
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 6 Special Issue: Use Case Modeling at UML-2004 2005

Cite this article as follows: Nelly Bencomo, Alfredo Matteo: “Traceability Management through
Use Cases when Developing Distributed Object Applications”, in Journal of Object
Technology, vol. 4, no. 6, Special Issue: Use Case Modeling at UML-2004, pp.29-43
.http://www.jot.fm/issues/issue_2005_08/article3

Traceability Management through Use
Cases when Developing Distributed
Object Applications

Nelly Bencomo, Lancaster University, UK
Alfredo Matteo, Universidad Central de Venezuela, Venezuela

Abstract
The software life cycle of Distributed Object applications encompasses many
activities, which go from requirements specification and leads to design and
implementation taking into account aspects related to architectural issues. In such a
life cycle, activities related to communication and integration mechanisms defined in
Distributed Objects Technologies have to be executed. On the other hand, the
support for software traceability has been established as an important task in the
development life cycle of software systems. As the design is refined to a concrete
implementation, it is important that concepts in analysis and design have a clear
correspondence to implementation artifacts. This article describes activities and
artifacts associated with Analysis, Design, Implementation and Deployment models
when developing Distributed Object applications. In this sense, this work proposes a
clear traceability from the Use Case model through Analysis, Design,
Implementation and Deployment models. An example of the traceability is presented
by means of a case study involving web access to Bank accounts. Keywords: use
cases, distributed objects, traceability, and UML notation.

1 INTRODUCTION

Distributed Object Technologies, such as CORBA and RMI, became popular and
evolved quickly over the past decade. Some of the most important software systems in
the world have been developed using these technologies. Distributed object software
can be found in software-intensive distributed domains such as telecommunications,
health care, aerospace, and online financial applications. While the standards have
matured considerably we face a lack of methods and notations for distributed object
development and maintenance. Traditional non-distributed Object-Oriented design
and programming differ from the IDL (Interface Description Language) and Java
Remote Interfaces design and programming to be used in the construction of
distributed objects; these differences must be taken into account by the software
development process.
On the other hand, software traceability - that is the ability to relate artifacts which are
created during the development of a software system (e.g., requirements, design and

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_08/article3

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

code artifacts) with each other - has been recognized as a significant capability in the
software development and maintenance process, and as an important factor for the
quality of the final product [Slam99]. Traceability information can be used to support
the analysis of the changes requested in the system development process; the
maintenance, evolution and documentation of software systems, the reuse of software
systems and their components, and testing. The development of software systems can
be complex, and this complexity is even greater for distributed systems; consequently,
software traceability management for distributed systems is crucial.

In this paper we describe how to establish a clear traceability among Analysis,
Design, Deployment and Implementation models when developing Distributed Object
applications based on the use cases approach. In this sense, control objects of the
analysis have a direct correspondence with distributed components in the
implementation and deployment models. Our approach emphasizes thematic use
cases; use cases that are related to distribution concerns. We use UML [Faroo96]
notation in the specification of models, and define and use some extensions of the
language.

This paper is organized as follows: Section 2 provides an overview of the
approach; Section 3 gives the description of activities and artifacts related to the
design of the models; Section 4 presents the case study, Section 5 discusses related
works; and finally Section 6 talks about future work and draws some conclusions.

2 THE APPROACH

The essence of our approach can be synthesized in three key phrases – architecture,
use case driven and traceability.

Architecture

The architecture embodies the major static and dynamic aspects of a system. It is a
view of the whole system highlighting the important characteristics and ignoring
unnecessary details. In the context of our approach, architecture is primarily specified
in terms of views of five models; the Use-Case model, Analysis Model, Design
Model, Deployment model and Implementation model. These views show the
“architecturally significant” elements of those models. The models have the following
specific characteristics in our approach:

The Use-Case model shows the thematic use cases related to functionality
associated with distribution.

The Analysis model illustrates how boundary, control and entity classes are
associated with the thematic use cases identified in the Analysis. Remote
Communication Control classes shown in this model are specializations of Control
classes and represent the abstraction of components that deal with remote
communication and distribution using CORBA.

The Design model shows the design classes that trace the specialized Remote
Communication Control classes in analysis. Special attention is given to the interfaces
provided by these design classes. We show how some of these are represented by IDL
interfaces.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 31

The Implementation model describes how elements in the design model are
implemented in terms of components.

