
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 6, Special Issue: Use Case Modeling at UML-2004, Aug 2005

Cite this article as follows: Clay Williams, Matthew Kaplan, Tim Klinger, Amit Paradkar: “Toward
Engineered, Useful Use Cases”, in Journal of Object Technology, Vol. 4, No. 6, Special Issue:
Use Case Modeling at UML-2004, Aug 2005 , pp. 45-57
http://www.jot.fm/issues/issue_2005_08/article4

Toward Engineered, Useful Use Cases
Clay Williams, IBM T.J. Watson Research Center
Matthew Kaplan, IBM T.J. Watson Research Center
Tim Klinger, IBM T.J. Watson Research Center
Amit Paradkar, IBM T.J. Watson Research Center

Abstract
We explore common problems that exist in the practice of use case modeling: lack of
consistency in defining use cases, misalignment between the UML metamodel and the
textual representations of use cases expounded in the literature, and the lack of a
semantics that allows use cases to be executable and analyzable. We propose an
engineering approach to the issues that can provide a precise foundation for use case
development. We next discuss four potential uses of such a foundation and identify the
research problems that must be addressed to support these applications.

1 INTRODUCTION

Use cases were developed as a technique for capturing the required behavior of a
software system. [Jacobson92] While they have been successful in having an impact on
software development, their usage is not as prevalent as we believe it could be. Several
potential factors account for this, including:

1. Confusion regarding the meaning of the term use case. Different approaches
advocate graphical versus textual methods. Further confusion arises as levels of
abstraction vary widely within and across projects using use cases.

2. Misaligned characterizations of use cases in the UML metamodel. In UML, use
cases are characterized as BehavioredClassifiers, which does not correctly support
the best practices for representing use cases that have been proposed. [Armour01,
Cockburn01]

3. Use case semantics are poorly defined, limiting their usefulness to primarily being
vehicles for communication. While this is an important use for them, wider
industrial use requires that they support machine based processing and analysis.

This paper is a philosophical and conceptual exploration of each of these points in detail
in which we identify potential solutions that support an engineering approach to creating
use cases. However, engineering use cases is not an end in itself – the technique must

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_08/article4

TOWARD ENGINEERED, USEFUL USE CASES

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

provide value across multiple dimensions to be adopted in an industrial setting. To
support our approach, we discuss four potential uses of such a foundation (prototyping,
estimation, refinement to design, and test generation). We close by discussing related
work and future research.

2 USE CASE CONFUSION

Across projects, use cases exist at multiple levels of abstraction and are captured in many
different notions. The leading practitioners [Armour01,Cockburn01] all advocate similar
content that includes preconditions, main (success) sequences, alternative/exceptional
sequences, and postconditions. We believe that this serves as a good basis for an
engineered use case representation, but more detail is needed to define what the
sequences contain.

Another issue is that it is not uncommon to see use cases used across widely
different levels of abstraction, from high level usage of a system to extremely detailed
descriptions of system behavior. This lack of consistency regarding the level of use case
abstraction is directly influenced by the content supported within a use case model. We
take the position that the most useful use cases are those that Cockburn calls “sea level”
use cases [Cockburn01], which are defined at the user-goal level. Our desire is to make
constructing good sea level use cases as intuitive and repeatable as possible. A second
goal of our representation is to enable the capture of precise, analyzable, and executable
use cases with as little modeling and information required as possible.

We start by defining a precise contextual foundation for use cases. Use cases are
usually collected during the inception phases of a project. They allow the system
requirements to be specified by saying what the system will do without saying how it
does it. This requires the capability to talk about the key elements in the system in a very
precise way. However, inception occurs prior to architecture definition and design, so we
must carefully define the context against which use cases are developed in order to
achieve this precision. This context is the domain model of the system.

