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Abstract 
We explore common problems that exist in the practice of use case modeling: lack of 
consistency in defining use cases, misalignment between the UML metamodel and the 
textual representations of use cases expounded in the literature, and the lack of a 
semantics that allows use cases to be executable and analyzable. We propose an 
engineering approach to the issues that can provide a precise foundation for use case 
development. We next discuss four potential uses of such a foundation and identify the 
research problems that must be addressed to support these applications. 

1 INTRODUCTION 

Use cases were developed as a technique for capturing the required behavior of a 
software system. [Jacobson92] While they have been successful in having an impact on 
software development, their usage is not as prevalent as we believe it could be. Several 
potential factors account for this, including: 

1. Confusion regarding the meaning of the term use case. Different approaches 
advocate graphical versus textual methods. Further confusion arises as levels of 
abstraction vary widely within and across projects using use cases. 

2. Misaligned characterizations of use cases in the UML metamodel. In UML, use 
cases are characterized as BehavioredClassifiers, which does not correctly support 
the best practices for representing use cases that have been proposed. [Armour01, 
Cockburn01] 

3. Use case semantics are poorly defined, limiting their usefulness to primarily being 
vehicles for communication. While this is an important use for them, wider 
industrial use requires that they support machine based processing and analysis. 

This paper is a philosophical and conceptual exploration of each of these points in detail 
in which we identify potential solutions that support an engineering approach to creating 
use cases. However, engineering use cases is not an end in itself – the technique must 
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provide value across multiple dimensions to be adopted in an industrial setting. To 
support our approach, we discuss four potential uses of such a foundation (prototyping, 
estimation, refinement to design, and test generation). We close by discussing related 
work and future research. 

2 USE CASE CONFUSION 

Across projects, use cases exist at multiple levels of abstraction and are captured in many 
different notions. The leading practitioners [Armour01,Cockburn01] all advocate similar 
content that includes preconditions, main (success) sequences, alternative/exceptional 
sequences, and postconditions. We believe that this serves as a good basis for an 
engineered use case representation, but more detail is needed to define what the 
sequences contain. 

Another issue is that it is not uncommon to see use cases used across widely 
different levels of abstraction, from high level usage of a system to extremely detailed 
descriptions of system behavior. This lack of consistency regarding the level of use case 
abstraction is directly influenced by the content supported within a use case model. We 
take the position that the most useful use cases are those that Cockburn calls “sea level” 
use cases [Cockburn01], which are defined at the user-goal level. Our desire is to make 
constructing good sea level use cases as intuitive and repeatable as possible. A second 
goal of our representation is to enable the capture of precise, analyzable, and executable 
use cases with as little modeling and information required as possible. 

We start by defining a precise contextual foundation for use cases. Use cases are 
usually collected during the inception phases of a project. They allow the system 
requirements to be specified by saying what the system will do without saying how it 
does it. This requires the capability to talk about the key elements in the system in a very 
precise way. However, inception occurs prior to architecture definition and design, so we 
must carefully define the context against which use cases are developed in order to 
achieve this precision. This context is the domain model of the system. 

A domain model is a model of the significant elements from the system’s application 
domain. These are the elements that will be created, modified, and used in the 
application. They are represented as UML classes with attributes. Also present in the 
domain model are domain rules (or invariants,) which capture constraints that must hold 
for instances of the domain objects to be valid. Figure 1 shows the domain model for a 
simple example ATM application. 

The domain model plus the four primitive types (Boolean, float, integer, and string) 
serve as the type system for detailing use cases. Use cases are typically defined as 
sequences of actions that occur between the system and one or more actors, but the 
specifics of the action types that are supported are left undefined in UML. In our scheme, 
use cases support 4 basic actions and 4 flow-of-control actions, each of which has an 
associated statement for use in detailing the use case. 
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Account
accountNumber : Integer
balance : Single

ATMUser
userID : String
pinCode : Integer 1..*1

+accounts

1..*

+accountOwner

1

inv: balance >= 0

 

Fig. 1. The Domain Model for an ATM Application. 
 

Basic Actions: 
• Input – an actor provides input to the use case 
• Output – the use case returns output to an actor 
• Computation – a computation is performed using provided input and domain 

instance information. Computation entails creating, modifying, or deleting 
instances of domain classes. 

• Exception Handling – the system responds to an issue with the input or state of 
the domain model instances. 

