
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004, 2005

Cite this article as follows: Guy Genilloud, William F. Frank: “Use Case Concepts from an RM-
ODP Perspective”, in Journal of Object Technology, vol. 4, no. 6, Special Issue: Use Case
Modeling at UML-2004, Aug 2005,pp.95-107 http://www.jot.fm/issues/issue_2005_08/article8.

Use Case Concepts using a Clear,
Consistent, Concise Ontology

Guy Genilloud, Departamento de Informática, Universidad Carlos III de
Madrid, 28911 Leganés, Spain.
William F. Frank, X-Change Technologies Group, 363 7th Avenue, Floor 11,
New York, NY 10001.

Abstract
The UML ontology is unnatural and limited (at odds with the categories of thought
people use for engineering in natural languages such as Japanese and in
mathematics). As a consequence, the UML standard confuses use case
specifications, types, and instances, as well as confusing a use case model with
what it is a model of. The Extends relationship illustrates these problems. ISO’s RM-
ODP provides a richer ontology based on logical theory. ODP explains Extends as a
relationship between specifications, while opening the door for relationships
between the actions so specified, and reconciling diagrammatic and textual use
case techniques.

1 INTRODUCTION

This paper is addressed to experts of the UML and Use Case communities. We hope
that it will give them a better understanding of the problem that they face in
communicating to demanding students and an even more demanding future, and will
be a step toward reaching some common solutions to these problems.

Use Cases have achieved wide use in software engineering for specifying the
observable behavior of systems. However, there is still controversy among
practitioners about when and how to use some features of use case modeling. One
feature that has created considerable difficulty is the Extend relationship. We believe
that these difficulties are an outcome of the lack of a firm logical foundation for use
case modeling – a clear ontology both of the things modeled by and found in a use
case model. This persistent confusion over Use Case concepts and techniques may
explain the persistent lack of good tools supporting both the textual and the graphical
aspects of Use Case specifications.

In Section 2, we show that important root causes of the problem can be traced to
UML’s unnatural ontology, which feeds confusion between the concepts of use case,
instance of a use case, and type of a use case. In Section 3, we present the ontology of
the RM-ODP, in particular the way it handles instances, specifications and types. In
Section 4, we present the use case concepts from an RM-ODP perspective.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_08/article8

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

96 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

2 USE CASES AND THE ONTOLOGY OF UML

All human languages have an implicit ontology – a set of fundamental categories by
which people use that language to describe their experiences – categories like physical
objects, events, attributes, relationships, facts, predictions, and expectations. UML’s
implicit ontology is confused, because the specifiers of UML have steered clear of the
fundamental issues of what UML models are models of, and what a UML model itself
is, as a category of being [Frank02]. As a result, the explanations given for the
semantics of UML in general, and use cases in particular, are not, on any but a cursory
and uncritical acceptance, coherent.

The Strange Ontology of UML and its Application to Use Cases

The UML terminology is such that the most usual terms denote either types or
specifications of things, rather than the things themselves. Another, entirely separate
term must be used for denoting individuals that are instances of those types (or
specifications). For example, UML-1.5 defines “message” as “A specification of the
conveyance of information…” but also speaks of “sending a message” or of “ordered
messages.” But “sending a specification” or “ordered specifications” is not what is
meant. The fact that UML does not always use “stimulus” (the defined term for an
instance of a message) in these cases shows how impractical it is to choose different
terms for the instance and the type. This way of thinking is not applied in human
languages. For example, imagine that individual dogs were called ‘goodles’, because
the word ‘dog’ was reserved for the type or concept of a dog. People would have to
say: I saw a Dog instance the other day – that goodle was wagging his tail.

In UML-2, Use Case is defined as follows:
“A use case is the specification of a set of actions performed by a system, which

yields an observable result that is, typically, of value for one or more actors or other
stakeholders of the system.” [UML-2].

UML-2 gives the following precision to its readers:
“Strictly speaking, the term “use case” refers to a use case type. An instance of a

use case refers to an occurrence of the emergent behavior that conforms to the
corresponding use case type.” [UML-2].