A domain model is a model of the significant elements from the system’s application
domain. These are the elements that will be created, modified, and used in the
application. They are represented as UML classes with attributes. Also present in the
domain model are domain rules (or invariants,) which capture constraints that must hold
for instances of the domain objects to be valid. Figure 1 shows the domain model for a
simple example ATM application.

The domain model plus the four primitive types (Boolean, float, integer, and string)
serve as the type system for detailing use cases. Use cases are typically defined as
sequences of actions that occur between the system and one or more actors, but the
specifics of the action types that are supported are left undefined in UML. In our scheme,
use cases support 4 basic actions and 4 flow-of-control actions, each of which has an
associated statement for use in detailing the use case.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 47

Account
accountNumber : Integer
balance : Single

ATMUser
userID : String
pinCode : Integer 1..*1

+accounts

1..*

+accountOwner

1

inv: balance >= 0

Fig. 1. The Domain Model for an ATM Application.

Basic Actions:
• Input – an actor provides input to the use case
• Output – the use case returns output to an actor
• Computation – a computation is performed using provided input and domain

instance information. Computation entails creating, modifying, or deleting
instances of domain classes.

• Exception Handling – the system responds to an issue with the input or state of
the domain model instances.

Flow of Control Actions:
• Selection – allows the use case to conditionally execute actions
• Iteration – allows the use case to repeatedly execute an action sequence
• Inclusion – allows the use case to include the behavior of another use case
• Extension – defines the extension point for an extending use case

Use cases also have preconditions and postconditions, and both are written in terms of the
domain model. Below is an example use case for the Withdraw Money capability for an
ATM system.

Use Case: Withdraw Money
Precondition: ATM Customer must be logged onto system.
1. ATM Customer selects Withdraw.
2. System requests amount.
3. ATM Customer enters amount.
4. System dispenses cash.
5. System debits amount from the account balance.
Exceptions:
3.1 [amount greater than account balance]
 3.1.1 System displays balance exceeded warning
 3.1.2 If ATM Customer chooses “continue” rejoin at 3
 3.1.3 Else terminate use case
Postconditions:
 Successful withdrawal:
 account.balance = account.balance@pre – amount
 Unsuccessful withdrawal:
 account.balance is unchanged.

TOWARD ENGINEERED, USEFUL USE CASES

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

This example illustrates the four primary types of statements that can occur in a use case:
input statements, computation statements, output statements, and exceptions. The
example also illustrates selection actions and rejoining the main scenario from an
exceptional alternative.

This representation (use cases, a high level domain model, and domain invariants)
serves as a basis for engineered use cases. The use cases consist of very specific types of
actions. They specify, in terms of the domain model, what occurs in an interaction with
the system being specified without saying how it is done.

3 METAMODEL ALIGNMENT FOR ENGINEERED USE CASES

UML 2.0 Use Case Shortcomings

Figure 1 shows the current metamodel for UML 2.0 use cases [UML02].

RedefinableElement
(from Kernel)

BehavioredClassifier
(from BasicBehaviors)

Actor

DirectedRelationship
(from Kernel)

Classifier
(from Kernel)

Classifier

Constraint
(from Kernel)

Include

UseCase

*

**

0..1

*

1 1

*

Extend
*

1

0..1

0..1

1

*

ExtensionPoint *

1

1..*

*

*

*
+subject

+useCase

0..1

*
+ownedUseCase

{subsets ownedMember}
+useCase

1+extensionPoint

*

{subsets feature,
subsets ownedMember}

1

*

+extension

+extend*

1+extendedCase

{subsets ownedMember}

{subsets source}{subsets target} +includingCase

+include
{subsets ownedMember}

{subsets source} 1

*
*

1
+addition

{subsets target}

*

1..* +extensionLocation
{ordered}

0..1

0..1

+condition
{subsets ownedMember}

Fig. 2. The UML 2.0 Metamodel

Although the UML 2.0 metamodel improved over UML 1.x by adding the notion of
subjects (what we call context in [Williams01]) to use cases, it does contain two main
shortcomings. Given the current size of the UML 2.0 specification, the remedies to these
issues are complex, which prevents a complete and formal rectification of them in this
paper. In the subsection following this one, we sketch the approach that we believe needs
to be used in order to remedy them.