Flow of Control Actions: 
• Selection – allows the use case to conditionally execute actions 
• Iteration – allows the use case to repeatedly execute an action sequence 
• Inclusion – allows the use case to include the behavior of another use case 
• Extension – defines the extension point for an extending use case 

Use cases also have preconditions and postconditions, and both are written in terms of the 
domain model. Below is an example use case for the Withdraw Money capability for an 
ATM system. 
 

Use Case: Withdraw Money 
Precondition: ATM Customer must be logged onto system. 
1.  ATM Customer selects Withdraw. 
2.  System requests amount. 
3.  ATM Customer enters amount. 
4.  System dispenses cash. 
5.  System debits amount from the account balance. 
Exceptions: 
3.1 [amount greater than account balance] 
  3.1.1  System displays balance exceeded warning 
  3.1.2  If ATM Customer chooses “continue” rejoin at 3 
  3.1.3  Else terminate use case 
Postconditions: 
    Successful withdrawal:  
 account.balance = account.balance@pre – amount 
    Unsuccessful withdrawal: 
 account.balance is unchanged. 
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This example illustrates the four primary types of statements that can occur in a use case: 
input statements, computation statements, output statements, and exceptions. The 
example also illustrates selection actions and rejoining the main scenario from an 
exceptional alternative. 

This representation (use cases, a high level domain model, and domain invariants) 
serves as a basis for engineered use cases. The use cases consist of very specific types of 
actions. They specify, in terms of the domain model, what occurs in an interaction with 
the system being specified without saying how it is done. 

3 METAMODEL ALIGNMENT FOR ENGINEERED USE CASES 

UML 2.0 Use Case Shortcomings 

Figure 1 shows the current metamodel for UML 2.0 use cases [UML02]. 

RedefinableElement
(from Kernel)

BehavioredClassifier
(from BasicBehaviors)

Actor

DirectedRelationship
(from Kernel)

Classifier
(from Kernel)

Classifier

Constraint
(from Kernel)

Include

UseCase

*

**

0..1

*

1 1

*

Extend
*

1

0..1

0..1

1

*

ExtensionPoint *

1

1..*

*

*

*
+subject

+useCase

0..1

*
+ownedUseCase

{subsets ownedMember}
+useCase

1+extensionPoint

*

{subsets feature,
subsets ownedMember}

1

*

+extension

+extend*

1+extendedCase

{subsets ownedMember}

{subsets source}{subsets target} +includingCase

+include
{subsets ownedMember}

{subsets source} 1

*
*

1
+addition

{subsets target}

*

1..* +extensionLocation
{ordered}

0..1

0..1

+condition
{subsets ownedMember}

 

Fig. 2. The UML 2.0 Metamodel 

Although the UML 2.0 metamodel improved over UML 1.x by adding the notion of 
subjects (what we call context in [Williams01]) to use cases, it does contain two main 
shortcomings. Given the current size of the UML 2.0 specification, the remedies to these 
issues are complex, which prevents a complete and formal rectification of them in this 
paper. In the subsection following this one, we sketch the approach that we believe needs 
to be used in order to remedy them. 

In the UML 2.0 metamodel, the UseCase metaclass aligns with the 
BehavioredClassifier metaclass, which itself is a descendent of Classifer. The OMG 
standard for UML [UML02] states that "a classifier is a type.” This is problematic for use 
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cases, as the essence of a use case is to describe an interaction between an actor an the 
system, not to classify types. One consequence of this misalingment is that generalization 
is poorly defined for use cases. In UML 2.0, geralization is defined as both feature 
inheritance and subtyping. It is unclear how these apply to use cases when they are 
understood to be actor-system interaction specifications. Another issues is that 
BehavioredClassifiers have ownedBehaviors, which misaligns with the typical textual 
based approaches for use cases. 

There are two modifications that partially address the problems with the current use 
case alignment in the UML 2.0 metamodel. However, neither is sufficient to solve the 
problems without additional re-engineering of the metamodel. Use cases could subclass 
Behavior. In the current metamodel, this is problematic, as Behavior always exists in the 
context of a BehavioredClassifier and use cases should exist in the context of the domain 
model, which consists of several classifiers. Another approach would be to add 
constraints to UseCase to prohibit ownedBehaviors and attributes from existing on use 
cases. Then classifierBehavior could serve as the basis for specifying the use case 
behavior. However, this approach has the problem that it presumes that the 
classifierBehavior is updating the state of the use case instance rather than the state of 
domain class instances. To properly support alignment between the graphical syntax of 
UML and the textual details in a use case requires a careful re-examination of the UML 
metamodel. 