Finally, the Deployment model explains how CORBA-based components are
assigned to nodes.

Use Case Driven

In the early steps of the life cycle, use-cases are mainly used to specify the functional
requirements of the system. Later on, and based on the use-case model, developers
create the models that realize the use cases. The developers review each successive
model for conformance to the use-case model [Ecklu96]. Our approach emphasizes
thematic use cases. In general, the theme varies depending on the nature of the project.
In our case, a use case is thematic if it is related to distribution. Once thematic use
cases are specified identifying the Remote Communication Control, they are designed
and implemented using the corresponding design classes and their IDL interfaces.

Traceability

An important part of traceability is that the final implementation is consistent with the
design and analysis. As the design is refined to a concrete implementation, it is
important that concepts have a clear correspondence to implementation artifacts –
even if the mapping is not one-to-one [Kowa02][Ovlin03]. In our approach,
specialized control objects in analysis –that are associated with thematic use cases and
are called Remote Communication Control Objects– are the abstractions of
components in charge of remote communication in implementation. In between we
define the design classes, specified by their IDL and UML interfaces.

3 MODELS

This section presents a short description of the Analysis, Design, Implementation and
Deployment models.

Analysis and Use Case Models

Control classes responsible for remote communication and that can potentially be
mapped onto different nodes in the distributed system are identified. To do this, we
define a Class Diagram based on [Losav97] that comprises boundary, control and
entity classes of the thematic use cases. Initially, we have a control class for each use
case. The generic class diagram proposed is shown in Figure 1. Control classes address
the messages exchanged among boundary and entity classes to fulfill a specific
functionality. Changes to entity or boundary classes are locally solved without
changing their counterpart.

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

 E n tity c la sse s C o n tro l C la sse s B o u n d a ry C la sse s

R C C C U i: R em o te
C o m m u n ication C o n tro l
C la ss fo r U se C a se i

C C U i: C on tro l C la ss for
U se C a se i

R C C C U i

R C C C U 1

C C U n

Figure 1: Class diagram related to thematic use cases

Because we are focusing on thematic use cases –related to distribution concerns-
entity and boundary classes might be related to functionality associated with
distribution. Entity and boundary classes are then abstractions of components
deployed on different nodes. In these cases, the intermediary control class has to deal
with remote communication and distribution. These intermediary control classes are
specializations or adaptations of UML control classes in the Use Case Model. We
adapted and stereotyped them to get the Remote-Communication Control Class
(RCCC). As shown in Figure 1, RCCCs are graphically represented as a common
control in UML with a filled circle inside. These RCCCs are the first link in a chain of
artifacts that evolve from Analysis through all the process until reaching the CORBA
distributed objects in Implementation.

In some cases, the nature of the application could dictate specific conditions of
component distribution in the implementation. For example, two different sets of
analysis objects might be required to represent implementation components deployed
on different nodes. We propose to use a variation of the Analysis Class Diagram
explained above. In these cases, the control classes identified are intermediaries that
allow the communication among components deployed on different nodes. Figure 2
shows an example of a class diagram associated with the communication between
different nodes. As in Figure 1, RCCCs have to deal with remote communication and
distribution but this time entity classes are the only abstractions of components,
boundary classes related with actors of the system are not included.

R C C C U n

R C C C U 2

R C C C U 1

R C C C U i: R em o te C o m m u n ica tio n
C o n tro l C lass fo r U se C ase i

Figure 2: Class diagram associated with the communication between different nodes

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 33

In both Figure 1 and Figure 2, the dashed areas depict how abstractions related to the
distribution concern are modularized in what we have called thematic use cases.

Example of Legacy Applications: applications that use a Legacy system
through remote interfaces

In this case the system to be developed involves the integration of existing
applications. The Legacy subsystem is modeled using analysis packages. Control
classes in analysis are the abstractions of the wrappers for the Legacy subsystem and
are modularized in a Distribution Management Analysis Package. See Figure 3.

 L e g a c y
S u b s y s t e m

S u b s y s t e m
n e w

a p p l i c a t i o n

D i s t r i b u t i o n
M a n a g e m e n t

< < a c c e s s > >
< < a c c e s s > >

Figure 3: Analysis Packages when integrating existing applications

Design Model

In Design, there are two important activities to be performed: architecture definition
and the specification of design classes. We study the use case realizations in analysis
and define the corresponding design classes and their sequence diagrams.