In the UML 2.0 metamodel, the UseCase metaclass aligns with the
BehavioredClassifier metaclass, which itself is a descendent of Classifer. The OMG
standard for UML [UML02] states that "a classifier is a type.” This is problematic for use

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 49

cases, as the essence of a use case is to describe an interaction between an actor an the
system, not to classify types. One consequence of this misalingment is that generalization
is poorly defined for use cases. In UML 2.0, geralization is defined as both feature
inheritance and subtyping. It is unclear how these apply to use cases when they are
understood to be actor-system interaction specifications. Another issues is that
BehavioredClassifiers have ownedBehaviors, which misaligns with the typical textual
based approaches for use cases.

There are two modifications that partially address the problems with the current use
case alignment in the UML 2.0 metamodel. However, neither is sufficient to solve the
problems without additional re-engineering of the metamodel. Use cases could subclass
Behavior. In the current metamodel, this is problematic, as Behavior always exists in the
context of a BehavioredClassifier and use cases should exist in the context of the domain
model, which consists of several classifiers. Another approach would be to add
constraints to UseCase to prohibit ownedBehaviors and attributes from existing on use
cases. Then classifierBehavior could serve as the basis for specifying the use case
behavior. However, this approach has the problem that it presumes that the
classifierBehavior is updating the state of the use case instance rather than the state of
domain class instances. To properly support alignment between the graphical syntax of
UML and the textual details in a use case requires a careful re-examination of the UML
metamodel.

We argued earlier that use cases should consist of four basic actions (input, output,
computation, and exceptions) with supporting actions providing for control flow
specification (inclusion, extension, sequencing, selection, and iteration.) Were it possible
to align use cases more carefully with Behavior, refining the model to include specifics
regarding contents of a use case would offer a degree of precision that is currently not
available. Allowing use cases to support a (possibly enhanced) subset of the existing
UML 2.0 actions defined for activities would provide specificity that is lacking in the
current specification. As noted above, there is currently no good way to do this in the
existing metamodel.

Toward a Metamodel Supporting Engineered Use Cases

As we cannot redesign the use case portion of the UML 2.0 metamodel in this paper
without possibly causing problems in other portions of the specification, we instead
outline an approach that can be used to address the concerns raised in the previous
section.

The first area that must be addressed is which UML metaclass the UseCase
metaclass specializes. As suggested earlier, we believe the best remedy is to have
UseCase be a specialization of Behavior. This is consistent with the vision defined in
section 2, where use cases have input parameters, return results (output), and have
preconditions and postconditions. All of these concepts are already supported in the
current Behavior metaclass. This requires that Behavior be modified or extended to allow
association with multiple classifiers in order to support using the domain model as the use
case context.

TOWARD ENGINEERED, USEFUL USE CASES

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Were we to align UseCase with Behavior, the notion of supported actions is still missing.
Like the Activities metaclass (which also aligns with Behavior,) the UseCase metaclass
should specify a set of Actions which can be performed within a use case instance. A
subset of the current actions defined in UML 2.0 would suffice as a basis for creating
executable use cases. These include the Read Write Actions (Object Actions, Variable
Actions, Link Actions, and Structural Feature Actions). These should be extended with
specific Computational Actions (such as arithmetic, Boolean, and string related actions,
and domain specific actions.) Invocation Actions are not required, as neither use cases nor
their contexts support operations or signals. Given the alignments proposed in this
section, we next explore the semantics required to support engineered use cases.

4 TOWARD PRECISE USE CASE SEMANTICS

In order to support an engineering approach to creating precise use cases, we must
address semantic issues in addition to the structural/content issues discussed above.
While space considerations prevent a formalized treatment of all relevant semantic issues,
we provide informal details and in the following discussion. There are two areas for
which we provide specific attention: execution semantics and generalization.

