
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 5, July-August 2005

An Implementation of the π-Calculus on
the .NET

Liwu Li, University of Windsor, Canada

Abstract
Here, we show how to refine the grammar of the π-calculus so that we can implement
the π-calculus by decomposing a given process expression into a hierarchy whose
nodes are responsible to communicate links and execute the basic actions specified in
the process expression. The nodes in the hierarchy add new child nodes when they
need to handle lower-level process expressions. They are removed from the hierarchy
when the processes assigned to them are completed. Hence, the hierarchy for
executing a process expression of the π-calculus grows and shrinks dynamically at
runtime. We implement the nodes with concurrently executing threads in the managed
C++ on Microsoft .NET. The communication requests from the nodes are coordinated
and resolved with a class named CommunCenter. Thus, we present an operational
semantics for the π-calculus and implement the semantics in the .NET.

1 INTRODUCTION

The π-calculus, introduced by Milner et al. [Milner et al. 1989, Milner et al. 1992], models the
changing connectivity of a communication system, in which links to sites are sent between sites
and used by the sites for communication. It has been studied extensively as a theoretical model
and shows a powerful capacity in modeling data structures, mobile communication systems, and
other real-world systems [Milner 1999, Sangiorgi and Walker 2001].

Here, we present an approach to implement the π-calculus. In the approach, we realize a π-
calculus process expression by decomposing the expression into a hierarchy, whose nodes
manage, coordinate, and perform the basic actions that are specified in the process expression.
When the process expression is executed, new nodes are added to the hierarchy to account for
lower-level process expressions. Existing nodes in the hiearchy whose tasks are completed are
removed from the hierarchy. Thus, the execution of the π-calculus expression is realized and
visualized with a dynamically changing hierarchy. To implement the approach, we associate a
node of the hierarchy with an execution thread in the managed C++ language on the
Microsoft .NET Framework and realize the hierarchy with the communicating concurrent threads.
A class named CommunCenter is used to match input and output requests from the threads. The
approach represents a feasible framework for a full-fledged distributed system that is based on the
π-calculus to specify the dynamically changing connectivity of the components in the system.

Cite this article as follows: LIwu Li: “An Implementation of the pi-Calculus on teh .NET”, in Journal
of Object Technology, Vol 4 No. 5, July-August 2005 pp. 139-158
 http://www.jot.fm/issues/issue_2005_07/article4

The π-calculus is commonly regarded as an algebraic language. It uses algebraic expressions
of processes to specify the communication tasks to be realized by the components in a
communication system and use operators to manipulate the algebraic expressions. Our approach
to implementing the π-calculus is based on a reformulation of the syntactic rules of the π-calculus
so that we can unambiguously decompose a process expression into a hierarchical structure,
which allows a natural divide-conquer style in implementing the π-calculus with the .NET
execution threads. This approach is also different from the author’s another paper to be published
in Journal of Object Technology [Li 2005]. Here, we reformulate the syntax of the π-calculus and
represent a given process expression with a dynamically changing hiearchy of nodes. The nodes
can be realized with concurrently communicating threads and the execution of a process
expression by a node may dynamically dispatch execution threads. Thus, a communication
system that executes a π-calculus process expression can be realized with a distributed system,
whose components are dynamically changed, added, and removed. The work presented in [Li
2005] transforms a π-calculus process expression into a Java program, which is to be interpreted
by the Java virtual machine.

This paper is organized as follows. We introduce the π-calculus and reformulate the syntactic
and semantic rules of the π-calculus in Section 2. Based on the reformulated syntax of the π-
calculus, we present an ASCII language for coding process expressions of the π-calculus and
decomposing the coded expressions into hierarchies in Section 3. Based on the hierarchical
representation of a given process expression, we describe an operational semantics for handling
the hierarchyies in order to execute the π-calculus process expression in Section 3. We describe
the concurrency mechanism supported by the .NET in Section 4 and specify how to apply the
mechanism to implement the π-calculus in Section 5. The paper is concluded in Section 6.

In the following presentation, blue font is used to present source code, brown font
presents syntactic constructs appeared in grammar rules, and green italic font shows non-terminal
symbols in grammar rules and in running text. Particularly, a pair of braces followed by an
asterisk {}* is used in grammar rules to enclose a syntactic component that may be repeated zero
or multiple times. The source code files of the .NET implementation of the presented approach to
realizing the π-calculus process expressions are compressed into a zip file, which is attached with
this submission. The executable code of the implementation for Windows is also attached with
the submission. Its usage will be described in Section 5.

2 THE π-CALCULUS

As a computational apparatus, the π-calculus has syntactic and semantic rules. Here, we briefly
introduce the grammar and the operational semantics of the π-calculus based on the monograph
[Sangiorgi and Walker 2001]. Then, we reformulate the syntax of the π-calculus for the purpose
of an implementation of the π-calculus. Detailed elaboration of the π-calculus as an algebraic
notation can be found in the monographs [Milner 1999, Sangiorgi and Walker 2001].

An Introduction to the π-Calculus

In the π-calculus [Milner 1999, p. 87], we can assume an infinite set N of channel names, which
are denoted by lowercase letters x , , , … with possible subscripts. Process expressions in the y z

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 4 No . 5

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 141

π-calculus are composed of basic actions, summations, and processes. A (basic) action π takes
one of the following forms [Sangiorgi and Walker 2001, p. 11]:

π ::= ()x yr receive names from channel x through parameters 1,..., ky y y=
r

 x zr send channel names 0m ≥ 1,..., mz z z=r into channel x
 τ execute an unobservable internal (silent) action

[]x y= π enable action π if names x and are same y

A summation M takes one of the forms:

M ::= do nothing (an inaction process) 0
 π. execute action π and proceed to process P P
 1 2M M+ choose one of the summations 1M and 2M to execute