Some design classes can be initially sketched from analysis classes; this is the
case of design classes that deal with remote communication. A RCCC associated with
the use case i in analysis will correspond to a pair of design classes. In Figure 4, the
trace relationship between a RCCC and its two corresponding design classes is
shown.

Figure 4: Correspondence between remote-communication control class in analysis and control classes

in design

Basically, design classes expose two kinds of interfaces. One interface has the
common UML semantics and the other is an IDL interface. IDL interfaces let
CORBA objects communicate and send/receive the messages that components are
receiving/sending. Methods of these interfaces are specified from the interaction
diagrams. A concrete example of these interaction diagrams is shown in the case
study of Section 4.

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Figure 5: Control classes and their interfaces

The graphic notation used in Figure 5 has an alternative where IDL interfaces are
represented by T-connectors, see Figure 6. The T-connector notation is based on
[OMG01] and [Slam99].

Figure 6: Another notation for IDL interfaces

Implementation and Deployment Models

In implementation, we have to program the code associated with CORBA objects and
components based on the IDL interfaces in design. The Deployment model shows the
mapping of CORBA components onto nodes.

Each design class traces to a CORBA Component in the implementation. Each
CORBA component is a fundamental part of the system architecture. The graphic
notation adopted to identify a CORBA component is based on [OMG01]. The small
ellipses and arrows in the top left corner represent remote interfaces and local (non
remote) interfaces respectively.

 CtrlServant C/S

Design Model

Implementation
 Model CtrlServant C/S

<<traces>>

Remote
Interface

Local
Interface

Figure 7: Correspondence between a control design class and a CORBA component in

implementation

To describe the functionality and interactions among components we define a diagram
that includes and modularizes only CORBA components and their interfaces. This
Diagram is used to define the Deployment Model.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 35

Traceability

Figure 8 shows the traceability among the different artifacts in Analysis, Design,
Implementation, and Deployment models. Note that the Remote Class Control
RCCUCi is related to the use case i.

A na ly sis M odel

D esign M o del

Im p lem en ta tio n
M odel

D ep lo y m en t M o d el

 c2
 :C tr lS C L o ca l

In terfa ce A

c1
 :C trlS C

L o ca l
In terfa ce B

< < tra ces> >

< < traces> >

 c1
 :C trlS C

 c2
 :C tr lS C

< < tra ces> >

R C C U C i
R em ote C lass C on tro l ob ject
re la ted to a u se case i

< < traces> > < < traces> >

 : W eb
S erv er N o d e

 :D B S erv er

c2
 : C tr lS C

 w s:
S erv er

c1
 : C tr lS C

< < tra ces> >

Figure 8: Traceability among the Analysis, Design, Implementation, and Deployment models related to the use

case UCi

We have aspectized distribution from the very early stages of the development,
isolating the business logic from the confines of system architecture. We start from a
use case i and its RCCUCi. This control object is represented by two design classes in
design that communicate using their IDL interfaces. These design classes are
implemented by two CORBA components (Implementation Model) that are finally
deployed onto different nodes.

4 CASE STUDY: BANKING SYSTEM USING ATMS AND THE
INTERNET

We have a Banking software system that includes client services through ATMs and
the Internet. A client uses the system to withdraw, deposit, transfer and view the
balance of her/his accounts. Clients can use these services using ATMs or the Internet,
see Figure 9.

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Client

ATM

ATM

ATM

Central

Computer

Computer

Computer

Computer

Client

Figure 9: Banking system

Use Cases

Figure 10 shows the use cases of this system. The functionality is offered through
ATMs (withdraw, deposit, view balances, and transfer) or through the Internet (view
balances and transfer). For both cases, ATM and the Internet, we consider the use
cases to login into the system.

