
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004, Aug 2005

Cite this article as follows: Michał Śmiałek: “Accommodating informality with necessary precision
in use case scenarios”, in Journal of Object Technology, Vol. 4, No. 6, Special Issue: Use Case
Modeling at UML-2004, Aug 2005 , pp.59-67.http://www.jot.fm/issues/issue_2005_08/article5

Accommodating Informality with
Necessary Precision in Use Case
Scenarios

Michał Śmiałek, Warsaw University of Technology and Infovide S.A., Poland

Abstract
Paper contains a proposition of notation for use case scenarios that accommodates the
needs of different roles in software development projects. Some roles require simple
and informal English sentences with references to the domain vocabulary. Other roles
need a relation and mapping to user interface elements or messages flowing inside the
developed system. These contradictory requirements lead to a conclusion that the use
case notation should be a composition of several notations with precisely defined rules
for their transformation. There are proposed four such notations based on structured
text, interaction diagrams and activity diagrams. There is also presented a mapping
between specific elements of these notations and a mapping to elements of the static
domain and design models.

1 INTRODUCTION

If we ask software developers, what characteristics they need from requirements, they
will most probably answer: precision in defining the system’s scope. If we ask the users
the same question, they will likely answer: we need understandability in the context of
our everyday business. Unfortunately, it is a common observation that formal and thus
precise requirements are hard to read and understand for the “ordinary people”. On the
other hand, requirements written in “common prose”, and acceptable for the users, are
usually too ambiguous for the system architects and designers. This might seem as a
major discrepancy that the requirements analysts face in their everyday practice, and that
eventually calls for some resolution from the methodologists.

A very good example of problems that have their source in the above discrepancy is
the use case model together with the associated scenario model. Use cases introduced by
Ivar Jacobson around 1992 [Jacobson92], have already been defined in so many ways by
different authors that it certainly leads to huge confusion about the actual notation and
specification techniques. Alistair Cockburn back in 1997 has counted eighteen different
definitions of use case [Cockburn97]. These definitions differ in basically four

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_08/article5

ACCOMMODATING INFORMALITY WITH NECESSARY PRECISION IN USE CASE

SCENARIOS

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

dimensions: purpose, formality of contents, multiplicity of scenarios and formality of
model. Depending on the definition, the use cases tend to be very formal or quite sketchy.
Russel Hurlbut [Hurlbut98] summarizes almost 60 approaches towards use case
specification. These approaches can be classified in terms of notation into textual,
graphical and dynamic. Textual formats include unstructured text narratives, structured
descriptions (templates), semi-structured scripts, formal expressions and tables. Graphical
formats employ structure, state, interaction and implementation diagrams based often on
the UML notation. Dynamic formats are based on animations and dynamic visualizations
of the use case narration flow. Other notations include storyboards and role playing.

This multitude of notations is caused mainly by imprecise definition of use cases by
their inventor which was eventually not made more precise in the UML standard
(including the latest version 2.0 [UML03]). It can be argued that this ambivalence of use
cases is caused by many targets that they aim at. Use cases are often utilized as the
driving elements for the whole software development process [Jacobson92, Kruchten99].
The analysts write use cases to communicate their understanding of the prospective
system’s functionality. The users participate in formulating use cases to make sure their
requirements are communicated well. The developers employ use cases to design
architectures fulfilling the required functionality. User interface designers write
storyboards based on use case scenarios. Testers design use case based test cases. If we
browse different approaches summarized in [Hurlbut98] we can come to a conclusion
that an “ideal” notation for use cases is impossible to reach. If the notation is to be
general, it tends to be rather informal in its nature. More formal notations are designed for
specific purposes, like user interface specification [Constantine01], automatic
requirements verification [Some02] or test automation [Gelperin04]. Some use case
notations impose architectural or design decisions (like the usage of UML interaction
diagrams).

In this paper we argue that a single notation for use cases is not capable of
accommodating all the needs imposed by a modern software development project. We
thus propose a suite of closely related and transformable notations for use case scenarios.
The primary notation in the suite is intended to serve as a balance between informality
necessary for the users and precision aimed at all the system development roles. We also
introduce secondary notations suitable for specific development purposes. All the
notations have precise transformation associations that link appropriate component
elements.