A process takes one of the forms P
 ::= P M execute summation M
 execute processes and concurrently 1 2|P P 1P 2P
 z Pν r

 declare channel names 1n ≥ 1,..., nz z z=r for process P
 supply (an infinite number of) copies of process !P P

In the above syntactic rules, the π-calculus uses operators ‘.’, ‘+’, ‘|’, and ‘!’ to compose
process expressions. With the dot operator ‘.’ as a process constructor, a process expression π .
schedules a sequential execution of a basic action π and a process so that the action π must be
completed successfully before the process can be started. We say the process is guarded by
the action π [Milner 1999, p. 87]. The addition operator ‘+’ in process expression

P
P

P P
1 2M M+ is

used to separate the alternative processes 1M and 2M so that an execution of one of the two
processes renders the other void. Due to the precedence of composition operator ‘|’ over addition
operator ‘+’, neither of the process addends 1M and 2M in the choice expression 1 2M M+ can
show a top-level occurrence of the operator ‘|’. The composition operator ‘|’ in process expression

 is used to dictate a parallel execution of the processes and . The repeat operator ‘!’
in process expression ! indicates that copies of the process P can be supplied on demand.
Expression ! is structurally equivalent to the composite process expression [Sangiorgi
and Walker 2001, p. 20].

1 2|P P 1P 2P
P

P | !P P

The π-calculus uses symbol 0 to denote a nullifying process or a null, which does nothing but
terminating the execution of the process that encounters the null 0. In the π-calculus, the null 0 is
used as a placeholder symbol to indicate positions in process contexts, which are used as
templates to generate process expressions [Sangiorgi and Walker 2001, p. 19]. The above
syntactic rules allow an occurrence of the null 0 to be followed by any basic actions as well as by
an operator ‘+’ or ‘|’. The execution of a process expression can terminate naturally when it
exhausts the actions specified in the expression, and action expressions that follow null 0 will be
ignored in execution. We could safely ignore occurrences of the nullifying process 0 from process
expressions [Sangiorgi and Walker 2001, p. 20] and simplify a process expression such as

.0w x wν to w x wν .

In the π-calculus [Milner 1999, p. 88; Sangiorgi and Walker 2001, p. 16], a pair of
parentheses can be used to enclose a process expression to clarify the scope of an operator such as
‘+’, ‘|’, or ‘.’. For a valid process expression R , which must be terminated with null 0, we regard
the expression ()R as a basic action. An occurrence of an operator such as ‘+’, ‘|’, or ‘.’ inside
()R is an embedded but not top-level occurrence of the operator with respect to the process
expression that includes the basic action expression (P)R . A channel name x declared in the
subexpression ()R in process expression P hides the same channel name x that is declared in

 prior to the basic action (P)R .

In the π-calculus, a prefix of a process expression is a ν -prefix zν r
 in process expression

z Pν r
, an action-prefix π in π . , or a match-prefix []P x y= in []x y= π . . By convention

[Sangiorgi and Walker 2001, p. 16], a prefix has a higher precedence than operators ‘+’ and ‘|’.
Hence, the scope of the restriction

P

ν -prefix zν r
 in process z Pν r

 is not extended over any top-
level occurrence of operator ‘+’ or ‘|’ in the process expression . The choice operator ‘+’ has a
higher precedence than the composition operator ‘|’. For example, in the process expression

P

() ().(.0). .0 .0z x z z x z z v z vν ν + , the first ν -prefix zν restricts the second and the
fifth occurrence of the name z , the second ν -prefix zν restricts the fourth occurrence of the
name , and the last occurrence of the name is a free name in the whole process expression. z z

If we regard the above set of syntactic rules as a grammar Θ with as its goal, the grammar
is neither LR(1) nor LL(1) as defined in [Aho et al. 1985] but ambiguous. For example, the π-
calculus process expression

P

.0 | ().0z x z x yν can be derived from the goal P through two
different top-down leftmost derivations:

 → → P 1 2|P P 3 2|z P Pν → 5. |z P P2ν π → 5. |z x z P P2ν → 1 2. |z x z M Pν

 → 2.0 |z x z Pν → 2.0 |z x z Mν → 6.0 | .z x z Pν π

 → 6.0 | ().z x z x y Pν → 3.0 | ().z x z x y Mν → .0 | ().0z x z x yν

 → P 4z Pν → 3 |z P P2ν → … (Omitted derivation is same as the above derivation.)

A Reformulation of the π-Calculus

Following the above presentation of the syntactic and semantic specification of the π-calculus, we
can characterize π-calculus process expressions by introducing several notions. We say that an
occurrence of an operator ‘+’ or ‘|’ in a process expression is a top-level occurrence if it is not
enclosed within any pair of parentheses; otherwise, it is an embedded occurrence. A choice
process expression is a process expression that does not contain any top-level occurrence of the
composite operator ‘|’. A sequential process expression is a process expression that does not
contain any top-level occurrence of the operator ‘|’ or ‘+’. We extend the syntactic rules of the π-
calculus recursively with a basic action expression ()R for any process expression R . We regard
the expression ()R as an instance of the symbol π in the above syntactic rules. Note that the basic
action expression ()R is not a complete process expression in the π-calculus since it is not ended
with an inaction symbol 0.

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

VOL. 4 NO. 5 JOURNAL OF OBJECT TECHNOLOGY 143

We shall use the following recursive syntactic specification of π-calculus process expressions
to construct and parse the process expressions. Here, the term basic action expression, or simply
action expression, represented with symbol denotes inaction 0, an expression as denoted with
the symbol π in the above syntactic rules, or an expression (

A
)R for a process expression R .

