to start the app.exe application. The code
invoked by the starter.exe’s Main(string[] args) method to access the original
packed resource data is (step 4 of Fig. 3):

ResourceManager rm = new ResourceManager("app",

this.GetType().Assembly);

byte[] data = (byte[])rm.GetObject("appdata1");

In step 5 of Fig. 3, we unzip the data in memory. The code for #ziplib is5:

string zipPath = "app.exe";

MemoryStream zipFile = new MemoryStream(data);

ZipFile zf = new ZipFile(zipFile);

ZipEntry ze = zf.GetEntry(zipPath);

Stream zs = zf.GetInputStream(ze);

byte[] uzdata = new byte[ze.Size];

zs.Read(uzdata, 0, uzdata.Length);

We use an instance of System.IO.MemoryStream to pass the zipped data to
the System.IO.Stream format expected by #ziplib. We can then create a .NET
assembly from the byte array (step 6 of Fig. 3):

Assembly assembly = Assembly.Load(uzdata);

Once we have an assembly, the easiest way to properly activate app.exe is to
invoke its entry point, which corresponds to the Main(string[] args) method in
the original app.exe, passing to it the original command line arguments passed to
the Main(string[] args) method of the starter:

4The .NETZ tool uses a unique global identifier (GUI) string to name the compressed EXE
inside the resource file.

5The actual .NETZ implementation contains optimized code.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 55

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

assembly.EntryPoint.Invoke(null, new object[]{args});

We used null as the first object argument of Invoke because Main is a static
method and properly packed the original arguments as an object array. Alterna-
tively, we can rely on reflection code to find the types in the assembly and invoke
methods on them. This can be useful when the app.exe has no entry point, or
when we want to invoke any other methods. The .NETZ tool generated applica-
tions also check whether the Main() method of the compressed application supports
command-line arguments or not, to invoke the proper Main() version.

To compile starter.exe from starter.cs and pack the zipped data resource
with it (step 3 of Fig. 3) we can use the following C# compiler command (supposing
it is an windows executable):

csc /t:winexe /out:starter.exe starter.cs AssemblyInfo.cs

/r:zip.dll /res:app.resources /win32icon:App.ico

We can rename starter.exe back to app.exe later if we like. This way, we
distribute starter.exe and zip.dll which are both smaller in size than app.exe

alone.

We used two additional files AssemblyInfo.cs and App.ico as part of the com-
piler command. They both come from the original app.exe data. The Assembly-

Info.cs file contains version information about app.exe in the Visual Studio for-
mat. If we have the source of app.exe we can reuse AssemblyInfo.cs from it.
Our .NETZ tool, however, uses reflection over app.exe to discover the assembly
properties and generates a suitable AssemblyInfo.cs in the Visual Studio format.
The .NETZ tool also extracts the main icon (App.ico) automatically from the orig-
inal PE executable file and reuses it. .NETZ compiles the generated starter appli-
cation programmatically using .NET System.CodeDom.Compiler.ICodeCompiler

interface with the CSharpCodeProvider.

5 PACKING .NET DLL-S

If the app.exe application depends on other DLL-s, we normally do not need to do
anything. However, sometimes we may prefer to compress also some of the DLL
files. The technique that we will describe next works only for applications that
make use of .NET XCOPY paradigm that is, when the DLL files are used by a
single application. This technique will not work if the DLL files are placed in Global
Assembly Cache (GAC), or shared by more that one application which is not aware
of the technique.

An exception to this rule are the shared types used with .NET remoting [11]. In
this case the common classes and interfaces should be placed is separate DLL shared

56 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

5 PACKING .NET DLL-S

by the client and server, which is not compressed using the technique explained here.
The reason is that the .NET CLR uses the shared types directly to automatically
generate part of the marshalling code. The shared types should, therefore, be left
uncompressed despite that both client and server applications could be both packed
with the .NETZ tool.

.NET has a build-in mechanism for resolving types and assemblies. When the
build-in mechanism fails to find an assembly we can provide the .NET CLR with an
assembly of our own. This functionality is exposed by a hook in the System.App-

Domain class. Every .NET application executes in an application domain. A single
process may contain more than one application domain. The application domains
are isolated from each other. We need to handle AssemblyResolve event for the
current application domain:

AppDomain currentDomain = AppDomain.CurrentDomain;

currentDomain.AssemblyResolve += new

ResolveEventHandler(MyResolveEventHandler);

This code need to be placed into the Main method of the starter application. In
order for this event to be activated successfully at the right time, we have to place
the app.exe assembly activation code described in section 4 in another separate
method that will be called by the starter’s Main method.