2 LOOKING FOR A “PERFECT USE CASE”

In search for a use case notation suitable for the widest “audience” in a software
development project, we should start with a suitable general definition. We shall use the
definition offered by Alistair Cockburn [Cockburn00] which is probably one of the most
frequently referenced in the literature (and therefore quite representative). The definition
starts by defining the scenario:

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 61

“Scenario. A sequence of interactions happening under certain conditions, to
achieve the primary actor’s goal, and having a particular result with respect to that goal.
The interactions start from the triggering action and continue until the goal is delivered or
abandoned, and the system completes whatever responsibilities it has with respect to the
interaction.”

Then, the actual definition of the use case:
“Use Case. A collection of possible scenarios between the system under discussion

and external actors, characterized by the goal the primary actor has toward the system’s
declared responsibilities, showing how the primary actor’s goal might be delivered or
might fail.”

The definition is general enough not to enforce any particular notation. However, it
gives several important characteristics of a use case. The most important of them are: use
case is a single service (with a single goal) offered by the developed system; use case is
composed of several scenarios; all scenarios in a use case lead to the single goal or to
failure and scenarios are sequences of interactions. We shall add to this definition also a
requirement that all the use case scenarios should start with a triggering action performed
by the user. According to this, it is only the actor (someone or something outside of the
system) that can start scenarios, not the system itself.

The definition above is given from the point of view of a methodologist. Is sets
necessary boundaries for the prospective notation. These boundaries place use cases in
correct relations to other artifacts of the software development process and allow for
proper organization of functional requirements in a software project. In order to design
notations suitable for various project roles we still need to consider the point of view of
these roles (see Figure 1). In the following sections we will therefore try to look at use
cases from several points of view. These points of view were communicated by
participants of several commercial projects where use cases were used to control the
development process.

User’s point of view. Use case should describe a single service offered by the
developed system. It should be written in common English with simple sentences. The
sentences should use notions from the user’s domain vocabulary. All the descriptions of
the domain (notion definitions) should be avoided in the use case text (to prevent
duplication) but should be easily accessible from within it. Sentences should be
understood by diverse groups of users (e.g. from different departments). No special
keywords or formal constructs are allowed. A single scenario should represent a single
story without any alternative courses. Some users prefer graphical representation showing
a graph of activities with alternative branches (“it shows the bigger picture”).

Analyst’s point of view. Use case should describe a single unit of functional
requirements. It should have a well defined structure. Sentences in use case scenarios
should be ordered and numbered (for easier reference). Terms in the sentences should be
clearly referenced with appropriate vocabulary definitions. It should be possible for the
analyst to use synonyms and switch between different user vocabularies when presenting
scenarios to different groups of users. Entries in the vocabulary should be easily

ACCOMMODATING INFORMALITY WITH NECESSARY PRECISION IN USE CASE

SCENARIOS

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

accessible for inclusion in the use case text. New terms used in text should be easy to
define in the vocabulary. It should be possible to hide all the details of the user interface
and of the system internals.

Use CaseAnalyst

User/Sponsor

Tester

User Interface
Designer

Architect/Designer

«verify»

«define»

«test»

«design UI» «design behavior»

Figure 1. Use case from different points of view

Designer’s point of view. Use case should define a single unit of system’s behavior to be
developed. Use case should be written in a formal notation where scenarios would
constitute a temporal sequence of messages (function calls etc.). The sequence should
clearly reflect (a) interactions of the user with the system and (b) communication inside
the system in response to the user’s interactions. Messages should be connected with
appropriate architectural (static) elements of the designed system including elements of
the user interface. Scenarios in the form of message sequences should allow for automatic
generation of code that handles these messages. Changes in the user’s requirements
should be easily traced to changes in message sequences, changes in the static
architecture and finally – changes in code.