This is a step in the right direction, since UML-2 makes a clear distinction
between things outside the model, that are to be modeled, like behaviors, and things in
models, like use case (types). But of course, it is very hard to speak strictly all the
time. So the term “use case” is often used, instead of the proper term “use case
instance,” to say that a use case communicates with actors.

Ivar Jacobson thinks that he has been very clear, from the beginning, that use
cases are classes: “In the book I made it very clear that use cases were classes, that
could be instantiated and that could interact with actors (users) only” [Fowler98]. But
in fact, as in this very sentence, Jacobson was not very careful in his terminology. He
rarely used the term “use case instance”, and he used use case to mean either a use
case (class), or a use case instance. For example, when saying that “Customer will
start the use case, but Operator will also communicate with it” [Jacobson92].

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 97

Conversely, Ivar Jacobson has sometimes used the expression “a use case
description”, instead of just saying, “use case.”

For this reason (and also for other reasons that we will see), many use case
practitioners have the incorrect impression that the Extend and the Include
relationship apply between use case instances. As a result, they do not fully
understand their semantics.

Explanations in the Wrong Domain of Discourse

UML holds that an Extend relationship is between use cases, that is, between
specifications, but at the same time it says that the condition of this relationship “must
hold when the first extension point is reached for the extension to take place” [UML-
2]. Likewise, Jacobson tends to explain the notion of extension by talking of use case
instances, but calling them use cases (as he usually did in his first book): “What
happens when a course is inserted in this way is as follows. The original use case
runs as usual up to the point where the new use case is to be inserted.” [Jacobson92]

It does not make sense that a use case, which is an invariable piece of
specification of a system, can be extended (or not) depending on a condition that
occurs during the runtime of that system. Even more so since multiple instances of
that use case may run simultaneously, each yielding its own result of the extension
condition.

Of course, UML provides other explanations that are more correct. For example,
the semantics clause about Extend says the following:

“If the condition of the extension is true at the time the first extension point is
reached during the execution of the extended use case, then all of the appropriate
behavior fragments of the extending use case will also be executed. If the condition is
false, the extension does not occur. ... Note that even though there are multiple use
cases involved, there is just a single behavior execution.” [UML-2].

So, it is possible to a careful reader of the UML specification to correctly
understand how to interpret an Extend relationship, even though the specification is
adamant that the extension does occur, or does not, after the condition is evaluated,
that is, at runtime.

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

98 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Misleading Explanations

UML-1 holds that “The base use case may not be dependent of the addition of the
extending use case”, while UML-2 explains:

“Note, however, that the extended use case is defined independently of the
extending use case and is meaningful independently of the extending use case.”
[UML-2]

Both explanations give the false impression that an extended use case is wholly
independent of its extending use cases. In other words, that the extensions are not
necessary, or not always necessary.

In fact, Jacobson’s idea was not that “the extended use case is defined
independently of the extending use case”, but rather that it has a “course of events that
is meaningful in itself.” As Ivar Jacobson explains in [Jacobson95], an extending use
case may be obtained by extracting (a description of) a flow of events from an overly
complex use case. One would expect both the resulting use cases to be dependent, to
some extent, on each other.

An extended use case depends on its extending use cases in that those may handle
exceptions that cannot be prevented. Implementing an extended use case without
implementing its extending use cases may result in a system that will deadlock, or that
will fail to address critical user and stakeholder requirements.

Conflation between Specification and Type

UML systematically conflates the notions of specification and type, by having a single
modeling element represent both a specification and its associated type. For example,
the model element Class denotes both a specification of an object (a description that
can be read and instantiated), and a type (a conceptual entity – UML-2 explains that
“A type represents a set of values”). As every OO programmer surely knows, the
specification and the type are different – every instantiation of the class is necessarily
an instance of the type, but the converse is not true. In particular, two different
classes, which implement the same operations with different methods, may implement
the same type.