To illustrate the idea of packing .NET DLLs, let us suppose that lib.dll is a
DLL file required by app.exe that we like to compress. First, we would link app.exe

with the unzipped version of lib.dll as normally. Then, we would compress the
lib.dll as lib.zip. We could pack lib.zip as a resource file with the starter
application, as we did with the app.zip. This can be preferable if we want to have
a single executable file which contains also the DLL files, an option not offered by
the .NET CLR linkers. Alternatively, we may leave the packed DLL as separate file
so we can update the DLL easier to a newer version. The .NETZ tool supports both
these options.

Our custom AssemblyResolve handler will be called by .NET only when a type
is missing. For this reason, we need to rename the packed DLL file to something
different from the original file name lib.dll. If we were to leave the original name
then .NET CLR will try to load the compressed file as it were uncompressed. The
compressed file will then look like a corrupted DLL file to .NET CLR. We will have
then an missing type run-time exception.

We need to rename the compressed version of lib.dll to something else. We
can leave the name lib.zip or be creative and rename it, for example, to libz.dll

as the .NETZ tool does6. The code to activate the DLL in MyResolveEventHandler

6Other alternatives based on this idea are possible. For example, we can save the lib.zip data
in a SQL database table as a blob field and retrieve the data from there.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 57

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

is shown next. We suppose that the zipped DLL is a file in the same directory as
the starter application:

public static Assembly MyResolveEventHandler(object sender,

ResolveEventArgs args) {

int i = args.Name.IndexOf(’,’);

string dllName = args.Name.Substring(0, i);

// the dllName will equal "lib" in our example

// we map it to the zipped file name

dllName += ".dllz";

// read the file and unzip the data as above

// code omitted ...

byte[] uzdata = ...

return Assembly.Load(uzdata);

}

Additional information, e.g., the version of the expected DLL will be available
as part of args.Name string passed to this event by the framework. This way, the
types found in the zipped DLL will be resolved to the AppDomain. This method can
also be used with EXE or any other .NET module files. We need to access some
type defined in a module which cannot be resolved by .NET CLR for this event to
fire.

The example code shown above was drastically simplified to illustrate the main
points of the idea. The .NETZ tool generated applications can find the compressed
DLL files in resources or in directories emulating the way .NET CLR finds the
normal DLLs. The .NETZ tool implementation is fully compatible with .NET CLR
search strategy and supports, for example, DLLs for multiple cultures (localization
of application DLLs for different languages) and private DLL application paths.

Another important issue when implementing a custom AssemblyResolve han-
dler is that .NET does not cache the supplies assemblies. .NET CLR caches the
assemblies it loads itself so that the types in them are properly resolved without
loading multiple copies of the same assembly. For custom AssemblyResolve han-
dlers, assembly caching is, however, the responsibility of the programmer. .NET
CLR may ask continuously for the same assembly, every time it need to resolve a
type (even thought the type may have been resolved before). When assembly caching
is implemented, we should be careful to return the same physical assembly instance
every time we are asked for the same assembly. Returning different instances will
cause many copies of the same assembly to be loaded. Types of different loaded
instances of the same assembly will be treated as if they were different types7. For

7Thanks to Taylor Brown (tbrown@ncsoft.com) for pointing this out.

58 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

6 PERFORMANCE MEASUREMENTS

this reason, .NETZ implements assembly caching as a Hashtable indexed by a key
made up of all assembly identification data, such as, name, version, and culture.

6 PERFORMANCE MEASUREMENTS

We want to compare the startup time of .NET EXE files (a) non-compressed, using
the normal PE files and (b) compressed files, which are unzipped in memory as
described in section 4. One way to do these measurements is to use a model of the
startup time of a .NET application. We will use the model of Fig. 4 in oder to
measure the startup time of .NET EXE-s files.