User interface designer’s point of view. Use case should define a coherent set of
storyboards that illustrate the details of the system’s dialog with the user. Use case
scenarios should show sequences of consecutively appearing user interface elements
(screens, dialogs, menus, etc.) and interleaved user’s inputs. The user interface elements
should have clear links with the user interface prototype.

Tester’s point of view. Use cases should be the basis for creating “test use cases”.
Test use cases should be associated with one or more use cases. Every test case should
contain several test scenarios. Use case scenarios should be easily translatable into test
scenarios. The ability of associating several scenarios with test scenarios would allow for
acceptance testing where it is impossible to verify proper behavior of the system only by
testing the behavior of a single use case. Note: test use cases described here have
significantly different semantics than test cases as defined eg. in RUP [Kruchten99].

If we consider all the requirements presented above, we come to a conclusion that a
single use case should actually have several forms. For instance, the form acceptable for
the users has close links with the domain model (the vocabulary). In turn, the designer’s

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 63

form is related to the static architectural model. One of the forms is composed of several
actions, while the other is a sequence of messages. This leads us to a notation which is
actually a set of distinct notations with precisely defined transformations. The idea of
different forms for use cases is present in the RUP methodology [Kruchten99]. Beside
“use cases”, RUP introduces “use case storyboards” that extend textual use case
definitions with interaction and class diagrams. However, the notation proposed in RUP
in not formally defined and lacks more precise definition of transformations.

3 USE CASE NOTATION METAMODEL WITH
TRANSFORMATIONS

Having defined appropriate requirements for the use case notation we can now describe
the notation that tries to fulfill these requirements. We will define the proposed notation
by means of a MOF metamodel as it was done in [UML03]. Some of the elements of
notation are already defined in the UML Superstructure. Names of such “predefined”
metaclasses are written in bold with a reference to appropriate page in [UML03].
Considering the scope of this paper we present only the most important elements of
notation. The highest level elements are thus presented on metaclass diagrams. Other
elements and their transformations are briefly described in text.

As declared in previous sections, the UseCase ([UML03], p. 519) shall be detailed
through four distinct representations (see Figure 2). The primary representation is
structured text. Complementary to this representation is the activity graph. These
representations are meant for the users and analysts. Designers use the sequence graph
representation. Finally, the user interface designers use the storyboard representation.
Additionally, the testers design test use cases that are not direct representations of
UseCase. This is due to the fact that a test use case can be related to several use cases that
form a testing sequence. Moreover, a single UseCase can participate in several test cases.
Note that we leave the description of test use case notation for future work as being
outside of scope of this paper.

Structured Text
Use Case

Representation

Activity Graph
Use Case

Representation

Sequence
Graph Use

Case
Representation

Storyboard Use
Case

Representation

Test Use CaseUse Case

1..* 1..*

0..1

1

0..1

1

0..1
+primary notation

1

0..1

1

ACCOMMODATING INFORMALITY WITH NECESSARY PRECISION IN USE CASE

SCENARIOS

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Figure 2. General metamodel for use case representations

The structured text representation is based on simple grammar sentences that form use
case scenarios. In this grammar, sentences are composed of a subject, a verb and a direct
object (SVO). In some cases, a more complex form is used, with a preposition and an
indirect object (PO). Such notation was originally proposed by Ian Graham (see e.g.
[Graham96]). Experience shows that the SVO[PO] notation is sufficient enough to
represent possible interactions between users and systems. From the first sight, very
simple sentences seem to limit the analysts. However, this is not the case if we relate
parts of sentences to appropriate vocabularies. Simple sentences allow the analyst or the
user to concentrate on interactions, while the descriptions of notions found in the
interaction sequence are left out to the vocabulary. This forms a notation that is judged by
the users as very clear and comprehensible. On the other hand, this notation allows for
easy and unambiguous transformation to other notations.