S1. A composite process expression P consists of one or more choice process expressions M
that are separated with the composite operator ‘|’; i.e., the syntax of a composite process ex-
pression is defined with rule

 ::= P M { | M }*

S2. A choice process expression M consists of one or more sequential process expressions S
that are separated with the choice operator ‘+’; i.e.,

 M ::= { S S+ }*

S3. A sequential process expression S consists of basic actions that are separated with the dot
operator ‘.’ and each of which is possibly prefixed with a sequence of matches, restrictions,
and/or repeat symbols. It is ended with a null action 0 . In the following rules, we use symbol

 to denote a match, and a restriction. E D
 ::= { S B . }* 0
 B ::= { | | ! }* E D A
 ::= 0 | π | A ()P

We shall use the term a binding expression γ to refer to either an expression ().x yr , which
consists of an input action ()x yr followed by the prefixing operator ‘.’, or a ν -prefix (restriction)

yν r
. The binding expression γ , which is either ().x yr or yν r

, in a sequential process expression
Sγ binds (the scope of) the channel names yr to the sequential process S and we call γ a

binding prefix of the sequential process Sγ . For simplicity of presentation [Sangiorgi and
Walker 2001, p. 47, Convention 1.4.10], we require that if the sequential process expression Sγ
includes a binding expression 'γ inside , the channel names bound by 'S γ be different from
those bound by γ . In a sequential process expression, names that are not bound by any binding
expression are free. We require the bound names in a sequential process expression be different
from the free names in the expression. For example, the sequential process expression

().(.0). .0z x z z x z z vν ν does not satisfy the first requirement. In the π-calculus

[Sangiorgi and Walker 2001, p. 15], two process expressions P and are α-convertible if we
can transform one of them to the other by changing bound names, and α-convertible process
expressions are regarded as equal. For example, we can transform the sequential process
expression

Q

().(.0). .0z x z z x z z vν ν to an equal sequential process expression

().(.0). .0z x z y x y z vν ν by applying α-conversion.

The π-calculus realizes a communication between a pair of input and output processes with a
substitution of the output arguments received from the output process for the input parameters
used in the input process. A substitution is a function σ: N → N that maps names to names and

that is the identity except on a finite set of names. If a substitution σ maps names to names bar
r

,

the mapping can be denoted with σar = b

r
. Two sequential processes 1.x y Sr

 and () 2.x z Sr
 can

communicate if and only if the number of output arguments yr equals the number of input
parameters and the mapping that maps each parameter in the list zzr iz r

 to the corresponding
argument in the list can be extended to a substitution σ, which can be the identity on names

that are not in list . The communication will transform the processes
iy yr

zr 1.x y Sr
 and () 2.x z Sr

 to

processes and σ, respectively. The expression σ denotes a process expression resulting
from by replacing occurrences of parameters with corresponding arguments σ . Thus, the

channel names are passed from a process

1S 2S 2S

2S iz iz
yr 1.x y Sr

 to another process . 2S

Assume a choice process expression .S M+τ ' . After the sequential process expression .Sτ
in the choice process expression is chosen to execute, the front internal action τ is executed and
the choice process is reduced to the sequential process . Thus, executing the silent action S τ in
the first subprocess .Sτ in the given choice process expression .S M 'τ + renders the alternative
process 'M void.

3 REALIZING π-CALCULUS PROCESSES

Process Expressions

To code π-calculus processes in ASCII, we use keywords in, out, and tao to signify the
operational semantics of input, output, and internal actions. We use keyword new to introduce
channel names declared by a ν -prefix restriction. The language for coding π-calculus processes
in ASCII is specified with the following grammar, which follows the reformulated syntax of the
π-calculus and which has the goal composite_process for producing process expression.

<composite_process> ::= <choice_process> | <composite_process> |
 <choice_process>
<choice_process> ::= <sequential_process> + <choice_process> |

<sequential_process>
<sequential_process> ::= <action> . <sequential_process> |
 new <identifier> <names> <sequential_process> |

[<identifier> = <identifier>] <sequential_process> |
 ! <sequential_process> |

0
<action> ::= in <identifier> <names> |

out <identifier> <names> |
tao |
(<composite_process>) |
0

<names> ::= <identifier> <names> |
ε

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 4 No. 5

Note that due to the occurrences of the null 0 in both the production rules for non-terminal
symbols sequential_process and action, the above grammar is still ambiguous. However, the
grammar allows us to distinguish composite_process, choice_process, and sequential_process
expressions uniquely in a given process expression. In the above grammar, non-terminal
composite_process corresponds to a π-calculus process P , which may show top-level
occurrences of operators ‘|’ and ‘+’. The top-level occurrences of the composite operator ‘|’ in
the composite_process expression are used to decompose the composite_process expression into
choice processes, which are represented with the non-terminal choice_process and which may
show top-level occurrences of operator ‘+’ but not ‘|’. The top-level occurrences of the choice
operator ‘+’ in a choice_process expression decompose the choice_process expression into
sequential processes, which are represented with the non-terminal sequential_process. A
sequential_process expression does not include any top-level occurrence of operator ‘|’ or ‘+’. It
must be ended with an inaction 0.

In the above grammar, the symbol ε denotes an empty sequence of identifiers. Keyword new
in a sequential_process expression represents a ν -prefix by declaring channel names, which are
denoted with <identifier> <names>. We call an expression that is composed of the keyword new
and one or more channel names a new-term, an expression in form [<identifier> = <identifier>]
a match-term, and an expression !, which consists of the single character ‘!’, a repeat-term. We
use the notion of a term to denote a new-, match-, or repeat-term.

The keyword in in an expression in x y1 … yk with k ≥ 0 introduces an input action
()x yr with bound variables = y1 … yk. The keyword out in an expression out x z1 … zk

introduces an output action
yr

x zr . Keyword tao denotes an internal action τ . A composite

action ()R in the π-calculus is represented with (<composite_process>) in the above grammar.
We regard the inaction 0 as a special type of action and use the term action to refer to an input,
output, silent, composite action, or an inaction. A sequential_process expression consists of a
sequence of actions that are separated with the dot operator ‘.’ and is ended with an inaction 0.
Each of the actions in a sequential_process expression may be prefixed with a sequence of terms.
For example, we can code the input and output actions 2 1()x y x x and 1 2x x x y with action

expressions in x y x2 x1 and out x x1 x2 y, respectively. The π-calculus process expression
.0y x yν r

 can be coded in sequential_process expression new y out x y.0.