We argued earlier that use cases should consist of four basic actions (input, output, 
computation, and exceptions) with supporting actions providing for control flow 
specification (inclusion, extension, sequencing, selection, and iteration.) Were it possible 
to align use cases more carefully with Behavior, refining the model to include specifics 
regarding contents of a use case would offer a degree of precision that is currently not 
available. Allowing use cases to support a (possibly enhanced) subset of the existing 
UML 2.0 actions defined for activities would provide specificity that is lacking in the 
current specification. As noted above, there is currently no good way to do this in the 
existing metamodel. 

Toward a Metamodel Supporting Engineered Use Cases 

As we cannot redesign the use case portion of the UML 2.0 metamodel in this paper 
without possibly causing problems in other portions of the specification, we instead 
outline an approach that can be used to address the concerns raised in the previous 
section. 

The first area that must be addressed is which UML metaclass the UseCase 
metaclass specializes. As suggested earlier, we believe the best remedy is to have 
UseCase be a specialization of Behavior. This is consistent with the vision defined in 
section 2, where use cases have input parameters, return results (output), and have 
preconditions and postconditions. All of these concepts are already supported in the 
current Behavior metaclass. This requires that Behavior be modified or extended to allow 
association with multiple classifiers in order to support using the domain model as the use 
case context. 
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Were we to align UseCase with Behavior, the notion of supported actions is still missing. 
Like the Activities metaclass (which also aligns with Behavior,) the UseCase metaclass 
should specify a set of Actions which can be performed within a use case instance. A 
subset of the current actions defined in UML 2.0 would suffice as a basis for creating 
executable use cases. These include the Read Write Actions (Object Actions, Variable 
Actions, Link Actions, and Structural Feature Actions). These should be extended with 
specific Computational Actions (such as arithmetic, Boolean, and string related actions, 
and domain specific actions.) Invocation Actions are not required, as neither use cases nor 
their contexts support operations or signals. Given the alignments proposed in this 
section, we next explore the semantics required to support engineered use cases. 

4 TOWARD PRECISE USE CASE SEMANTICS 

In order to support an engineering approach to creating precise use cases, we must 
address semantic issues in addition to the structural/content issues discussed above. 
While space considerations prevent a formalized treatment of all relevant semantic issues, 
we provide informal details and in the following discussion. There are two areas for 
which we provide specific attention: execution semantics and generalization. 

Execution Semantics 

For use cases to be precise, we must be able to describe what they mean when they are 
executed. The execution of a use case is performed in the context of a state consisting of 
instances of domain model classes. Domain objects may be created, modified, or deleted. 
Links may be added, or deleted. Attributes may be modified. The following capabilities 
describe the execution semantics of use cases. 

1. Input / Output statements – instantiate formal parameter(s) specified in the 
statement with value(s) of the appropriate type(s). 

2. Computation – create/delete an instance of a domain object, create/delete a link 
between existing domain object instances, modify the attribute of a domain object. 

3. Exception – check exception conditions and fires if true. 
Given a use case, execution proceeds as follows. Each statement in the main scenario is 
executed. During its execution, the alternatives / exceptions defined for that statement are 
checked for execution eligibility. If one or more is eligible, we must determine which one 
takes priority and execute it. The semantics for determining priority must be defined in 
the language. If the alternative specifies where control returns to, that is the point where 
execution continues, otherwise, it resumes at the next statement in the main interaction 
course. 

While this is only an informal explanation of execution semantics, our group is 
exploring surface representations for the use case body and will provide a formal 
semantics based upon that representation in the future. 
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Generalization Semantics 

Generalization has traditionally been a very problematic area for use case semantics. 
UML 2.0 says nothing about use case generalization, leaving it unclear whether 
generalization is meant to be a sub-typing mechanism, or a mechanism for simply 
indicating that the scenarios specified by a parent use case can be replaced with the 
scenarios specified by its children. If sub-typing is the goal, and use cases are re-aligned 
to specialize the Behavior metaclass, the design-by-contract calculus can serve as a basis 
for formalizing generalization. This will ensure the capacity to substitute the child use 
case for the parent in a context. If scenario replacement is the goal, a careful analysis of 
the issues related to replacement is required. Of course, a full semantics of use case 
generalization must be worked out in the context of an updated metamodel that supports 
both alignment with UML and a precise textual specification for a use case. 