(i) load file from hard disk
and map to RAM

(ii) start the .NET EE and the
application

(iii) unzip in memory

(iv) create the assembly and
invoke a method from it

Figure 4: Time model of a .NET application startup

The last two segments (iii) and (iv) in Fig. 4 are present only with EXE files
unzipped in memory (case b). The segment (ii) is the time .NET execution engine
is made ready and started. This time is the same for both cases, compressed and
not compressed, so we can ignore it. The time span of the segment (iv) is also too
small in comparison with (iii) so we can also ignore it. We will compare time (i) for
case the (a) above with time (i) + (iii) for case (b). In order not be effected by the
buffer size when we read from a file we will use a buffer as long as the length of the
file (fi.Length):

FileInfo fi = new FileInfo(file);

byte[] buff = new byte[fi.Length];

FileStream fs = new FileStream(file, FileMode.Open,

FileAccess.Read, FileShare.Read, (int)fi.Length);

fs.Read(buff, 0, buff.Length);

MemoryStream ms = new MemoryStream(buff);

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 59

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

The size of zipped files used is about 64% smaller that the unzipped version.
Fig. 5 shows the average results of 25 tests for different file sizes from about 0.5 to
80 MB. Because of the simplification in our time model the time data should be
treated as relative to each other and not as absolute values.

-50

0

50

100

150

200

250

0.54 1.08 5.39 10.8 16.2 21.6 27 53.9 80.9

Size in MB (Zipped ~ 64% smaller)

T
im

e
in

 M
ill

is
ec

on
ds

Time No Zip (TNZ)
Time Zip (TZ)
100 - (100 * TZ) / TNZ

Figure 5: Performance measurements

The first of three data columns for each file measurement is the time required to
load the file when it is not zipped (case a). The second one corresponds to loading
the zipped file and unzipping it in memory (case b). The third column calculates
the gain percentage. For small files under 5MB8 the gain is negative because the
compression technique is slower that for loading uncompressed files. The worst
negative value for executables of 500KB is about 24.9%. However, for files bigger
than 5MB we gain about 28% in average. For files bigger than 80MB we have more
than 90% gain. A test case for files about 100MB (107.81MB) gave the data triple:
2003.98, 190.67, 90.49. We did not show this sample in Fig. 5 because this big
gain rate will made it impossible to show clearly the values of the other samples. It
is unclear why the gain grows so significantly for files bigger than 100MB. A possible
cause could be that the operating system code or disk-cache is optimized to load
faster small and medium size files, which make most of the used files.

The data of Fig. 5 shows that using compression makes loading of files faster
because of fewer hard disk accesses by the operating system. We used #ziblib [16]
for these tests, however, compression code written especially for this technique could
perform better.

8Again, because of the used model the real threshold value may be slightly different.

60 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

7 CONCLUSIONS

7 CONCLUSIONS

We presented here an OO .NET solution for reducing the size of .NET executables.
This technique allows packing .NET EXE and DLL files in a compressed form,
reducing the time it takes to load them and the size consumed in hard disk by .NET
binary packages.

The compression of binary executables to reduce their size and improve the
loading time is a technique used by binary compressors, e.g., UPX [14]. We, however,
did not modify the PE file sections with native code. We made use of the fact
that .NET framework exposes reflection [3] capabilities. We used the .NET object-
oriented reflection capabilities to implement a pure .NET solution for reducing the
size of .NET executables.

The technique we used for compressing .NET applications does not work with
.NET Compact Framework (CF) [17]. The .NET CF does not implement the meth-
ods of the Assembly and AppDomain classes that make this technique possible. How-
ever, the devices that run .NET CF use compression by default for storing programs
and data in the non-volatile device memory ([17] reports up to 2:1 compression
ratio). This means that this technique may not be directly needed in .NET CF
devices9.

Resolving assemblies and providing custom assembly files to the .NET CLR, is
done via System.AppDomain class. This is similar to creating custom class loaders
in Java [4]. There are however subtle differences between the two models which are
beyond the scope of this article. Java supports compression by default as part of
the JAR (ZIP based) format. Java JAR files are used somehow similarly to PE
files in .NET. A JAR file contains not only the code, but also resources and other
meta-information as part of its manifest file.

There are several benefits of our specific .NET solution:

• It is a pure .NET object-oriented solution. We used C# here to demonstrate
the code, but it could easy written in any .NET language. The code does
not use of any particular information about the PE format, which makes it
portable for example to be used also with Mono [12] executables in other
platforms apart from Windows10.

• It does not change the programming style. Applications and their DLL-s files
can be developed as usual. Only when we need to pack them we use the .NETZ
tool. This can be part of the release build only and does not add any time to
the usual development building process.

• The .NETZ generated starter is quite generic and independent of any partic-
ular .NET EXE or DLL files written in any .NET language. The solution

9Double-compression has usually no effect on size reduction.
10Not tested.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 61

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

produces reduced size executables, which are undistinguishable from the orig-
inal non-compressed ones to the end user.