Process Hierarchy

Given a process expression P coded in the above ASCII language, we construct a hierarchy,
denoted as ℑ(P) or simply ℑ, to represent the expression P as follows:

H0. The given expression P is regarded as a composite_process expression and denoted with the
root node of ℑ.

H1. For each node ρ in ℑ that denotes a composite_process expression Q which is not 0, we de-
note each of the choice_process expressions M in the expression Q with a child node ρ' of ρ in
ℑ.

H2. For each node ρ' in ℑ that denotes a choice_process expression M, we denote each of the se-
quential_process expressions S in the expression M with a child node ρ" of ρ' in ℑ.

H3. For each node ρ" in ℑ that represents a sequential_process expression S, we can handle the

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 145

terms in front of the first action in the sequential process S at runtime. (The runtime handling
of the terms will be detailed after we specify the data structures of the nodes in hierarchy ℑ.)
Then, if the first action in S is a composite action (R), we add a unique child node for the
node ρ" to denote the composite_process expression R and apply the rule H1 recursively with
Q equal to R; otherwise, the node ρ" is a leaf in ℑ.

We can characterize the hierarchy ℑ as follows:

T1. A composite_process node ρ has at least one choice_process child ρ'. A non-root compos-
ite_process node ρ that represents expression R has a unique sequential_process parent
whose first action is (R).

T2. A choice_process node ρ' has a unique composite_process parent and has at least one sequen-
tial_process child ρ".

T3. A sequential_process node ρ" has a unique choice_process parent and represents a sequen-
tial_process expression S. The node ρ" is a leaf in ℑ if the first action in S is not a composite
action.

Each node in the hierarchy ℑ keeps track of its parent and children. In addition to the parent-
child relation, a sequential_process node ρ" also holds the following data structures, which are
modified at runtime.

• A list procExpr of characters for holding the sequential_process expression S to be exe-
cuted by the node ρ",

• A list declaredNames of channel names declared in new-terms that have been handled by
the node ρ",

• A collection repeatedNodes of sequential_process nodes, which are created by node ρ"
when the node handles repeat-terms, and

• A mapping inputValue that maps input parameters z to node-name pairs (ζ", y) such that
an input action performed by ρ" has received the output argument y from another sequen-
tial_process node ζ" through the input parameter z. The performance of input and output
operations are specified in the following subsections.

The character list or string procExpr in ρ" is initialized to a given sequential_process
expression when the node ρ" is created. The data structures declaredNames,
repeatedNodes, and inputValue are intially empty when ρ" is created.

When a sequential_process node ρ" evaluates a match term [n1 = n2], it needs to decide
whether names n1 and n2 are free names, input parameters received or channel names declared by
node ρ" or by ancestors of ρ". We use symbol inputValuePlus at the sequential_process
node ρ" to denote a mapping that combines mapping inputValue at node ρ" with the
mappings inputValue at its sequential_process ancestors; i.e., value inputValuesPlus(n)
at node ρ" equals the value inputValue(n) at ρ" if n is in the domain of the mapping
inputValue at node ρ" or equals inputValue(n) at lowest ancestor ζ" of ρ" if n is in the
domain of the mapping inputValue at ζ". If the name n is free with respect to the whole
hierarchy, we shall construct a value (0, n), which consists of the pointer 0 and name n, for the
function inputValuesPlus(n).

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

An Operational Semantics

When a process expression P is executed, we parse the expression P automatically through the
steps H0-H4 to construct the hierarchy ℑ(P), which consists of composite_process nodes ρ,
choice_process nodes ρ', and sequential_process nodes ρ". The nodes collaborate to execute tasks
required by the given process expression P. We specify the tasks for different types of node as
follows.

S1. A composite_process node ρ monitors its choice_process child nodes ρ' so that it is removed
from the hierarchy ℑ when all its children complete their tasks.

S2. A choice_process node ρ' manages its sequential_process children. If any one of its children
progresses by performing a basic action, the node ρ' removes its other sequential_process
children and, thus, realizes a choice. The choice_process node is removed from the hierarchy
ℑ when it has no more children.

S3. A sequential_process node ρ" maintains a sequential_process expression procExpr. It han-
dles the terms that are in front of the first action in procExpr and, then, processes the first
action δ in the expression procExpr as follows:

• If δ is a composite action (R), the hierarchy ℑ is extended as described in Step H3 by add-
ing a composite_process child node for the node ρ". The new child holds the compos-
ite_process expression R. The node ρ" can progress only after its child completes the execu-
tion of the process R and is removed from the hierarchy ℑ.

• If δ is an input or output action, the node ρ" is a leaf in hierarchy ℑ and it requests the class
CommunCenter to perform the input or output action. Node ρ" continues its operation only
after the class CommunCenter fulfils the input or output request. As described in Step S2,
the continuation of the node ρ" will request the choice_process ancestors of ρ" to remove
their sequential_process children except the sequential_process ancestors of node ρ".

• If δ is a silent action tao, the node ρ" progresses and requests its choice_process ancestors
to remove their sequential_process children except the sequential_process ancestors of the
node ρ".

• If δ is inaction 0, the node ρ" is removed from the hierarchy ℑ. As described in Steps S1 and
S2, the removal of node ρ" may trigger removal of its ancestors from ℑ.

We now describe how a sequential_process node ρ" handles the new-, match-, and repeat-
terms ϕ1, …, ϕk with k ≥ 0 that are in front of the first action δ in the sequential_process
expression procExpr. The node ρ" handles the terms ϕ1, …, ϕk by modifying the data structures
declaredNames, inputValue, and repeatedNodes as follows. After handling a front
term in the expression procExpr, node ρ" removes the term from the expression procExpr.
We shall use the notation ρ"(n) for a name n to represent the value inputValuesPlus(n).