Execution Semantics

For use cases to be precise, we must be able to describe what they mean when they are
executed. The execution of a use case is performed in the context of a state consisting of
instances of domain model classes. Domain objects may be created, modified, or deleted.
Links may be added, or deleted. Attributes may be modified. The following capabilities
describe the execution semantics of use cases.

1. Input / Output statements – instantiate formal parameter(s) specified in the
statement with value(s) of the appropriate type(s).

2. Computation – create/delete an instance of a domain object, create/delete a link
between existing domain object instances, modify the attribute of a domain object.

3. Exception – check exception conditions and fires if true.
Given a use case, execution proceeds as follows. Each statement in the main scenario is
executed. During its execution, the alternatives / exceptions defined for that statement are
checked for execution eligibility. If one or more is eligible, we must determine which one
takes priority and execute it. The semantics for determining priority must be defined in
the language. If the alternative specifies where control returns to, that is the point where
execution continues, otherwise, it resumes at the next statement in the main interaction
course.

While this is only an informal explanation of execution semantics, our group is
exploring surface representations for the use case body and will provide a formal
semantics based upon that representation in the future.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 51

Generalization Semantics

Generalization has traditionally been a very problematic area for use case semantics.
UML 2.0 says nothing about use case generalization, leaving it unclear whether
generalization is meant to be a sub-typing mechanism, or a mechanism for simply
indicating that the scenarios specified by a parent use case can be replaced with the
scenarios specified by its children. If sub-typing is the goal, and use cases are re-aligned
to specialize the Behavior metaclass, the design-by-contract calculus can serve as a basis
for formalizing generalization. This will ensure the capacity to substitute the child use
case for the parent in a context. If scenario replacement is the goal, a careful analysis of
the issues related to replacement is required. Of course, a full semantics of use case
generalization must be worked out in the context of an updated metamodel that supports
both alignment with UML and a precise textual specification for a use case.

5 INDUSTRIAL APPLICATIONS OF ENGINEERED USE CASES

Before engineered use cases will be accepted in an industrial setting, they must provide
value that exceeds the effort required to create them. We believe that engineered use
cases can provide value across at least four dimensions: prototyping, estimation,
refinement to design, and test generation. The first three are in the early research stage in
our organization, while the fourth is one in which we have considerable experience.

Prototyping

The first benefit of using precise, engineered use cases is the ability to use them as the
foundation for an executable prototype of the system. This allows early feedback to the
customer and provides a means for validating the requirements. The prototyping
approach requires that a precise surface syntax for specifying the use case content exists,
along with an environment capable of executing these use cases. We have developed beta
versions of these elements, and have shown that use cases captured with them can be
executed directly. It also requires a facility for prototyping UI elements and associating
them with use cases. The steps toward building a useful prototype are as follows:

1. Build the domain and use case models.
2. Create mocked-up user interface (UI) elements for the input and output

statements.
3. Associate the UI elements with the input and output statements.
4. Execute the prototype with all involved stakeholders, gathering important

feedback.
5. Modify the model according to the feedback and repeat the exercise until the

requirements are agreed upon by all stakeholders.
The advantage of prototyping based on engineered use cases is obvious – it requires
almost no effort beyond normal analysis and design activities to have an executable
prototype for validating user requirements.

TOWARD ENGINEERED, USEFUL USE CASES

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Estimation

Once the requirements have been validated using the prototyping approach described
above, the next step is to determine how much time and cost are involved in realizing the
actual system modeled by the use cases. Use cases alone cannot serve as a basis for
estimation, but are an important element for determining the functional complexity of the
application being developed. Non-functional requirements also play a significant role in
determining time and effort.
We believe that our use case approach will serve as a sound basis for estimation, and we
are in the very early stages of exploring this idea further. The basic steps in developing
such an estimation approach are:

1. Examine existing projects using the engineered use case methods to gather
baseline information for an estimation model.