5 INDUSTRIAL APPLICATIONS OF ENGINEERED USE CASES 

Before engineered use cases will be accepted in an industrial setting, they must provide 
value that exceeds the effort required to create them. We believe that engineered use 
cases can provide value across at least four dimensions: prototyping, estimation, 
refinement to design, and test generation. The first three are in the early research stage in 
our organization, while the fourth is one in which we have considerable experience. 

Prototyping 

The first benefit of using precise, engineered use cases is the ability to use them as the 
foundation for an executable prototype of the system. This allows early feedback to the 
customer and provides a means for validating the requirements. The prototyping 
approach requires that a precise surface syntax for specifying the use case content exists, 
along with an environment capable of executing these use cases. We have developed beta 
versions of these elements, and have shown that use cases captured with them can be 
executed directly. It also requires a facility for prototyping UI elements and associating 
them with use cases. The steps toward building a useful prototype are as follows: 

1. Build the domain and use case models. 
2. Create mocked-up user interface (UI) elements for the input and output 

statements. 
3. Associate the UI elements with the input and output statements. 
4. Execute the prototype with all involved stakeholders, gathering important 

feedback. 
5. Modify the model according to the feedback and repeat the exercise until the 

requirements are agreed upon by all stakeholders. 
The advantage of prototyping based on engineered use cases is obvious – it requires 
almost no effort beyond normal analysis and design activities to have an executable 
prototype for validating user requirements. 
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Estimation 

Once the requirements have been validated using the prototyping approach described 
above, the next step is to determine how much time and cost are involved in realizing the 
actual system modeled by the use cases. Use cases alone cannot serve as a basis for 
estimation, but are an important element for determining the functional complexity of the 
application being developed. Non-functional requirements also play a significant role in 
determining time and effort. 
We believe that our use case approach will serve as a sound basis for estimation, and we 
are in the very early stages of exploring this idea further. The basic steps in developing 
such an estimation approach are: 

1. Examine existing projects using the engineered use case methods to gather 
baseline information for an estimation model. 

2. Construct the initial estimation model, and apply it to new projects. 
3. Gather feedback from the projects, and refine the estimation model. 
4. Release the model for general use. 

Refinement to Design 

Once the estimate has been accepted and the work authorized, the next two activities 
occur in parallel. The first is to refine the use cases to a detailed design of the system. 
This is done as follows: 

1. The domain model is refined to a full analysis model. This is done by identifying 
boundary and controller classes that serve as additions to the model classes 
already present in the domain model. The boundary classes can be inferred from 
the UI elements discussed in the section on prototyping. 

2. Operations for all of the classes in the analysis model are identified. These are 
informed by the computation actions in the use case model, as well as required 
controller and UI computations for the system. 

3. The input statements are mapped to operation invocations on the boundary 
classes.  

4. The output statements are mapped to returned parameters from or operation 
invocations on the boundary classes. 

5. Interaction diagrams are used to show how use cases are realized in the system 
using the mappings defined in steps 3-4 as a basis. 

6. Further refinement to a detailed design and implementation can now proceed from 
the analysis model and use case realizations. 

Test Case Creation/Generation 

Finally, we must validate that the system constructed from the refinement described in 
the above section actually meets the requirements specified by the use cases. This is done 
by creating precise test cases from the use cases, domain model, and domain invariants. 
Our group has created test generation tools that automatically produce test cases from 
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these models. We have shown a decrease in the effort required to execute the test suite 
and an improvement in the coverage of the functionality of the system. Table 1 shows the 
results of the initial pilots performed with an early prototype version of this approach. 
 

Pilot Properties Outcome 

1 • Test cases developed by 
Research 

• Provided to system owner for 
execution 

• Compared with existing test 
suite developed manually 

• Five-fold reduction in test suite 
size (30 generated test cases vs. 
150 manually created) without a 
loss of functional coverage 

• 68% decrease in time to 
setup/run/verify test suite 

• Major defect detected by new 
suite that esacped detection by 
manually developed suite. 

2 • Modeling and generation done 
in testing organization. 

• Test expert created model and 
generated test cases 

• Comparison against a manually 
developed suite created 
independently by a different 
expert.  