• A new-term new y1 … yk is handled by appending the declared channel names y1, …, yk
into the list declaredNames in node ρ".

• A repeat-term ! is handled by creating a sequential_process node ζ" such that the values in
the data structures procExpr, declaredNames, and inputValue in the new node ζ"
are copied from the corresponding data structures in node ρ" but the collection repeated-
Nodes in the new node ζ" is empty. The new node ζ" is inserted into the list repeated-

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 147

Nodes in node ρ". It will be added into the hierarchy after an action in node ρ" is performed.
Thus, we realize a π-calculus transformation from expression ! to . P | !P P

• A match-term [n1 = n2] is handled by comparing values ρ"(n1) and ρ"(n2) of the names n1
and n2. If the values ρ"(n1) and ρ"(n2) are equal, the node ρ" removes the match-term from
the expression procExpr and continues executing the expression procExpr; otherwise,
node ρ" terminates its execution and is removed from the hierarchy ℑ.

The collection repeatedNodes holds sequential_process nodes that have no parent or
child. Data structure inputValue is a dictionary that maps input parameters to output
arguments received through input actions by the node ρ". When the node ρ" uses input action in
x y1 … yk to communicate with an output action out x z1 … zk of another node ζ", the key-
value pairs (y1, ζ"(z1)), …, (yk, ζ"(zk)) will be added into the dictionary inputValue in
node ρ". Thus, parameters y1, …, yk and arguments ζ"(z1), …, ζ"(zk) values are related by the
function inputValue. After the communication, nodes ρ" and ζ" discard their performed
actions from their procExpr expressions and continue the processing of their remaining actions.

Process Communication

We use class CommunCenter to coordinate communication requests proposed by the
concurrently executing sequential_process nodes in the hierarchy ℑ. The class CommunCenter
defines lists inputRequests and outputRequests to hold the input and output requests
that cannot be fulfilled immediately. Particularly, when a sequential_process node ρ" submits an
input request to the class CommunCenter, the class CommunCenter first searches the list
outputRequests for an output request such that uses the same communication link as

 and the length of the parameter list of is equal to the length of the argument list of . If the
search succeeds and the input and output requests are proposed by nodes and , respectively,
the class CommunCenter allows the nodes and to realize their actions as follows; if the
search fails, the class CommunCenter saves the input request into the inputRequests
list. The node realizes its input action by extending the function inputValue so that the
function inputValue maps the parameters in to the corresponding arguments in . As
described in Step S3, the node also asks its choice_process ancestors to remove their
sequential_process childrens except the ancestors of the node . Node also asks its
choice_process ancestors to do the same thing. Similarly, when a sequential_process node ρ"
submits an output request, the class CommunCenter searches the list inputRequests to
decide if the output request can be communicated immediately. If the output request can be
fulfilled for a saved input request, the output and input actions are performed by the
sequential_process nodes that proposed the output and input requests, respectively; otherwise, the
output request is placed into the list outputRequests.

0r

1r 1r

0r 0r 1r

0n 1n

0n 1n

0r

0n

0r 1r

0n

0n 1n

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

4 MULTITHREADING IN THE .NET

We now introduce the multithreading mechanism of the .NET Framework for implementing the
nodes in a heirarchy ℑ(P) for a π-calculus process expression P. We also describe the
standard .NET classes Monitor and Mutex, which are designed for thread synchronization. We
shall use the facilities provided in the class Monitor to synchronize the execution threads that
execute composite_process and sequential_process expressions. Accesses to the class
CommunCenter are also synchronized with the class Monitor. The class Monitor can be
replaced with the class Mutex in the implementation of the π-calculus.

.NET Threads

In addition to its main thread, an application in the .NET can create one or more concurrent
execution threads, which are represented with objects of the standard class Thread. To create a
thread, we need a ThreadStart delegate to encapsulate a method that will be executed by the
created thread. For example, the following statement creates a thread cpThread. The thread
encpsulates a composite_process node referenced by variable cp and a named processing
defined in class CompositeProcess.

 Thread *cpThread = new Thread(new
ThreadStart(cp, &CompositeProcess::processing));

The method processing defined in class CompositeProcess performs the activities of a
composite_process node as described in the operational semantics in Section 3. The above
statement encapsulates an object of class CompositeProcess pointed at by the first argument
cp of the constructor of the ThreadStart delegage. To encapsulate a static method in a
ThreadStart object, the first argument of the constructor for the created ThreadStart
delegate is the pointer 0. We can use the standard method GetHashCode in expression
cpThread->GetHashCode() to return a value for identifying the thread cpThread. In our
implementation of the π-calculus, we also create threads to encapsulate objects of class
SequentialProcess along with the instance method processing defined in the class
SequentialProcess.

In the execution of an application, a thread is always in one or a combination of the states
represented with values of the standard enumeration type ThreadState. The initial state of a
newly created thread such as cpThread is Unstarted. After the instance method Start()
of thread cpThread is executed in statement

 cpThread->Start();

thread cpThread enters the Running state, in which the encapsulated method processing
is executed concurrently with other threads.

When a running thread executes method Sleep(), Wait(), or Join(), the thread enters
state WaitSleepJoin and its execution is blocked. We can use an integer argument s to
invoke the static method Sleep of class Thread so that the current thread will be blocked for
the number s of milliseconds before it regains the Running state. The method Sleep()

VOL.4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 149

invoked in the following statement with integer 0 as argument just yields the rest of the thread’s
CPU time slice:

 Thread::Sleep(0);

Methods Wait() and Join() specify a thread to wait for or join. For example, a running
thread can execute the statement

 cpThread->Join();

to enter state WaitSleepJoin. The thread will be in the WaitSleepJoin state until the
target thread cpThread terminates.