2. Construct the initial estimation model, and apply it to new projects.
3. Gather feedback from the projects, and refine the estimation model.
4. Release the model for general use.

Refinement to Design

Once the estimate has been accepted and the work authorized, the next two activities
occur in parallel. The first is to refine the use cases to a detailed design of the system.
This is done as follows:

1. The domain model is refined to a full analysis model. This is done by identifying
boundary and controller classes that serve as additions to the model classes
already present in the domain model. The boundary classes can be inferred from
the UI elements discussed in the section on prototyping.

2. Operations for all of the classes in the analysis model are identified. These are
informed by the computation actions in the use case model, as well as required
controller and UI computations for the system.

3. The input statements are mapped to operation invocations on the boundary
classes.

4. The output statements are mapped to returned parameters from or operation
invocations on the boundary classes.

5. Interaction diagrams are used to show how use cases are realized in the system
using the mappings defined in steps 3-4 as a basis.

6. Further refinement to a detailed design and implementation can now proceed from
the analysis model and use case realizations.

Test Case Creation/Generation

Finally, we must validate that the system constructed from the refinement described in
the above section actually meets the requirements specified by the use cases. This is done
by creating precise test cases from the use cases, domain model, and domain invariants.
Our group has created test generation tools that automatically produce test cases from

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 53

these models. We have shown a decrease in the effort required to execute the test suite
and an improvement in the coverage of the functionality of the system. Table 1 shows the
results of the initial pilots performed with an early prototype version of this approach.

Pilot Properties Outcome

1 • Test cases developed by
Research

• Provided to system owner for
execution

• Compared with existing test
suite developed manually

• Five-fold reduction in test suite
size (30 generated test cases vs.
150 manually created) without a
loss of functional coverage

• 68% decrease in time to
setup/run/verify test suite

• Major defect detected by new
suite that esacped detection by
manually developed suite.

2 • Modeling and generation done
in testing organization.

• Test expert created model and
generated test cases

• Comparison against a manually
developed suite created
independently by a different
expert.

• Coverage of use case
functionality improved 30% in
the model-based suite. This was
achieved with 10% fewer use
case invocations.

• Testing team estimates achieving
comparable coverage to model-
based suite would require twice
the effort.

3 • Modeling and generation done
in testing organization.

• UML use case model built
during system design, used by
testing organization.

• Testers analyzed the suite for
usability in the project.

• >90% coverage of the
functionality with a suite of 60
test cases.

• The suite tested 40 use cases. In
total, there were 145 input
parameters, 335 partitions, and
117 flow edges in the model.

Table 1. Pilot Results for Test Generation Tool

[Williams01] has specific details for these early results. The major conceptual steps in
test generation are as follows:

1. For each use case, ensure that there are test cases for each path through the use
case. This can be done using a technique such as the basis paths method
[Poole95].

2. For each condition in a use case (either selection or exception), ensure that
condition coverage is achieved using a condition coverage technique [Beizer90].

TOWARD ENGINEERED, USEFUL USE CASES

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

3. For each domain rule in the domain model, determine all use cases which update
any variable in the domain rule. Determine the interesting ways in which the
implementation could be tested to ensure the rule holds, and perform those tests.

6 RELATED WORK

Two recent papers explore extensions or alternatives to the standard UML metamodel for
use cases. These include [Nakatana01], which integrates the activity graph metamodel
and use case metamodel. In this view, use cases are still stateful classifiers, and the tight
link between the actions comprising the use case and the domain model is missing.
[Rui03] presents a metamodel that supports refactoring of use case models. This is
interesting work, although the metamodel is not aligned with UML, nor does it pay
careful attention to the context in which use cases are written.