• It helps to hide application code and protect investment in code. .NET
disassemblers make it easy to view source code because of the .NET meta-
data/reflection support. The zipped resources are more difficult to disassem-
ble. Combined properly with encryption and decryption in memory of sensi-
tive application parts this technique can be used to hide sensitive intellectual
properties in .NET applications making it harder to find the real code.

There are also a few liabilities. We require a starter application which is aware
of this technique. This is problematic for DLL files. Another application not aware
of the technique will not be able to use the packed DLLs. This limitation prevents
compressed DLLs from being installed into .NET Global Assembly Cache (GAC)
where they can be shared system-wide. Despite this, the technique presented here
is easy to implement and offers potential benefits to .NET developers.

62 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

7 CONCLUSIONS

REFERENCES

[1] .NET Reflection API. MSDN: ms-help: // MS. VSCC/ MS. MSDNVS/ cpref/

html/ frlrfSystemReflection. htm , 2001.

[2] ECMA-335 Common Language Infrastructure (CLI). http: // www.

ecma-international. org/ publications/ standards/ ecma-335. htm ,
2002.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern -
Oriented Software Architecture - A System of Patterns. Wiley, 1996.

[4] Stuart Dabbs Halloway. Component Development for the Java Platform.
Addison-Wesley, 2002.

[5] J. Prosise. Programming Microsoft .NET. Microsoft Press, 2002.

[6] K. Arnold, J. Gosling, D. Holmes. Java Programming Language. Addison
Wesley, 2000.

[7] .NET Framework MSDN Documentation. ms-help: // MS. VSCC/ MS.

MSDNVS/ Netstart/ html/ sdkstart. htm , 2002.

[8] .NETZ - .NET Executables Compressor Tool. http: // www. st. informatik.
tu-darmstadt. de/ static/ staff/ Cepa/ tools/ netz/ index. html , 2004.

[9] G. Nutt. Distributed Virtual Machines: Inside the Rotor CLI. Addison-Wesley,
2002-4.

[10] M. Pietrek. Inside Windows: An In-Depth Look into the Win32 Portable
Executable File Format. MSDN Magazine, February 2002.

[11] I. Rammer. Advanced .NET Remoting (C# Edition). APress, 2002.

[12] Mono .NET Implementation. http: // www. mono-project. com/ about/

index. html , 2004.

[13] Shared Source Common Language Infrastructure. http: // msdn. microsoft.
com/ net/ sscli/ , 2004.

[14] Ultimate Packer for eXecutables. http: // upx. sourceforge. net/ , 1996-
2004.

[15] ZIP File Format Specification. http: // www. pkware. com/ products/

enterprise/ white_ papers/ appnote. txt , 1989-2004.

[16] #ziplib Homepage. http: // www. icsharpcode. net/ , 2003.

[17] P. Yao and D. Durant. .NET Compact Framework Programming with C#.
Addison Wesley, 2004.

VOL 4, NO. 7 JOURNAL OF OBJECT TECHNOLOGY 63

ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfSystemReflection.htm
ms-help://MS.VSCC/MS.MSDNVS/cpref/html/frlrfSystemReflection.htm
http://www.ecma-international.org/publications/standards/ecma-335.htm
http://www.ecma-international.org/publications/standards/ecma-335.htm
ms-help: //MS.VSCC/MS.MSDNVS/Netstart/html/sdkstart.htm
ms-help: //MS.VSCC/MS.MSDNVS/Netstart/html/sdkstart.htm
http://www.st.informatik.tu-darmstadt.de/static/staff/Cepa/tools/netz/index.html
http://www.st.informatik.tu-darmstadt.de/static/staff/Cepa/tools/netz/index.html
http://www.mono-project.com/about/index.html
http://www.mono-project.com/about/index.html
http://msdn.microsoft.com/net/sscli/
http://msdn.microsoft.com/net/sscli/
http://upx.sourceforge.net/
http://www.pkware.com/products/enterprise/white_papers/appnote.txt
http://www.pkware.com/products/enterprise/white_papers/appnote.txt
http://www.icsharpcode.net/

USING REFLECTION TO REDUCE THE SIZE OF .NET EXECUTABLES

ABOUT THE AUTHORS

Vasian Cepa is a PhD student and research assistant at the
Chair of Software Technology Group at the Darmstadt University
of Technology, Germany. He can be reached at cepa@informatik.tu-
darmstadt.de. See also http://www.st.informatik.tu-darmstadt.de.

64 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 7

mailto:cepa@informatik.tu-darmstadt.de
mailto:cepa@informatik.tu-darmstadt.de
http://www.st.informatik.tu-darmstadt.de