A thread in state WaitSleepJoin leaves the state and reenters state Running when the
sleep period expires, the waited or joined thread calls method Pulse or PulseAll, or another
thread executes the function Interrupt for the thread.

A thread can invoke the method Suspend() or Abort()of another thread to request the
other thread to enter a Suspended or Stopped state. A Suspended thread can reenter the
Running state when another thread invokes its Interrupt method. A thread in the Stopped
state can no longer execute and is subject to garbage collection.

Class Monitor

We can use the class Monitor, defined in namespace System::Threading, to synchronize
multiple threads that access an object. A thread uses the static methods Enter, TryEnter, and
Exit of class Monitor to get or release the lock of an object, which is pointed at by a method
argument. For example, we shall use an object cc of the class CommunCenter to incapsulate
the lists inputRequests and outputRequests, which are dicussed in Section 3. A thread
that implements a sequential_process node can get the exclusive lock of the object cc by
executing the statement

 Monitor::Enter(cc);

If the lock of the intended object cc is not possessed by another thread, the thread will hold the
lock and continue its execution; otherwise, its execution is blocked until the lock is released by
the other thread that is holding the mentioned lock. A thread releases the lock of object cc
through statement

 Monitor::Exit(cc);

The method TryEnter invoked in the bool expression

 Monitor::TryEnter(cc)

does not block the current thread, which is evaluating the expression. Its evaluation returns either
true or false immediately depending on whether or not the current thread can get the lock of
object cc.

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

Note that an execution of the static method Enter by a thread may block the thread but not
change the Running state of the thread to WaitSleepJoin. If a Running thread that holds
the lock of object cc evaluates the static method Wait in statement

 Monitor::Wait(cc);

it releases the lock and enters the state WaitSleepJoin for the lock. A thread in state
WaitSleepJoin for the lock of object cc cannot get the lock unless another thread that is
holding the lock invokes the static method Pulse or PulseAll to signal the thread and then
releases the lock by evaluating the Exit method of class Monitor.

For example, the implementation of the π-calculus presented in this paper uses the lock of the
object cc to synchronize the input and output requests issued by SequentialProcess
objects. When the class CommunCenter receives an input request, it performs the statement

 Monitor::Enter(cc);

to lock the object cc. Assume the class CommunCenter can find an output request that has
been saved in the list outputRequests and that matches the input request. If the found output
request was issued by a thread that encapsulates the SequentialProcess object sp, the class
CommunCenter uses the following code to lock the object sp, change the WaitSleepJoin
state of the thread to the Running state so that the thread can resume its computation.

 Monitor::Enter(sp);
Monitor::Pulse(sp);
Monitor::Exit(sp);

Then, the class CommunCenter executes the following statement to release the lock of object
cc before it returns.

 Monitor::Exit(cc);

If the class CommunCenter cannot find an output request saved in the list outputRequests
to satisfy the input request, it saves the input request into the inputRequests list and executes
the following code for the current thread that is executing the input request into the
WaitSleepJoin state. Here, we assume the input request was generated from the
SequentialProcess object sp1.

 Monitor::Exit(cc);
Monitor::Enter(sp1);
Monitor::Wait(sp1);
Monitor::Exit(sp1);

The class CommunCenter uses another static method to handle an output request from
SequentialProcess objects. The execution thread of the static method also uses the lock of
object cc to synchronize the SequentialProcess objects that issue input and output
requests. We use the class Monitor to synchronize the activities of a SequentialProcess
object and its child of class CompositeProcess so that only after the child completes its
execution, the SequentialProcess parent can continue its execution.

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 151

Class Mutex

An object of class Mutex, defined in namespace System::Threading, can be used to
synchronize threads that are created in the same process and in different processes. It can be used
to enforce exclusive access to a resource. It does not provide all the wait and pulse methods as
defined in the class Monitor. We can invoke methods WaitOne, WaitAny, and WaitAll
defined in the class Mutex to wait for a Mutex object or for some Mutex objects to be available
before the current thread can continue its execution. A thread releases a Mutex object by
invoking the instance method ReleaseMutex of the Mutex object. When a thread finishes
normally, it releases the Mutex objects that are held by it so that waiting threads can hold them.
In the implementation of the π-calculus presented in this paper, we do not use the class Mutex to
synchronize input and output actions. However, if the composite_process and sequential_process
nodes in a hierarchy are implemented with operating system processes, we need to use the class
Mutex to synchronize the input and output requests of the nodes.

For example, we can use the statement
 Mutex* inputMut = new Mutex(true);

to create a new Mutex object inputMut. The constructor argument true indicates that the
current thread that is executing the above statement holds or owns the newly created Mutex
object. Another thread can compete for the ownership of the Mutex object with statement

 inputMut->WaitOne();

A thread that holds the inputMut object can release it by executing statement

 inputMut->ReleaseMutex();

5 THE .NET IMPLEMENTATION OF THE π-CALCULUS

Nodes and Threads

The hierarchy ℑ(P) for a given π-calculus process expression P is composed of objects of the
three classes CompositeProcess, ChoiceProcess, and SequentialProcess, which
implement the composite_process, choice_process, and sequential_process nodes, respectively.
To maximize the concurrency of an execution of the π-calculus process, we encapsulate
CompositeProcess and SequentialProcess objects in .NET threads, which are
instances of the standard class Thread. The starting methods of the threads follow the
responsibilities of the composite_process and sequential_process nodes as described in Section 3.
They are detailed as follows.

Class Node is the common base of classes CompositeProcess, ChoiceProcess, and
SequentialProcess. It introduces instance variables parent and children for a node to
hold its parent and children, respectively, and member methods that manage the parent and
children variables.

152 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO.5

An object cp of the class CompositeProcess keeps the string procExpr, described in
Section 3. The thread starting method of the object cp identifies the choice_process expressions
from the string procExpr using top-level occurrences of the compsoite operator ‘|’ in the string.
For each of the choice_process expressions, an object dp of class ChoiceProcess is created
to process the choice_process expression, which is used to initialize the instance variable
procExpr of the created object dp. The thread starting method of the object cp adds the
created object dp into the children list of cp.