Structured Text
Use Case

Representation

Precondition

Scenario

Vocabulary
element

SPO(PO)
Sentence

Sentence
Subject

Sentence Verb

Sentence
Object

Postcondition

Scenario
Sentence

Conditional
sentence

0..*

1..*
0..*

0..*1

0..*1

0..*

1
+synonym

1..2
{ordered}

1

1

1..*
{ordered}

Figure 3. Metamodel for the structured text representation

+Summary of the structured text notation is given on Figure 3. The representation
contains a list of pre- and postconditions which shall not be elaborated in more detail
here, and a set of scenarios. Every scenario is a sequence of ordered sentences. These
sentences are divided into SVO[PO] sentences and conditional sentences. Conditional
sentences allow for synchronization between scenarios, and also allow for inclusions or
extensions from other use cases (their structure is ommited here for brevity). SVO[PO]
sentences form the actual course of a scenario. Every part of such a sentence (subject,

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 65

verb or objects) is related to an appropriate entry in the vocabulary. Subjects relate to
entries from the vocabulary of actors (instances of Actor – p. 512), objects relate to
entries in the domain vocabulary and verbs relate to a vocabulary of predicates
(operations on domain elements). These vocabularies are distinct, and appropriate
constraint should be imposed on the metamodel (namely on the relations between
vocabulary elements and sentence parts). Note also that on Figure 3, the second of the
objects (i.e. the indirect object) should include a preposition which is not shown as being
one of the attributes of the ‘Sentence Object’ metaclass).

The storyboard use case representation is very similar to the structured text
representation. While the primary text notation should be UI independent, the storyboard
notation allows for the inclusion of the user interface design elements. The structure of
scenario sentences is very close to that shown on Figure 3. The main difference is that
sentence parts relate to other vocabularies than those in the structured case notation.
These vocabularies contain descriptions (possibly graphical) of user interface elements
(buttons, screens, menus etc.). Steps in the storyboard type scenarios are more fine-
grained. When transforming the two models, several (possibly one) storyboard sentences
map to a single structured text sentence.

Activity graph representation is based on UML’s Activities (p. 283). The mapping
from structured text is quite straightforward here. Every SPO[PO] sentence maps into one
Action (p. 280), while every conditional sentence maps into a DecisionNode (p. 319). All
the scenarios in the text representation map to one or more Activities that contain
Actions and DecisionNodes connected with ActivityEdges (p. 293). A single Activity
(with an associated activity diagram) can therefore summarize a set of correlated
scenarios contained in a use case.

Sequence graph representation is based on UML’s Interactions (p. 419). This
representation is distinct from the other notations in that it might reveal the internals of
the developed system. For this reason this notation has to be used with care in order not
to violate the basic characteristic of the use case being a description of behavior
observable to the actor. The transformation from text representation is trickier here, as we
need to map sentence parts into appropriate UML constructs which is not straightforward.
Moreover, the mapping depends on the mapping of the domain vocabulary and the
domain class model into the design class model. When constructing the sequence graph
representation, every SVO[PO] sentence can be mapped into several Messages (p. 428).
An object in the textual scenario sentence can be mapped into several design Classes (p.
86) from the design model (the ones that map from vocabulary entry associated with this
object). A verb in the sentence maps into one or more operations of the above Classes.
For the mapping to be coherent, appropriate Lifelines (p. 427) that receive Messages
should be associated with relevant Classes. It can be noted that this approach is in close
relation to the idea of distributing responsibilities between objects found e.g. in
[Biddle02].

ACCOMMODATING INFORMALITY WITH NECESSARY PRECISION IN USE CASE

SCENARIOS

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

4 CONCLUSIONS AND FUTURE WORK

The proposed set of related notations was used in several software development projects.
In all the projects, the notation has shown to be good means of communication between
various project roles. It seems to fulfill most of the requirements imposed by the roles as
described in Section 2. The users have reported very good comprehension of scenarios
written using the SVO[PO] notation. The associated mappings allowed for instant
estimations of the influence that the changes in requirements imply on the user interface
design or the system architecture. This last advantage of the presented transformations
was acknowledged to be very important for efficient management of projects in changing
environments.

