
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 4, May–June 2005 

 
 
 
 

Cite this column as follows: Richard Wiener: “Obfuscation and .NET”, in Journal of Object 
Technology, vol. 4, no. 4, May-June 2005, pp.73-92 
http://www.jot.fm/issues/issue_2005_05/column06  

Obfuscation and .NET 
Dr. Richard Wiener, Editor-in-Chief, JOT, Associate Professor of Computer 
Science, University of Colorado at Colorado Springs 
 
Assemblies generated under .NET may be decompiled into easily recognized source code 
that is either identical or similar to the original source code. Individuals or companies 
deploying .NET generated assemblies that are targeted for client machines may 
unwittingly be distributing their source code – in most cases an unintended consequence. 
Since source code is generally considered a valuable intellectual asset, measures should 
be taken to prevent decompilation into easily recognized source code. 

Obfuscator software is aimed at making decompilation into easily recognized source 
code very difficult. This article examines the issue of obfuscation under .NET and 
reviews two obfuscator products. The test suite used to evaluate the two obfuscator 
products are applications taken from the forthcoming book by Richard Wiener entitled 
Modern Software Development Using C#/.NET (to be published by Course Technology 
in late 2005). 
 

The Nature of .NET Assemblies 

Assemblies in .NET consist of two major components: metadata and intermediate 
language code. The reflection capabilities of .NET languages and the metadata features of 
an assembly that include its classes and associated method signatures, fields, properties 
and events make it possible to reverse engineer and retrieve this intellectual property. The 
intermediate language code provides information regarding the details of each method 
implementation. This enables well constructed decompilers to reveal the details of 
proprietary algorithms that you would typically not want users to have access to. 

To illustrate this, consider the following class, in Listing 1, designed to perform 
generic sorting using the simple and relatively inefficient selection-sort algorithm. 

Listing 2 contains the decompiled source code obtained using the respected and 
widely used Lutz Roeder’s C# .NET Decompiler (http://www.aisto.com/roeder/dotnet/). 
The decompiled language chosen is C#, the same as the originating language. 

Listing 3 contains the decompiled source code in Visual Basic .NET obtained from 
the assembly produced by the original C# source code. 

http://www.jot.fm
http://www.aisto.com/roeder/dotnet/
http://www.jot.fm/issues/issue_2005_05/column06


 
OBFUSCATION AND .NET 

 
 
 
 

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

Although not perfect, the Roeder .NET Decompiler serves as a simple language 
translator since it effectively converts C# source code to Visual Basic source code 
(something that the author of this article would not dare attempt because of his lack of 
familiarity with Visual Basic). 
 

Listing 1 – Original C# source code for generic sorting 
 

using System; 
using System.Collections.Generic; 
 
namespace GenericSorting { 
 
    public class Sorting { 
        public static void SelectionSort<T>(T [] data,  
                           int size) where T : IComparable { 
            for (int outerIndex = size - 1; outerIndex >= 1;  
                 outerIndex--) { 
                // Find the largest value in data 
                T largest = data[0]; 
                int indexLargest = 0; 
                for (int innerIndex = 1;  
            innerIndex <= outerIndex;  
                    innerIndex++) { 
                if (data[innerIndex].CompareTo(largest) > 0) {  
                       // found value larger than largest 
                        largest = data[innerIndex]; 
                        indexLargest = innerIndex; 
                    } 
                } 
                /* Interchange data[indexLargest] with  
                   data[outerIndex]; 
                */ 
                T temp = data[indexLargest]; 
                data[indexLargest] = data[outerIndex]; 
                data[outerIndex] = temp; 
            } 
        } 
    } 
 
    public class Application { 
 
        public static void Main() { 
            double[] myData =  
             { 2.5, -1.3, -0.75, 1.5, 2.4, -0.5, 0.75, 1.0 }; 
            Sorting.SelectionSort<double>(myData,  
         myData.Length); 
            for (int i = 0; i < myData.Length; i++) { 
                Console.Write(myData[i] + "  "); 
            } 
            Console.WriteLine(); 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 75 

            Console.ReadLine(); 
        } 
    } 
} 

 