The constructor of an object dp of the class ChoiceProcess divides the choice_process
expression procExpr held in dp into sequential_process expressions, each of which is used to
create an object sp of class SequentialProcess. The created object sp is assigned to a
thread, which is responsible to process the actions specified in the sequential_process expression
procExpr.

For example, assume the composite_process expression (in x y.out y z.0).0 | out
z.0 + out x a.in a w.0 is used to create a CompositeProcess object cp0. The thread
starting method of object cp0 will create two children dp1 and dp2 of class ChoiceProcess
to handle the choice_process expressions (in x y.out y z.0).0 and out z.0 + out x
a.in a w.0, respectively. The object dp1 will create an object sp1 of class
SequentialProcess to handle the sequential_process expression (in x y.out y z.0).0.
The object dp2 will create two objects sp2 and sp3 to handle the sequential_process
expressions out z.0 and out x a.in a w.0, respectively. When the thread starting method of
the object sp1 handles the composite action (in x y.out y z.0), it create an object cp1 of
class CompositeProcess to handle the composite_process expression in x y.out y z.0.
The object cp1 creates an object dp3 of class ChoiceProcess, which creates an object sp4
of class SequentialProcess for processing the sequential_process expression in x y.out
y z.0. In summary, a handling of the process expression (in x y.out y z.0).0 | out z.0
+ out x a.in a w.0 needs to create the above mentioned objects, which form the hierarchy
shown in Fig. 5.1. Here, we introduce the object names such as cp0 and dp1 for illustration. The
source code of the implementation of the π-calculus does not use the object names.

A CompositeProcess object cp such as the objects cp0 and cp1 shown in Fig. 5.1
holds its children, which are objects of class ChoiceProcess, with the instance variable
children. If the list children becomes empty and the object cp is the root node of the
hierarchy ℑ, the execution is completed. If the list children in object cp becomes empty but
the object cp is not the root, the node cp invokes the removeChild method of its parent object
before it completes the execution specified by the thread starting method processing defined
in class CompositeProcess.

Similar to a composite process object, a choice process object dp of class ChoiceProcess
such as the node dp1, dp2, or dp3 shown in Fig. 5.1 uses a list named children to hold its
children, which are objects of class SequentialProcess. If the list children becomes
empty, the object dp winds up its computation by invoking the removeChild method of its
CompositeProcess parent to remove itself from the hierarchy.

VOL.4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 153

Figure 5.1 A hierarchy for executing a π-calculus process expression

An object sp of class SequentialProcess such as the node sp1, sp2, sp3, or sp4
shown in Fig. 5.1 encapsulates methods for handling the different terms and basic actions
specified in the sequential_process expression procExpr that is stored in the object sp. The
instance methods are described as follows. We shall describe the communication between the
SequentialProcess objects in the following subsection.

• The method handle_new() is invoked to handle a new-term that is in the front of the ex-
pression procExpr. It adds the names declared by the new-term into the declared-
Names list.

• The method handle_repeat() handles a repeat term ! by creating a new Sequen-
tialProcess object whose declaredName list and inputValue function has equal
values as the same named data structures in the object sp.

• The method handle_match() handles a match-term [n1 = n2] by retrieving the values
of the names n1 and n2 in the following way. The method tries to determine if the name n1
is an input parameter in a lowest ancestor sp' of the node sp by searching the function in-
putValue in the ancestors of sp. If the search succeeds in a SequentialProcess ob-
ject sp', the desired value is equal to the value inputValue(n1); otherwise, method
handle_match() tries to determine if the name n1 is a name declared in a lowest ances-
tor sp' of the node sp by searching the declaredNames list in the ancestors of sp. If the
search succeeds in object sp', the retrieved value is equal to (sp', n1); otherwise, the
name n1 is free with respect to the whole hierarchy and the retrieved value is equal to (0,
n1). The method handle_match() retrieves a value for the other name n2 similarly. If
the two retrieved values have same components, the method handle_match() completes

154 JOURNAL OF OBJECT TECHNOLOGY VOL.4, NO. 5

its evaluation successfully; otherwise, it changes the procExpr expression to the empty
string S"" so that the execution of object sp can wind up.

• The method performedAction() is invoked after an input, output, or internal action is
performed by the object sp. It simply requests the ChoiceProcess ancestors of the node
sp to remove all the children but the SequentialProcess ancestors of the node sp.
Thus, the method enforces the choice operations at the ChoiceProcess ancestor nodes of
the node sp.

• The method after_action() is invoked after an input, output, or internal action is per-
formed by the object sp. It installs the SequentialProcess nodes stored in the re-
peatedNodes list in the object sp. Particularly, for each object sp' in the repeated-
Nodes list, the method after_action() creates a ChoiceProcess object dp', sets
the parent field in dp' with the parent of parent of the node sp, and sets the parent
field in object sp' with dp'. It also creates a thread for the object sp'. The method af-
ter_action() will empty the repeatedNodes list in the object sp after it adds all the
nodes in the list to the hierarchy.

• The method handle_inaction() is invoked if the front action in the process expression
procExpr in object sp is the inaction 0. The method simply sets the procExpr variable
in node sp with the empty string S"" and returns.

• The method handle_tao() is invoked to handle the front tao action in the procExpr
expression in object sp. It simply removes the front action from procExpr and invokes the
methods performedAction() and after_action() for object sp.

• The method handle_input() is invoked for object sp if the front action in expression
procExpr in sp is an input action. It uses the communication link and parameters shown
in the input action expression to invoke the InputRequest() method defined in class
CommunCenter, which decides whether the input action can be honored immediately or
should be saved in the inputRequests list in the object cc. After the InputRequest()
method is executed, the methods performedAction() and after_action() of ob-
ject sp are executed.