W i t h d r a w M o n e y

D e p o s i t M o n e y

V i e w

B a l a n c e s

T r a n s f e r M o n e y

C l i e n t

L o g i n v i a A T M

L o g i n v i a W e b

Figure 10: Use Cases of the system

Analysis: Class Diagrams and Packages

The class diagram related to use cases Login via Web, View Balances, and Transfer
Money when the user is using the Internet is shown in Figure 11. All these use cases are
thematic as we can see that boundary and entity objects are abstractions of
components deployed on different nodes. The intermediary control classes involved
have to deal with the communication among boundary and entity objects and are
specialized as Remote-Communication Control Classes.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 37

Transfer M oney

See Balances

Login via W eb

 Entity classes Control Classes Boundary Classes

Client

Account

Login Page

Balances Page

Transfer Page

M ain
Page

Figure 11: Class Diagram of the Case Study Banking System

It was convenient in terms of modularization of the system to group the analysis
classes in three kinds of analysis package; an analysis package that contains classes
related to boundary classes of the Graphical User Interface (GUI), an analysis package
that contains the entity classes, and an analysis package that contains the control
classes in charge of the logic of the remote communication between the boundary
package and the application domain. In Figure 12 we have two analysis packages
associated with the GUI, one related to the ATM and the other related to the GUI via
Web.

Figure 12 shows how abstractions related to the distribution concern are
modularized in the Distribution Management Analysis Package.

 A c c o u n t s

G U I
A T M

G U I
I n t e r n e t

D i s t r i b u t i o n
M a n a g e m e n t

< < a c c e s s > >

< < a c c e s s > >

< < a c c e s s > >

Figure 12: Analysis Packages

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

Design

We illustrate our approach in Design using the use case Login via Web. This use case
presents the following sequence diagram:

C lic to e n te r
th e s y s te m ()

V a l id a te E n tra n c e
 (c l ie n t c a rd
n u m b e r , p in
n u m b e r)

d is p la y ()

: M a in
P a g e : L o g in P a g e : C tr l

V a lE n tW e b P a g e
 : C lie n tD a ta

c li e n t c a rd n u m b e r a n d p in
n u m b e r

c lic k O K ()

V a lid a te E n t ra n c e
 (c l ie n t c a rd
n u m b e r , p in
n u m b e r)

V a lid a tio n O K

V a lid a tio n O K

 C lie n t c l ic k s th e
b u tto n E n te r in m a in
p a g e

S y s te m s h o w s th e
P a g e

C li e n t e n te rs c a rd
n u m b e r a n d p in
n u m b e r , a n d c lic k s
O K

D a ta is g iv e n to
in t e r m e d ia r y c o n tro ls

D a ta is v a lid a te d

P a g e o f T ra n s a c t io n s
is s h o w n

: T r a n s a c t io n
P a g e

d is p la y ()

: C tr lV a lE n tD B

V a lid a te E n tra n c e
 (c l i e n t c a rd
n u m b e r , p in
n u m b e r)

V a lid a tio n O K

Figure 13: Sequence diagram for the use case Login via Web

Messages ValidateEntrance and ValidationOK in the sequence diagram are candidates
to be operations in the IDL interfaces of the control design classes CtrltValEntDB and
CtrlValEntWebPage. The given name is related to the services provided on each side,
Web Page side and Client Data side.

Remote Interfaces (IDL) and Local Interfaces (UML)

We have two control classes in the design; CtrltValEntWebPag and CtrlValEntDB.
Figure 14 shows the IDL interfaces designed from the sequence diagram. Note that
interface CtrltValEntWebPag contains the operation validationOK() and the interface
CtrlValEntDB contains the operation validateEntrance(), operations that were
identified from the sequence diagram.

Figure 14: Control classes in design, CtrlValEntWebPag and CtrlValEntDB

CORBA offers the notion of IDL modules. Modules are used to encapsulate IDL
interfaces. Example specifications of IDL interfaces are given in the IDL Module as
follows:

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 39

//IDL
// Module: Control of data verification when entering the
system via Web
Module CtrlValEntWebPage {
// Operations on the Web page side available to the other
side
interface CtrlValEntWebPage {
 void validationOK();
 void validationError();
};
// Operations DB side
interface CtrlValEntDB {
 void validateEntrance(
 in long client_card,
 in long pin_number);
};
}

Implementation

Figure 15 shows the component diagram related to the use case Login via Web. A
complete diagram of all CORBA components in a system is given by the union of all
CORBA component diagrams associated with all the use cases.