The definition of formal transformations between use case notations brings use cases
closer to the current trend of model-driven software development [MDA03].
Transformations defined on the level independent of computations (CIM), allow for
pushing the control over the development efforts up to the users themselves. By using the
proposed notations and mappings it would be possible to trace platform independent and
platform specific constructs back to the system’s functionality postulated by the users. An
additional important ability of the proposed notation is the promotion of reuse as
postulated in [Smialek00]. Requirements written in the proposed form can be easily
divided into reusable chunks. These in turn indicate prospective software components to
be reused in whole or in part. This indication is much simplified with appropriate
mapping set between the requirement chunks and appropriate architectural elements.

Research associated with model or notation transformations is always influenced by
the problems with their automation. It takes considerable effort to keep scenarios written
in the four notations synchronized by hand. Future work is therefore associated with
developing of an appropriate tool to support the proposed notation. The tool would allow
for creating scenarios in the proposed structured text notation and enable transformations
to other UML-based notations. The first version of the tool was already developed for a
subset of the proposed notation and having limited transformation capabilities
[Gryczon02]. The succeeding versions shall be integrated with a commercially available
UML-based CASE tool. This would allow for testing of effectiveness of the proposed
transformation methods in real software development projects.

REFERENCES

[Biddle02] R. Biddle, J. Noble, E. Tempero: “From essential use cases to objects”, in
forUSE 2002 Proceedings, L. Constantine, Editor, Ampersand Press, 2002.

[Cockburn97] A. Cockburn: “Structuring use cases with goals”, Journal of Object-
Oriented Programming, vol. 5, no. 10, pp. 56-62, 1997.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 67

[Cockburn00] A. Cockburn: Writing Effective Use Cases, Addison-Wesley, 2000.

[Constantine01] L.L. Constantine, L.A.D. Lockwood, “Structure and style in use cases
for user interface design”, in Object-Modeling and User Interface Design, M.
van Harmelen, Editor, Addison-Wesley, 2001.

[Gelperin04] D. Gelperin: Precise Use Cases, LiveSpecs Software,
(http://www.livespecs.com), 2004.

[Graham96] I. Graham: “Task scripts, use cases and scenarios in object-oriented
analysis”, Object-Oriented Systems, vol. 3, no. 3, pp. 123-142, 1996.

[Gryczon02] P. Gryczon, P. Stańczuk: Obiektowy system konstrukcji scenariuszy
przypadków użycia (Object-Oriented Use Case Scenario Construction
System), MSc thesis, Warsaw University of Technology, 2002.

[Hurlbut98] R.R. Hurlbut: Managing Domain Architecture Evolution Through Adaptive
Use Case and Business Rule Models, PhD thesis, Illinois Institute of
Technology, Chicago (http://www.iit.edu/~rhurlbut/hurl98.pdf), 1998.

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard: Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[Kruchten99] P. Kruchten: The Rational Unified Process: An Introduction, Addison-
Wesley, 1999.

[MDA03] MDA Guide Version 1.0.1., Object Management Group, 2003.

[Some02] S.S. Somé: “Beyond scenarios: generating state models from use cases”,
Scenarios and state machines: models, algorithms and tools. ICSE 2002
Workshop, Orlando, Florida, 2002.

[Smialek00] M. Śmiałek: “Global reuse strategy based on use cases”, OOPSLA 2000
Companion, Conference on Object-Oriented Programming, Systems,
Languages and Applications, Minneapolis, pp.49-50, 2000.

[UML03] Unified Modeling Language: Superstructure, version 2.0, Final Adopted
Specification, ptc/03-08-02, Object Management Group, 2003.

About the author
Michał Śmiałek holds a PhD from the Warsaw University of
Technology where he is currently an Associate Professor. He is also
with Infovide S.A. (http://www.infovide.pl) where he is a senior
consultant. Michal has more than 14 years experience in systems
development using object-oriented methods. He is an author of a book
on object-oriented modeling with UML 2.0 prepared for the Helion
publishers in Poland. E-Mail: smialek@iem.pw.edu.pl.

http://www.livespecs.com
http://www.iit.edu/~rhurlbut/hurl98.pdf
http://www.infovide.pl
mailto:http://www.infovide.pl