Another common area for focus is the correct representation of use case structure.
[Metz03] focuses on the necessity of being able to correctly and concisely specify
alternative courses in a use case. This paper is related to the need to support alternative
sequences of statements and exceptions, and defines the differences between these
precisely. [Li00] offers a structured representation for use case content, and a semi-
automated approach to translating use cases into sequence diagrams. This contribution is
interesting for both representation and refinement purposes.

There is a significant body of work seeking to formalize the content or manner in
which use cases are captured. Both [Lee98] and [Jorgensen04] seek to formalize use
cases using concepts from Petri Nets. The first paper seeks to represent use cases using
the formalism of Constraints-based Modular Petri Nets, while the second uses Colored
Petri Nets. While both papers provide an elegant formal basis for use cases and both
could be used for use case execution, neither Petri Net approach has been accepted in
industry beyond the embedded/real-time space. Finally, [Rysavy04] seeks to represent
use cases using higher-order logic. The benefits of this approach are an architecture that
supports both static and behavioral information. Again, the downside is lack of industry
acceptance of formal representations like HOL.

Finally, in the proposed application areas, there is significant work in the testing area
[Basanieri02,Briand01] and the estimation area [Smith03]. The testing work typically
uses refinements of use cases to interaction diagrams for generation, which differs from
our approach [Williams01]. Estimation work to date has been somewhat disappointing in
its accuracy, primarily due to the wide variation in the abstraction levels at which use
cases are captured. We hope that our more defined approach will help mitigate these
problems.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 55

7 CONCLUSIONS

We have argued that for use cases to be truly useful for industrial software development
an engineering approach to developing them must be used. Such an approach requires
first that use cases be well defined, both structurally and behaviorally. To facilitate this
definition, we proposed a method where use cases are developed in the context of a
domain model and domain rules. The content of the use cases is carefully elaborated
using this context.

Next, we proposed an approach for realigning the UML 2.0 metamodel for use cases
to reflect the structure and capabilities described above, followed by a discussion of
semantics issues associated with use cases. This focused on execution and generalization.

Finally, we presented four application areas that place engineered use cases in the
context of the software lifecycle. These are prototyping, estimation, refinement to design,
and test creation. We presented a general outline for using engineered use cases in each
area.

What we have presented in this paper is a philosophical and conceptual framework
for developing engineered use cases. What is lacking is the formalized machinery to
ensure that the approach is well grounded and the complete tooling to support the
endeavor. Our team is currently exploring these areas, as well as they key application
areas defined above. We believe that precise, engineered use cases can be useful across
the lifecycle and result in cost effective, reliable software systems.

REFERENCES

[Armour01] F. Armour and G. Miller: Advanced Use Case Modeling: Software Systems
Addison-Wesley, 2001.

[Basanieri02] F. Basanieri, A. Bertolino, and E. Marchetti: “The Cow_Suite Approach to
Planning and Deriving Test Suites in UML Projects”, Proceedings of the 5th
International Conference on UML (<<UML>> 2002), pp. 383-397, Sept. 30-
Oct. 4, 2002.

[Beizer90] B. Beizer: Software Testing Techniques, Van Nostrand Reinhold, 1990.

[Briand01] L. Briand and Y. Labiche: “A UML-Based Approach to System Testing”,
Proceedings of the 4th International Conference on UML (<<UML>> 2004),
pp. 194-208, October, 2001.

[Cockburn01] A. Cockburn: Writing Effective Use Cases, Addison-Wesley, 2001.

[Jacobson92] I. Jacobson: Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, 1992.

TOWARD ENGINEERED, USEFUL USE CASES

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

[Jorgensen04] J.B. Jorgensen and C. Bossen: “Executable Use Cases: Requirements for a
Pervasive Health Care System”, IEEE Software, vol. 21, no. 2, pp. 34-41,
March-April, 2004.