C trlV a lE n tP agW eb

 C trlV a lE ntB D

C trlV alE ntW ebP ag
C om ponent

 C trlV alE ntB D C om ponent

Figure 15: Component diagram: CORBA control components associated to the use case Login via

Web

Distribution

Figure 16 shows the deployment of CORBA components on nodes of the system.
Specifically they describe the components related to the Use Case Login via Web.
Intermediary control CORBA components CtrlValEntWebPage and CtrlValEntDB are
c1 and c2 respectively. c1 is on the Bank Web Server side node and c2 is on the DB
Server side (data of Bank clients).

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

40 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

 :Web Server
Node

 : DB Server

 : Web
Browser Node

 <<network>> Bank - Private Network

c2
 : CtrlValEntDB

 sw: Server

 wb: Web
Browser

c1
 : CtrlValEntPagWeb

Figure 16: Distribution model: mapping of CORBA components onto nodes of the system

5 RELATED WORK

The concept of traceability in [Jacob93] is about tracing relations among all elements,
so that associations can be tracked among any given two objects, at any time. This
assumption is very difficult to bring into effect when talking about distributed systems
because of the number of relationships. The work presented in [Soar02] is related to
the use of natural language processing (NLP) techniques in requirements engineering
and requirements traceability what is a very different approach from ours. An
interesting research is shown in [Zism03a], authors present a lightweight approach to
support generation of bi-directional traceability relations between organizational
requirements modeled in i* and UML use cases and class diagrams. Their approach is
based on the use of XML-based traceability rules to identify the relations. Finally,
article [Ecklu96] demonstrates how a use case is adapted to form the change case, to
identify and articulate anticipated system changes. The article introduces the concept
of a change case as a way to describe potential system functionality, and demonstrated
how it can be used to capture potential changes and design systems that are robust to
the changes identified. Authors in [Ecklu96] claim that by dealing with change early
in the development process, it should be possible to both reduce future maintenance
costs, and extend the system's effective life span. The concept of change case can be
compared with the notion of our thematic use cases given the fact that both are special
kind of use cases associated with the concerns of the authors.

The approaches cited above are general and are not tailored to satisfy the
software traceability for distributed applications. In particular [Jacob93], [Soar02],
and [Zism03a] tackle the problem of software traceability from the point of view of
requirements engineering, what is different from our approach. What makes our
design different in comparison with other works in this area is the fact that we
explicitly deal with distribution concerns.

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 41

6 CONCLUSIONS AND FUTURE WORK

This paper proposed and illustrated how to specify a clear traceability from the Use
Case model through Analysis, Design, Deployment and Implementation models. In
this sense, specialized control objects in analysis, called Remote Communication
Control Objects, are the abstractions of components in charge of remote
communication aspects in implementation, in other words, control objects of the
analysis have a direct correspondence with distributed components in the
implementation and deployment models. We have used use cases and their subsequent
realizations through all the lifecycle models to encapsulate and trace the distribution
concern in separate modules promoting localization and reutilization. These modules
and localizations are reflected in the architecture of the system. The article is based on
practical experience [2,3,4].

One of the issues we are currently working on is the definition of an approach for
modeling distribution using a combination of Aspect Oriented Software Development
(AOSD) and use cases. One of the aims is to bridge the gap between the handling of
crosscutting concerns during the early and later phases of the lifecycle when
developing distributed applications [Benc04a]. We are also interested in the problem
of decoupling the development of distributed applications from specific middleware
technologies and how the ideas expressed in this article can be applied in the
definition of an abstract platform that allows clients to be developed independent of
middleware implementations. Unfortunately, the large number of middleware
technologies conspires against this purpose – the development and maintenance of
distributed systems have become coupled to constant evolution of middleware
technologies. We think that the Model Driven Architecture (MDA) and reflection
together gives the basis to tackle this problem 0.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the comments and critical feedback of Pete
Sawyer (Lancaster University).