• The method handle_output() of object sp for handling the front output action in ex-
pression procExpr of object sp is similar to the above method handle_input(). It
uses the communication link and arguments coded in the output action expression to invoke
the OutputRequest() method defined in class CommunCenter, which decides whether
the output action can be honored immediately or should be saved in the outputRequests
list in the object cc.

• The method handle_paren() is invoked if the front action in the expression procExpr
in object sp is a parenthesized process expression (R). It creates a new object cp of class
CompositeProcess to encapsulate the composite_process expression R and creates a
thread to execute the processing method for the object cp. It then waits for the object cp
to complete its execution by invoking the method Join() of cp.

Process Communication

We use the class CommunCenter to coordinate and synchronize the input and output requests
issued by SequentialProcess objects. Particularly, the class uses a static variable cc to
hold the unique object of the class CommunCenter for encapsulating the inputRequests

VOL. 4, NO.5 JOURNAL OF OBJECT TECHNOLOGY 155

and outputRequests lists. The static methods InputRequest() and OutputRe-
quest() defined in the class CommuCenter with signatures

void InputRequest(NodeName*, ArrayList*, SequentialProcess*);
void OutputRequest(NodeName*, ArrayList*, SequentialProcess*);

are responsible to accept input and output requests from SequentialProcess objects. The
first argument of the above methods denotes a communication link in the form (sp, name)
such that the pointer 0 for sp indicates name is free in the whole hierarchy and a valid pointer
sp indicates name is declared in the node sp with a new-term. The second argument carries
either the parameter list or the argument list. The third argument points to the Sequential-
Process object that issued the input or output request.

The object cc not only stores the lists inputRequests and outputRequests but also
is used to synchronize accesses to the lists by the SequentialProcess objects. Particulaly,
the above two static methods must request the lock of object cc before they can access or modify
the lists. Thus, we keep the integrity of the lists.

The .NET Executable Code

The .NET implementation of the π-calculus is compiled to an application named pi-calculator.exe
for Microsoft Windows. The application allows a user to enter a π-calculus process expression
coded in the ASCII language presented in Section 3. For example, after starting the application
with command

pi-calculator

we can enter the process expression (in x y.out y z.0).0 | out z.0 + out x a.in a
w.0, which was displayed in Fig. 5.1. The application will display the following information to
indicate the communications performed in the execution of the process:

A communication is realized through link: node free and name x:
 Parameter name: y argument: node free name a;
 Communication is completed.

A communication is realized through link: node free and name a:
 Parameter name: w argument: node free name z;

Communication is completed.

In the first sentence, the term free is used to indicate the channel name x is a free name with
respect to the whole composite process expression. The term free is used similarly in the
following sentences. The above display shows the second sequential_process expression out x
a.in a w.0 in the second choice_process expression out z.0 + out x a.in a w.0
communicates an output request and an input request with the first choice_process expression.
Thus, the first sequential_process expression out z.0 is rendered void by the activity of the
second.

The composite process expression (in x y.out y z.0).0 | out z.0 + new a out x
a.in a w.0 introduces a new-term into the above composite_process expression. Its execution
will display the following information, which indicates that the node 11 declared the name a.

156 JOURNAL OF OBJECT TECHNOLOGY VOL.4, NO. 5

The declared name a is communicated as an argument in the first communication. It is used as
the communication link in the second communication.

A communication is realized through link: node free and name x:
 Parameter name: y argument: node 11 name a;
 Communication is completed.

A communication is realized through link: node 11 and name a:
 Parameter name: w argument: node free name z;

Communication is completed.

6 CONCLUSIONS

The π-calculus proposed by Milner et al. [Milner et al. 1989, Milner et al. 1992] has been
studied extensively as a theoretical model of mobile communication systems. Here, we
reformulate the syntax of the π-calculus and describe how to implement the π-calculus
based on the reformulated syntax. The operational semantics of the π-calculus based on
the reformulated syntax is realized on the .NET Framework for the construction of a
Windows application, which accepts π-calculus process expressions and executes them
by dispatching threads.

The presented syntax and semantics of the π-calculus implies that we can realize π-calculus
process expressions, which specify the behavious of mobile communication systems, with
ditributed systems that are based on the CORBA or Web Services.

REFERENCES

[Aho85] A.V. Aho, R. Sethi, and J. D. Ullman: Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Massachusetts, 1985.

[Arnold00] K. Arnold, J. Gosling, and D. Holmes: The Java Programming Language – Third
Edition, Addison-Wesley, Reading, Massachusetts, 2000.

[Li05] L. Li: “Implementing the π-Calculus in Java”, to appear in 2005 March/April issue
in Journal of Object Technology, http://www.jot.fm/.

[Milner89] R. Milner, J. Parrow, and D. Walker: “A Calculus of Mobile Processes”, Parts I and
II. Technical Report ECS-LFCS-89-85 and -86, University of Edinburgh, 1989.

[Milner92] R. Milner, J. Parrow, and D. Walker: “A Calculus of Mobile Processes”, Parts I and
II. Information and Computation, Vol. 100(1), pp. 1-77, 1992.

[Milner99] R. Milner: Communication and Mobile Systems: The π-Calculus, Cambridge
University Press, Cambridge, UK, 1999.

[Sangiorgi01] D. Sangiorgi and D. Walker: The π-Calculus: A Theory of Mobile Processes,
Cambridge University Press, Cambridge, UK, 2001.

VOL. 4, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 157

http://www.jot.fm/

AN IMPLEMENTATION OF THE PI-CALCULUS ON THE .NET

About the author
With great regret we report the passing of Liwu Li on April 21, 2005 at the age of 58.

Dr. Liwu Li was a professor in School of Computer Science at
University of Windsor, Canada. His research interests include object-
oriented language design and implementation, object-oriented software
analysis and design, and software process design and execution.

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 5

	An Introduction to the (-Calculus
	A Reformulation of the (-Calculus