Listing 2 – Decompiled source using Lutz Roeder’s Reflector Decompiler 
 

namespace GenericSorting { 
       
 public class Application { 
            // Methods 
            public Application(); 
            public static void Main(); 
      } 
 
      public class Sorting { 
            // Methods 
            public Sorting(); 
            public static void SelectionSort<T>(T[] data, int 
size)  
      where T: IComparable; 
      } 
} 
 
public static void SelectionSort<T>(T[] data, int size)  
     where T: IComparable { 
      for (int num1 = size - 1; num1 >= 1; num1--) { 
           T local1 = data[0]; 
            int num2 = 0; 
            for (int num3 = 1; num3 <= num1; num3++) { 
                  if (data[num3].CompareTo(local1) > 0) { 
                        local1 = data[num3]; 
                        num2 = num3; 
                  } 
            } 
            T local2 = data[num2]; 
            data[num2] = data[num1]; 
            data[num1] = local2; 
      } 
} 
 
public static void Main() { 
      double[] numArray1 = new double[8]  
   { 2.5, -1.3, -0.75, 1.5, 2.4, -0.5, 0.75, 1 } ; 
      Sorting.SelectionSort<double>(numArray1, 
numArray1.Length); 
      for (int num1 = 0; num1 < numArray1.Length; num1++) { 
            Console.Write(numArray1[num1] + "  "); 
      } 
      Console.WriteLine(); 



 
OBFUSCATION AND .NET 

 
 
 
 

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

      Console.ReadLine(); 
} 

 

Listing 3 – Decompilation into Visual Basic .NET 
 

Public Shared Sub SelectionSort(Of T As IComparable)(ByVal 
data As T(),  
      ByVal size As Integer) 
      Dim num1 As Integer = (size - 1) 
      Do While (num1 >= 1) 
            Dim local1 As T = data(0) 
            Dim num2 As Integer = 0 
            Dim num3 As Integer = 1 
            Do While (num3 <= num1) 
                  If (data(num3).CompareTo(local1) > 0) Then 
                        local1 = data(num3) 
                        num2 = num3 
                  End If 
                  num3 += 1 
            Loop 
            Dim local2 As T = data(num2) 
            data(num2) = data(num1) 
            data(num1) = local2 
            num1 -= 1 
      Loop 
End Sub 

 

Although the decompiled C# source code is not identical to the original it is close enough 
to reveal all its essential details. The namespace, class names and method names and their 
signatures were decompiled perfectly. These are the features that define the architecture 
of the software system. The details of method SelectionSort reveal the algorithm used. 

For users who prefer Delphi Pascal, the Lutz Roeder’s decompiled code in Listing 4 
provides the details of the generic SelectionSort procedure in Delphi Pascal. 
 

Listing 4 – Decompiled SelectionSort in Delphi Pascal 
 

procedure Sorting.SelectionSort<T>(data: T[]; size: Integer)  
          where T: 
IComparable; 
begin 
      num1 := (size - 1); 
      while ((num1 >= 1)) do 
      begin 
            local1 := data[0]; 
            num2 := 0; 
            num3 := 1; 
            while ((num3 <= num1)) do 
            begin 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 77 

                  if (data[num3].CompareTo(local1) > 0) then 
                  begin 
                        local1 := data[num3]; 
                        num2 := num3 
                  end; 
                  inc(num3) 
            end; 
            local2 := data[num2]; 
            data[num2] := data[num1]; 
            data[num1] := local2; 
            dec(num1) 
      end 
end; 

 

Moderate size applications containing dozens of classes and thousands of lines of source 
code have been decompiled with equal success using the Roeder’s .NET decompiler. 

As a teacher of computer science, I often post my solutions (.NET assembly) on my 
university website for major projects that are assigned to my students. These solutions 
provide an additional specification to the students about how the system they are to 
design and implement should function. A major part of these projects is defining the 
architecture of the solution (class names, their features and interrelationships). The ability 
for students to decompile my posted assembly and reverse engineer not only the 
architecture of my solution but even its fine details requires that I run my assembly 
through a competent obfuscator before posting it to my website. This obfuscator should 
make the architecture and details of my solution very difficult to decipher. 

Clearly the same need exists for the commercial deployment of .NET assemblies. 

The Nature of Obfuscation 

An ideal obfuscator mangles the large features (namespaces, class names, method 
signatures and fields) and small features (method details and in particular string values 
defined as fields and within a method) of your assembly without changing its 
functionality. The more aggressive the mangling, the more likely that the obfuscated 
assembly will not run the same way as the original assembly. It is essential that an 
obfuscator keep the functionality of the software totally intact while making the original 
source code unrecognizable if the obfuscated assembly is decompiled. 