[Lee98] W.J. Lee, S.D. Cha, and Y.R. Kwon: “Integration and Analysis of Use Cases
Using Modular Petri Nets in Requirements Engineering”, IEEE Transactions
on Software Engineering, vol. 24, no. 12, December, 1998, 1115-1130.

[Li00] L Li: “Translating Use Cases to Sequence Diagrams”, Proceedings of the Fifteenth
IEEE International Conference on Automated Software Engineering (ASE'00)
, pp. 293-296, September 11 - 15, 2000.

[Metz03] P. Metz, J. O’Brien, and W. Weber: „Specifying Use Case Interaction: Types of
Alternative Courses”, Journal of Object Technology, vol. 2, no. 2, pp. 111-
131, March-April 2003, http://www.jot.fm/issues/issue_2003_03/article1.

[Nakatana01] T. Nakatana, T. Urai, S. Ohmura, and T. Temai: “A Requirements
Description Metamodel for Use Cases”, Proceedings of the Eighth Asia-
Pacific Software Engineering Conference (APSEC'01), pp. 251-258,
December 04 - 07, 2001.

[Poole95] J. Poole: A Method to Determine a Basis Set of Paths to Perform Program
Testing. National Institute of Standards and Technology, Report #5737,
November 1995.

[Rui03] K. Rui and G. Butler: “Refactoring Use Case Models: The Metamodel”,
Proceedings of the 25th Australasian Computer Society Conference (ACSC
2003), pp. 301-308, 2003.

[Rysavy04] O. Rysavy and F. Bures: “Formal Abstract Architecture for Use Case
Specifications”, Proceedings of the 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems (ECBS’04), pp.
203-210, May 24-27, 2004.

[Smith03] J. Smith: “The Estimation of Effort and Size Based on Use Cases”,
IBM/Rational report available at
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/
2003/finalTP171.pdf

 [UML02] UML 2.0 Superstructure Specification. OMG Adopted Specification ptc/04-
10-02.

[Williams01] C. Williams: “Toward a test-ready meta-model for use cases”, Proceedings
of the Workshop on Practical UML-based Rigorous Development Methods,
pp. 270-287, October, 2001.

http://www.jot.fm/issues/issue_2003_03/article1
http://www3.software.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/finalTP171.pdf

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 57

About the authors
Clay Williams is a Research Staff Member and the Manager of the Software Quality and
Testing Research Group at the IBM Watson Research Center. His group primarily
focuses on issues related to modeling, testing, and measurement. His personal research
focuses on effective use of modeling technology to enable the construction of high
quality software. He has a Ph.D. in computer science from Texas A&M University. E-
Mail: clayw@us.ibm.com

Matthew Kaplan is an Advisory Software Engineer in the Software Quality and Testing
Research Group at the IBM Watson Research Center. His current work focuses on the use
of modeling technology to improve testing, as well as how to model and use domain
specific information (e.g. security information) to improve the quality of software. He has
an M.S. in computer science from Brown University. E-Mail: mmk@us.ibm.com

Tim Klinger is an Advisory Software Engineer in the Software Quality and Testing
Research Group at the IBM Watson Research Center. He primarily focuses on the
application of novel techniques from AI to complex problems across the software
engineering lifecycle, from design and construction to testing and validation. He has a
Ph.D. from New York Univeristy. E-Mail: tklinger@us.ibm.com.

Amit Paradkar is a Research Staff Member in the Software Quality and Testing group at
IBM T.J. Watson Research Center, Yorktown, NY. His primary research interest is in the
area of software testing - particularly model based test generation using UML. He is also
interested in software testability, and applications of AI techniques to Software
Engineering problems. He has received Ph.D. in Computer Science, MS in Computer
Science, and MS in Textile Engineering and Sciences - all from North Carolina State
University in Raleigh. E-Mail: paradkar@us.ibm.com

mailto:clayw@us.ibm.com
mailto:mmk@us.ibm.com
mailto:tklinger@us.ibm.com
mailto:paradkar@us.ibm.com