• Coverage of use case 
functionality improved 30% in 
the model-based suite. This was 
achieved with 10% fewer use 
case invocations. 

• Testing team estimates achieving 
comparable coverage to model-
based suite would require twice 
the effort. 

3 • Modeling and generation done 
in testing organization. 

• UML use case model built 
during system design, used by 
testing organization. 

• Testers analyzed the suite for 
usability in the project. 

• >90% coverage of the 
functionality with a suite of 60 
test cases. 

• The suite tested 40 use cases. In 
total, there were 145 input 
parameters, 335 partitions, and 
117 flow edges in the model. 

 
Table 1. Pilot Results for Test Generation Tool 

 

[Williams01] has specific details for these early results. The major conceptual steps in 
test generation are as follows: 

1. For each use case, ensure that there are test cases for each path through the use 
case. This can be done using a technique such as the basis paths method 
[Poole95]. 

2. For each condition in a use case (either selection or exception), ensure that 
condition coverage is achieved using a condition coverage technique [Beizer90]. 
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3. For each domain rule in the domain model, determine all use cases which update 
any variable in the domain rule. Determine the interesting ways in which the 
implementation could be tested to ensure the rule holds, and perform those tests. 

6 RELATED WORK 

Two recent papers explore extensions or alternatives to the standard UML metamodel for 
use cases. These include [Nakatana01], which integrates the activity graph metamodel 
and use case metamodel. In this view, use cases are still stateful classifiers, and the tight 
link between the actions comprising the use case and the domain model is missing. 
[Rui03] presents a metamodel that supports refactoring of use case models. This is 
interesting work, although the metamodel is not aligned with UML, nor does it pay 
careful attention to the context in which use cases are written. 

Another common area for focus is the correct representation of use case structure. 
[Metz03] focuses on the necessity of being able to correctly and concisely specify 
alternative courses in a use case. This paper is related to the need to support alternative 
sequences of statements and exceptions, and defines the differences between these 
precisely. [Li00] offers a structured representation for use case content, and a semi-
automated approach to translating use cases into sequence diagrams. This contribution is 
interesting for both representation and refinement purposes. 

There is a significant body of work seeking to formalize the content or manner in 
which use cases are captured. Both [Lee98] and [Jorgensen04] seek to formalize use 
cases using concepts from Petri Nets. The first paper seeks to represent use cases using 
the formalism of Constraints-based Modular Petri Nets, while the second uses Colored 
Petri Nets. While both papers provide an elegant formal basis for use cases and both 
could be used for use case execution, neither Petri Net approach has been accepted in 
industry beyond the embedded/real-time space. Finally, [Rysavy04] seeks to represent 
use cases using higher-order logic. The benefits of this approach are an architecture that 
supports both static and behavioral information. Again, the downside is lack of industry 
acceptance of formal representations like HOL. 

Finally, in the proposed application areas, there is significant work in the testing area 
[Basanieri02,Briand01] and the estimation area [Smith03]. The testing work typically 
uses refinements of use cases to interaction diagrams for generation, which differs from 
our approach [Williams01]. Estimation work to date has been somewhat disappointing in 
its accuracy, primarily due to the wide variation in the abstraction levels at which use 
cases are captured. We hope that our more defined approach will help mitigate these 
problems. 
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7 CONCLUSIONS 

We have argued that for use cases to be truly useful for industrial software development 
an engineering approach to developing them must be used. Such an approach requires 
first that use cases be well defined, both structurally and behaviorally. To facilitate this 
definition, we proposed a method where use cases are developed in the context of a 
domain model and domain rules. The content of the use cases is carefully elaborated 
using this context. 

Next, we proposed an approach for realigning the UML 2.0 metamodel for use cases 
to reflect the structure and capabilities described above, followed by a discussion of 
semantics issues associated with use cases. This focused on execution and generalization. 

Finally, we presented four application areas that place engineered use cases in the 
context of the software lifecycle. These are prototyping, estimation, refinement to design, 
and test creation. We presented a general outline for using engineered use cases in each 
area. 

What we have presented in this paper is a philosophical and conceptual framework 
for developing engineered use cases. What is lacking is the formalized machinery to 
ensure that the approach is well grounded and the complete tooling to support the 
endeavor. Our team is currently exploring these areas, as well as they key application 
areas defined above. We believe that precise, engineered use cases can be useful across 
the lifecycle and result in cost effective, reliable software systems. 
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