There are several well known problem areas that a well designed obfuscator must 
allow the user to deal with. When runtime type identification is used in an application to 
determine whether an object is of a particular type, the class name of the type being 
sought is used. If the obfuscator has mangled this class name, the dynamic type 
identification will fail in the obfuscated assembly. The user of the obfuscator must be 
given the option of selecting features that are not to be mangled. These include class, 
field and method names. The same issue exists when dynamic class loading is performed 
within the assembly or serialization or remoting is used. 



 
OBFUSCATION AND .NET 

 
 
 
 

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

One of the side-effects of obfuscation is the difficulty of debugging obfuscated code. 
An exception that is generated and reported by a user will typically include mangled 
method and class names making it almost impossible to identify the root cause. Providing 
a clearly labeled map file in the obfuscation tool is essential to the user in interpreting 
debugger output from the obfuscated assembly. 

Hackers often search deployed assemblies for strings that contain keywords such as 
“Password” or “Enter password”. By locating such strings, hackers attempt to circumvent 
the password protection embedded in the product that they are hacking. Some obfuscators 
provide the option of string encryption. Although this may introduce a small performance 
penalty because of the need to decrypt strings at runtime, the overhead associated with 
such string encryption and decryption is often negligible. 

Some obfuscator products include the ability to statically analyze the application and 
determine the parts that are not being used. This includes unused types, unused methods, 
and unused fields. This could be of great benefit if memory footprint is a concern.  

Some obfuscators provide control of flow obfuscation. Control flow obfuscation 
typically introduces false conditional statements and other misleading constructs in order 
to confuse decompilers. Some obfuscators destroy the code patterns that decompilers use 
to recreate source code. The trick is to confuse the decompiler without changing the 
functionality of the obfuscated assembly.  

Incremental obfuscation allows the developer to make changes to the original 
sources after releasing an obfuscated assembly and then provide a patch to the user that 
reflects the changes to the original application while preserving the name-mapping used 
in the original release. In order to accomplish this, a map file must be saved and later 
used to ensure that the renaming is preserved when making changes and re-releasing the 
obfuscated assembly. Some obfuscator products support this useful capability. 

Finally, some obfuscators enable the user to embed watermarks such as user names 
and registration codes into the internal binary structures within the assembly. 
Watermarking can assist in tracking distribution of the product on a per-executable basis 
if it is illicitly distributed or obtained. 

Several well known obfuscator products were sought and obtained for this review. 
Only two survived the rigorous tests that each obfuscator was subjected to. The 
obfuscators that failed generally produced assemblies that would not run or did not 
provide sufficient features to be of use for deploying commercial obfuscated assemblies. 

Only .NET 2005 (beta 1) assemblies were used in all the tests. 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 79 

The two products that survived these tests and will be the subject of this review are: 
1. Dotsfucator Professional Edition, Version 3 (RC) 

http://www.preemptive.com/ 
PreEmptive Solutions 
26250 Euclid Avenue 
Suite 503 
Cleveland, Ohio 44132 
Voice: 216.732.5895 
General Email: information@preemptive.com 
 

2. (2)  Salamander, RemoteSoft .NET Explorer 
http://www.remotesoft.com/ 
Dr. Huihong Luo 
Tel: 1-510-579-2752 
Sales information: 
sales@remotesoft.com  

 

Dotfuscator – Professional Edition, Version 3 (RC) 

This is an outstanding product in every respect. It is obvious why Microsoft has chosen to 
bundle this product (a light version) with .NET 2003 and more recently .NET 2005 
(beta). Assemblies can be obfuscated within Visual Studio using the Tools menu or using 
the stand-alone GUI version. Both provide equivalent functionality. I used the stand-
alone GUI version for most of my testing. 

A detailed on-line user’s guide provides detailed information about the use of the 
product. This user’s guide is well written and useful. The only item that I found missing 
from this user’s guide was information about how to detect the watermark that the user 
may optionally embed in the obfuscated assembly. An e-mail to Preemptive Solutions got 
me an answer within 10 minutes. 