UML classifier (e.g. class or UC)

Type associated with Specification

Every UML classifier represents both a specification artifact and a type

From the definition of use case in UML-2 (see Section 2.1), it is very clear that UML
also conflates the notions of specification and type of a use case. One consequence is
that every use case specification implies a use case type with the same name. Even an
extending use case, which typically specifies several fragments of behavior, rather
than one behavior whose execution yields a result, is considered to be a use case and
to define a type. However, is this a desirable situation?

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 99

In his first book, Ivar Jacobson gives an example in which the base use case is
called “Returning item,” while the extending use case is called “Item stuck.”
Jacobson, who cares about how to name use cases, has applied two different naming
principles to these two use cases. “Returning item” gives an idea of the result
expected from executing the use case – this naming principle is coherent with the very
definition of use case in UML. “Item stuck” does not denote an expected result, but
rather an exception situation. It appears that Jacobson gives extending use cases a
different status than to ordinary use cases, and that he would apply different typing
principles to them. Since neither UML’s ontology nor Jacobson are explicit about the
types of use cases, simply exploring this topic with UML experts is very difficult.

Likewise, it is difficult for UML experts to explore whether there should be
dependence between relationships among types (i.e., generalizations), and
relationships among specifications (i.e., inheritance, Extend, and Include). UML
constrains generalization and inheritance to be aligned, but without being explicit
about the implications of that choice. More importantly, a debate still exists about
whether there is dependence between Extend and generalization, or between Include
and generalization. The only way to settle this debate would be to look at what the
types for use cases exactly are, but the UML framework does not provide any help to
do so, quite the contrary.

Use Case Diagrams

There is only one kind of use case diagram in UML. All the relationships and
associations of use cases are declared in such diagrams. Therefore, a naive reader may
not understand that there is an essential difference between an Extend relationship and
an association between a use case and an actor: the association represents in fact
relationships, called links, between instances of the use case and (instances of) the
actor; on the other hand, the Extend relationship really is between use cases, and it
does not represent relationships between instances of the use cases.

Likewise, a UML reader may not understand the essential difference between an
Extend relationship, which relates specifications, and a generalization relationship,
which relates types.

3 THE ONTOLOGY OF THE RM-ODP

Unlike UML, ODP’s ontology was designed to provide for all the categories
appropriate to specifying systems [Frank02].
As noted in the UML standard, “a major purpose of modeling is to prepare generic
descriptions that describe many specific items.” [UML-1]. UML goes on to explain:

“This is often known as the type-instance dichotomy. Many or most the modeling
concepts in UML have this dual character, usually modeled by two paired modeling
elements, one represents the generic descriptor and the other the individual items that
it describes. Examples of such pairs in UML include: Class-Object, Association-Link,
UseCase-UseCase Instance, Message-Stimulus, and so on” [UML-1].

As can be noted, there is no systematic approach in the UML terminology to
relate a “generic description” to its related “specific items”. In that respect, the RM-

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

100 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

ODP is much more systematic and orthogonal, as can be seen from the definition of
its concept of template.

<X> Template: The specification of the common features of a collection of <X>s
in sufficient detail that an <X> can be instantiated using it. <X> can be anything that
has a type. … A template may specify parameters to be bound at instantiation time. …
Templates may be combined according to some calculus. The precise form of template
combination will depend on the specification language used. [ISO95]

In this definition, the string “<X>” denotes a parameter for which the concept of
ODP template is applicable. So, ODP speaks of an object template whereas UML
speaks of a class. Likewise, ODP speaks of an “operation template” rather than of a
“method”.

Note that the ODP terminology gives precedence to the “specific items”, rather
than to the “generic descriptions”. So, in ODP, the “specification of the conveyance of
information from one instance to another” would be called a “message template”,
leaving the term “message” available for denoting “the passing of information from
one instance to another” (“stimulus” in UML).

The ODP concept of “template” discussed here should not be confused with the
homonymous concept in UML and C++. It is also different from the concept of
template, or form, that analysts fill in for producing a textual specification. Rather, it
designates a specification, that is, a tangible piece of information. An <X> template is
a specification that is sufficiently detailed for instantiating an “<X>”. For example, an
object template corresponds to what UML calls “the full descriptor of a class.”