TRACEABILITY MANAGEMENT THROUGH USE CASES WHEN DEVELOPING

DISTRIBUTED OBJECT APPLICATIONS

42 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 6

REFERENCES

[Benc04a] Bencomo N. Blair G., and Sawyer P.: Tracing the Distribution Concern:
Bridging the Gap, Submitted to Early Aspects 2004

[Benc02] Bencomo N.,: CORBAdapted-UP: Una adaptación del Proceso Unificado
para la Construcción de Aplicaciones CORBA, Promotion Project to get
the Cathegory of Assistant Lecturer, Escuela de Computación, UCV,
Venezuela, 2002

[Benc03] Bencomo N. Matteo A.: Correspondencia entre Modelos en el Desarrollo
de Aplicaciones CORBA, Chapter in book on Avances en tecnologías de
la Información, Universidad de los Andes, Venezuela 2003

[Benc00] Bencomo N., et all.: An experience using CORBA and OOSE in the
construction of a Graphical multi-user Interface based on Distributed
Objects, Proceeding of Practical Experience Segment of Objetos
Distribuidos 2000, Sao Paolo, Brazil, 2000

[Benc04b] Bencomo N., and Blair G.: Middleware unaware software development
and interoperability using MDA, accepted for the Second European
Workshop on Model Driven Architecture (MDA) with an emphasis on
Methodologies and Transformations, September 7th-8th 2004,
Canterbury, England

[Ecklu96] Ecklund E., Delcambre L., Freiling M. Change Cases: Use Cases that
Identify Future Requirements, OOPSLA 96

[Faroo96] Farooqui K., Logrippo L., Meer J.: The ISO Reference Model for Open
Distributed Processing- An Introduction, 1996

[Hunt00] Hunt J.: The Unified Process for Practitioners Object Oriented Design,
UML and Java, Springer, 2000

[Jacob03] Jacobson I.: Use Cases and Aspects – Working Seamlessly Together, in
Journal of Object Technology, vol. 2, no. 4, July-August 2003, pp. 7-28.
http://www.jot.fm/issues/issue_2003_07/column1

[Jacob99] Jacobson, I., Booch G., Rumbaugh J.: The Unified Software Development
Process, Addison-Wesley , 1999

[Jacob93] Jacobson, I., Magnus C., Patrik J., Gunnar O.: Object-Oriented Software
Engineering: A Use case driven Approach, Addison-Wesley, 1993

[Kowa02] Kowalczykiewicz K., Weiss D.: Traceability: Taming uncontrolled
change in software development, IV Krajowa Konferencja Inżynierii
Oprogramowania, Poznań 2002

[Losav97] Francisca Losavio F., Matteo A.: Use Case and Multiagent Models for
Object-Oriented Design of User Interfaces, Journal of Object-Oriented
Programming, Vol.10, No.2, (30-40) Mayo 1997

 [Ovlin03] Ovlinger J.: From Aspect-Oriented to Implementation, Position Paper for
AOM, 2003

http://www.jot.fm/issues/issue_2003_07/column1

VOL. 4, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 43

[OMG01] OMG Unified Modeling Language Specification, Version 1.4, OMG
(2001)

[Simm03] Simmonds D., Ghosh S., and France R..: An Aspect-Oriented Model
Driven Architectural Framework for Middlware Transparency, AOSD
Workshop on Early Aspects 2003: Aspect-Oriented Requirements
Engineering and Architecture Design, March, 2003.

[Slam99] Slama D., Garbis J., Russelm P.: Enterprise CORBA, Prentice Hall, 1999

[Soar02] Soares S., and Borba P.: PaDA: A pattern for distribution aspects.
Proceedings of: Second Latin American Conference on Pattern Languages
Programming - SugarLoafPLoP. 2002 Brasil. ICMC - Revista da
Universidade de São Paulo, páginas 87-99.

[Zism03a] Zisman A., Spanoudakis G., Perez-Miñana E., and Krause P.: Tracing
Software Requirements Artifacts. Proceedings of the 2003 International
Conference on Software Engineering Research and Practice, SERP ’03.

[Zism03b] Zisman A., Spanoudakis G., Cysneiros G.: A Traceability Approach for i*
and UML Models, Proceedings of 2nd International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems - ICSE 2003,
May 2003

About the authors
Nelly Bencomo is a PhD candidate at Lancaster University. Her
current research interests are focused on Model Driven Architectures
applied to Families of Middleware. She can be reached at:
nelly@acm.org.

Alfredo Matteo is a professor at the School of Computer Science,
Venezuela Central University, where he coordinates the TOOLS
Laboratory. His main research interests include Requirements
Specification, Software Architectures, Model Driven Development.
E-Mail: amatteo@kuaimare.ciens.ucv.ve

mailto:nelly@acm.org
mailto:amatteo@kuaimare.ciens.ucv.ve