Specifications vs. Types

In explaining the “type-instance dichotomy”, UML gives the example of the pair
“Class-Object”, even though it is widely accepted in the OO community that a class is
not a type. In fact, UML conflates the notions of type and specification, and
correspondingly, the notions of generalization (a.k.a. supertyping) and inheritance.

To the contrary, the RM-ODP makes an essential difference between the notions
of type and template. In particular, a type in ODP is considered to be a predicate
rather than a specification.

Type (of an <X>): A predicate characterizing a collection of <X>s. An <X> is of
the type, or satisfies the type, if the predicate holds for that <X>. A specification
defines which of the terms it uses have types, i.e. are <X>s. In RM-ODP, types are
needed for, at least, objects, interfaces and actions. The notion of type classifies the
entities into categories, some of which may be of interest to the specifier … [ISO95]

The RM-ODP considers that types are predicates and ignores the fact that types,
too, have specifications. Types classify entities into categories – how a type is
specified to obtain that result is not important. On the other hand, specifications, not
predicates, are of interest with templates – they are needed (by factories, performers
or implementers) for instantiating individual elements.

In some cases, as with the concept of class in UML and in most OO
programming languages, a template is implicitly associated with a type. This situation
is captured (and generalized to other elements than objects) in the RM-ODP with the
notion of template type.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 101

Template type (of an <X>): A predicate defined in a template that holds for all
the instantiations of the template and that expresses the requirements the
instantiations of the template are intended to fulfill... [ISO95]

It is important to note that the template type is not defined to be the most specific
predicate that could be derived from the template. Many implantation details are
indeed deemed irrelevant to users of instantiations of the template. For example, the
details of a method are not deemed pertinent for typing an object.

Instances vs. Instantiations

While UML uses “instance” and “instantiation” interchangeably, the RM-ODP makes
a useful distinction between these two concepts.

Instantiation (of an <X> template): An <X> produced from a given <X>
template and other necessary information. This <X> exhibits the features specified in
the <X> template… [ISO95]

Instance (of a type): An <X> that satisfies the type. [ISO95]
While an individual element is an instantiation of at most one template, it may be

an instance of many types (including template types). For example, an object may be
an instantiation of the object template Square, and an instance of the types Square and
Rectangle.

Relationships between Types and between Specifications

The only relevant relationships between types are those of subtype/supertype.
Subtype/supertype: A type A is a subtype of a type B, and B is a supertype of A, if

every <X> which satisfies A also satisfies B. [ISO95]
To the contrary, templates are specifications, and they have a very different kind

of relationship between them – they can be combined or derived from one another
using some calculus. For example, inheritance is a kind of derivation relationship
between templates.

The RM-ODP makes a clear distinction between generalization and inheritance:
“The inheritance hierarchy (where arcs denote the derived class relation) and

the type hierarchy (where arcs denote the subtype or subclass relation) are therefore
logically distinct, though they may coincide in whole or in part.” [ISO95]

4 USE CASE CONCEPTS FROM AN RM-ODP PERSPECTIVE

From an RM-ODP perspective, the fundamental concept would be that of a use case
individual, that would simply be called a use case. Its definition could be as follows.
Use case: An which action from the viewpoint of the system, that is intended by the
system's designer, and expected by some user or other stakeholder, when
circumstances are appropriate, to yield a particular observable result that is of value to
one or more users or other stakeholders of the system.

As we will now see, the related concepts are easily derived from the generic ODP
definitions.

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

102 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Templates and Specifications

A use case template, following the OPD terminology, is the specification of the
common features of a collection of use cases, in sufficient detail that a use case can be
instantiated (by a programmer) using it.

A use case template is the full descriptor of a use case. This full descriptor is
obtained from a base use case specification by applying inheritance to it, as well as all
its inclusions and extensions. Depending on context, a use case name, e.g. “Returning
item” represents a partial specification (a use case as it is written by analysts), a use
case template (the specification implemented by programmers), or a type of use case
(see next section).

What UML calls an extending use case is in ODP a partial specification of a use
case (the specification of some of the common features of a collection of use cases).
The name of an extending use case, e.g. “Item stuck”, can denote a partial
specification of a use case, and perhaps a type (see next section). It cannot denote a
use case template since an extending use case may extend several base use cases.

The question of whether an included use case specification may induce a use case
template is more complicated. The answer is clearly positive if the use case
specification, or more precisely the full descriptor that it entails, may be instantiated
on its own. It is clearly negative if the “included use case” provides no observable
result to an actor or to a stakeholder of the system.

That latter case calls for the introduction of a new concept that would be a
generalization of the concept of a use case: First, an occurent is defined as anything
that happens, as opposed to something that persists [Sowa99]. Second, a system
action is defined as an occurent in which the efficient cause of the occurent is the
system [Barnes94]. But the condition of the provision of providing an entirely
observable result is not yet included. A use case is then the externally observable
specialization of a system action. The full descriptors of “included use cases” would
then be “system action templates”, some of which would be use case templates as
well.

 Type of a Use Case

We do not intend in this paper to fully define the way use cases shall be typed. We
leave the problem to the designers of use case methods. However, we can explain the
ODP view on this matter to them.

Two questions are to be answered: 1) In a use case model, what are the types that
are defined? and 2) How are these types defined?

As a partial answer to the first question, ODP suggests that there is one type, the
template type, for each use case template in the model. These types are named by the
name of their template, i.e., by the name of their base use case specification.

The ODP definition of a template type (see Section 3.1) gives us an indication as
to how these types shall be defined. Moreover, we can take into account the
specificities of use case modeling for determining what should be meant by “the
requirements the instantiations of the template are intended to fulfill.” We obtain the
following definition:

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 103

Template type of a use case: a predicate defined in a use case template that
holds for all the instantiations of the template and that expresses the observable result
that the instantiations of the template are intended to provide.

Concretely, a methodologist could therefore declare that the type of a use case is
defined by the contents of the field named “Goal” in the base use case specification. A
methodologist, following UML, may also decide that additional properties of the use
case should also go into the making of its template type, such as its associations to
actors.

Every base use case specification defines therefore a type of a use case, to which
it gives its name. But what about included, extending, and generalized use cases?

If an included use case specification is the basis of a use case template, then it
yields a type of a use case (as every template does). In general, this template type is
unrelated (by generalization) to the template types of the including use cases.

Since an extending use case specification is not the basis of any use case
template, it yields no template type. This leaves methodologists with a choice as to
whether or not an extending use case specification yields a use case type. Our own
inclination is to answer this question by the negative (we are comforted in that
direction by the different naming discipline that Jacobson was applying to extending
use case specifications, as compared to ordinary use cases, see Section 2.4). However,
we can conceive that an extending use case specification (or more precisely, a clause
in this specification) goes into the making up of template types.

Since the generalization relationship in UML denotes both inheritance between
specifications and sub/supertyping relations between types, it is logical that
“generalized use cases” also yield types.

The generalization relation between use case types needs not to be explained as it
is implied by the ODP definitions of subtype and supertype. It is of course
distinguished from inheritance (a derivation relationship between specifications).
However, the characteristics used for typing and the inheritance rules can be such that
inheritance and generalization coincide.

The Include and Extend Relationships

The ODP view is that Include and Extend are relationships between use case
specifications. Both mean that the two specifications they join must be combined,
unconditionally, to yield a new specification.

Of course, Extend has a condition associated to it. In fact, this condition pertains
to how to achieve the requested combination – that is, it is to be considered when
considering the semantics of the full descriptor of the use case.

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

104 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Specification
Step 1: ~~~

 insert here
Step 2: ~~~
Step 3: ~~~

 insert here

UC Type:
Sell Fund Shares

«extends»

Extension
Specification
Fragments
 Block A
 Step A1
 Step A2
 Block B
 Step B1
 Step B2

Sell
Fund Shares

Sales Charge

UC Type:
Sales Charge

Extend relationships are between specifications, and they contribute to yield the full descriptor of a use
case. There is no relationship between the associated types. In fact, the type of the extending use case is

a consequence of the conflation in UML between specification and type, and is best ignored.

In his book “The Object Advantage,” Ivar Jacobson, with his coauthors, confirms that
the Include and Extend relationships apply unconditionally: “In other words, we have
defined two relations between use cases, both of which are of static character”
[Jacobson95].

In his earlier book “Object-Oriented Software Engineering”, Ivar Jacobson
explained that Uses (now Include) might be considered as a kind of inheritance
relationship [Jacobson92]. Indeed, thinking exclusively in terms of specifications, an
included use case contributes to a use case template in very much the same way that a
generalized use case does. And so does an extending use case. Include and Extend are
therefore derivation relationships between specifications, like inheritance. However,
unlike inheritance, Include and Extend relationships can hardly be aligned with
generalization relationships between types.

When to Use Extend

Ivar Jacobson speaks also in terms of specifications when he explains why he has
invented the Extend relationship.

“A use case description can be rather difficult to overview if it contains too many
alternative, optional or exceptional flows of events that are performed only if certain
conditions are met as the use case instance is carried out. A way of making the
description 'cleaner' is to extract some of these subflows and let them form a use case
of their own. This new use case is then said to extend the old one, if the required
conditions are met. Such a construction can be achieved by using the extends
association between the use cases.” [Jacobson95]

In fact, Ivar Jacobson explains here two notions, which should be distinguished:
extending a behavior, and the Extend relationship. Many use case practitioners, and in

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 105

particular Alistair Cockburn, barely use the Extend relationship at all. Yet, when
writing a use case, they often use one or several clauses describing alternative flows
of events. Alistair Cockburn calls such clauses “extensions” (“We say extension as
opposed to failure or exception so that we can include alternative success as well as
failure conditions.” [Cockburn00]) Even though Cockburn has extensions being part
of his use case, he speaks of the “extension conditions”, and he correctly explains that
these are “the conditions under which the system takes a different behavior.” 1

In the above explanation, Ivar Jacobson seems to suggest that the Extend
relationship must be used whenever one wants to make a use case cleaner. But his
position ignores widely used techniques for writing a use case, as the specification of
a normal flow of events, plus the specifications of alternative flows of events. This
leaves his readers still perplex about when to use Extend. This leads us to propose a
simpler, more understandable, explanation.

The Extend relationship embodies a reuse technique for specifications of
alternative flows of events. When a writer of use cases finds herself in a situation
where she has to write again and again the same specification use cases of an alternate
flow of events, she has the option to put this piece of specification in a so-called
extending use case, and to relate this use case via the Extend relationship to all the
other use cases to which it applies.

5 SUMMARY AND CONCLUSIONS

While it is possible for a thoughtful reader of Jacobson and of the UML standards to
obtain a correct understanding of the semantics of use case models, it is rather
difficult to do so. Its ontology being unnatural (at odds with natural languages), the
UML standard contains numerous sentences that confuse the picture between use
cases, use case instances, and use case types. For example, from the UML standards
“a use case is a specification …” and “strictly speaking, by use case we mean use
case type”, it follows that a use case, strictly speaking, is not a specification, but a
type of specification. It is not surprising then that many use case practitioners believe
that Extend and Include are relationships between use case instances.

The ontology of the RM-ODP, on the other hand is more natural and more easily
applicable to other contexts than OO modeling. It is indeed easier to be rigorous in
saying use case type or use case template whenever this is what is meant, than to
always add “instance” after “use case” in the other situations. Applying the same
rigor, one would explain Include and Extend for what they are, that is relationships
between specifications. By separating the relations of inheritance between
specifications, and generalization between types, we see that we can reconcile the
positions of Jacobson who explained Uses and Extends in terms of inheritance
[Jacobson92], and Anthony Simons who provided in [Simons99] compelling
arguments why Extend could not be mistaken for inheritance.

Following the work that was done in the foundations of logic in the 20th century
[Strawson63], the RM-ODP ontology gives precedence to the most fundamental

1 Alistair Cockburn uses here the term “behavior” with its English meaning (what the system actually
does) rather than with its UML meaning (a specification of what the system shall do).

USE CASE CONCEPTS USING A CLEAR, CONSISTENT, CONCISE ONTOLOGY

106 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

concept, that of the individual use case, which can be defined for what it is.
Immediately, it becomes clear that an instance of an “included use case” does not
necessarily fit that definition of a use case. The inescapable conclusion, so far unseen
by UML, is that another concept (say system action) is needed to explain use case
modeling.

This paper does not propose final answers to questions about UML semantics.
Rather, we hope to have provided UML experts with new tools to analyze the
problems from a new perspective, to find appropriate solutions, and to communicate
more effectively about them.

6 ACKNOWLEDGEMENTS

We acknowledge the contributions of Joaquin Miller to the years of discussions that
lead to this paper. We are also grateful to an anonymous reviewer for his or her
valuable comments and suggestions.

REFERENCES

[Barnes94] Jonathen Barnes, Aristotle's Posterior Analytics, 2nd ed. Claredon Press,
1994.

[Cockburn00] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley,
2000.

[Fowler98] Martin Fowler, Alistair Cockburn, Ivar Jacobson, Bruce Anderson, and
Ian Graham, Question Time! about Use Cases. 13th ACM Conference on
Object-Oriented Programming, Systems, Languages and Applications—
OOPSLA'98. Vancouver, BC, October 1998.

[Frank02] William Frank and Kevin P. Tyson, "Be Clear, Clean, Concise,"
Communications of the ACM, vol. 45, pp. 79-81, 2002.

[ISO95] ISO/IEC and ITU-T, Open Distributed Processing - Basic Reference
Model - Part 2: Foundations, Standard 10746-2, Recommendation X.902.
1995.

[Jacobson92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Övergaard., Object-Oriented Software Engineering – A Use Case Driven
Approach, Addison-Wesley, 1992.

[Jacobson95] Ivar Jacobson, Maria Ericsson, and Agneta Jacobson, The Object
Advantage: Business Process Reengineering with Object Technology,
Addison-Wesley, 1995.

[Simons99] Anthony J. H. Simons, Use Cases Considered Harmful, 29th Conf. Tech.
Obj.-Oriented Prog. Lang. and Sys., (TOOLS-29 Europe), IEEE
Computer Society, 1999:

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 107

[Sowa99] John F. Sowa, Knowledge Representation: Logical, Philosophical, and
Computational Foundations, Brooks/Cole Pub Co., 1999.

[Strawson63] Peter Frederick Strawson., Introduction to Logical Theory. 1963:
Routledge Kegan & Paul, 1963

[UML-1] OMG, OMG Unified Modeling Language Specification v. 1.5, March
2003.

[UML-2] UML 2.0 Superstructure Specification (draft recommendation in the
finalization phase), August 2003.

About the authors
Guy Genilloud is an analyst and a consultant on enterprise information systems. He
is currently a visiting professor at the Universidad Carlos III de Madrid, where he
teaches software engineering. His research interests include distributed systems,
object-oriented modeling, requirements engineering and specification techniques. Guy
represented Switzerland at the International Standards Organization on the works for
the Reference Model for Open Distributed Processing. He was a contributor to the 3C
submission for UML-2. He can be reached as guy.genilloud at a3.epfl.ch.
William Frank is Chief Executive Officer at XTG, providing high performance
applications for the financial services industry. He is the author of a patent-pending
method for business federation, one of the authors of Version 2 of the Unified
Modeling Language, and was chair of the US delegation to the International Standards
Organization for the Reference Model for Open Distributed Processing. He taught
systems engineering at MIT and was a Member of the Technical Staff at Bell labs. He
can be reached as wfrank at xtg.bz.