Dotfuscator is a full-feature obfuscator product. It supports all of the facilities 
described in the previous section. Of particular interest is the “overload induction 
engine”. Using consecutive letters of the alphabet, Dotfuscator attempts to legally 
overload these letters when transforming identifier names from the original to obfuscated 
assembly. Clearly this obfuscated assembly deserves a grade of “A”! 

Consider its work on obfuscating the assembly produced by Listing and observe the 
“a’s”. A portion of the decompiled obfuscated assembly is given in Listing 5. 
 

http://www.preemptive.com/
http://www.remotesoft.com/
mailto:information@preemptive.com
mailto:sales@remotesoft.com


 
OBFUSCATION AND .NET 

 
 
 
 

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

Listing 5 – Decompiled Dotfuscated Assembly from Listing 1 (Generic Sorting) 
public static void a() 
{ 
      int num2 = 11; 
      double[] numArray1 = new double[8] { 2.5, -1.3, -0.75, 
1.5, 2.4,  
          -0.5, 0.75, 1 } 
; 
      c.a<double>(numArray1, numArray1.Length); 
      int num1 = 0; 
      while (true) 
      { 
            if (num1 >= numArray1.Length) 
            { 
                  break; 
            } 
            Console.Write(numArray1[num1] + a("\ucceb\uceed", 
num2)); 
            num1++; 
      } 
      Console.WriteLine(); 
      Console.ReadLine(); 
} 
 
internal static b.a a = {  
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x40, 0xCD, 
0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 0xF4, 0xBF,  
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE8, 0xBF, 0x00, 
0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x3F,  
      0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x03, 0x40, 0x00, 
0x00, 0x00, 0x00, 0x00, 0x00, 0xE0, 0xBF,  
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xE8, 0x3F, 0x00, 
0x00, 0x00, 0x00, 0x00, 0x00, 0xF0, 0x3F 
 }; 
 
public static void a<a>(a[] A_0, int A_1) where a: IComparable 
{ 
      int num1 = A_1 - 1; 
Label_004D: 
      if (num1 < 1) 
      { 
            return; 
      } 
      a local1 = A_0[0]; 
      int num2 = 0; 
      int num3 = 1; 
      while (true) 
      { 
            if (num3 <= num1) 
            { 
                  if (A_0[num3].CompareTo(local1) > 0) 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 81 

                  { 
                        local1 = A_0[num3]; 
                        num2 = num3; 
                  } 
            } 
            else 
            { 
                  a local2 = A_0[num2]; 
                  A_0[num2] = A_0[num1]; 
                  A_0[num1] = local2; 
                  num1--; 
                  goto Label_004D; 
            } 
            num3++; 
      } 
} 

 

Of particular benefit is the Dotfuscator option to encrypt string values within an 
assembly. 

Consider the simple C# application given in Listing 6 that prompts the user for a 
password. The password itself is stored as a field of class PassWordApplication (not a 
good practice but done here to dramatize the value of string encryption). 
 

Listing 6 – C# Application that Prompts for Password 
 

using System; 
 
namespace PasswordApp { 
 
    public class PassWordApplication { 
 
        // Fields 
        private String password = "Hi, my name is Paul."; 
 
        public static void Main() { 
            PassWordApplication app =  
       new PassWordApplication(); 
            Console.WriteLine("Enter password: "); 
            String pass = Console.ReadLine(); 
            if (pass.Equals(app.password)) { 
                Console.WriteLine("Correct password."); 
            } else { 
                Console.WriteLine("Incorrect password."); 
            } 
            Console.ReadLine(); 
        } 
    } 
} 



 
OBFUSCATION AND .NET 

 
 
 
 

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

Listing 7 presents the decompiled source listing, again using Reflector, after the source in 
Listing 6 is obfuscated without string encryption. 
 

Listing 7 – Decompiled Version of Listing 6 
 

public a() { 
      this.a = "Hi, my name is Paul."; 
} 
 
 
public static void a() { 
      a a1 = new a(); 
      Console.WriteLine("Enter password: "); 
      string text1 = Console.ReadLine(); 
      if (!text1.Equals(a1.a)) 
      { 
            Console.WriteLine("Incorrect password."); 
      } 
      else 
      { 
            Console.WriteLine("Correct password."); 
      } 
      Console.ReadLine(); 
} 

 
Clearly the decompiled source code informs the user not only about the section of code 
that requests a password but in this case the password itself. There would not be much 
value in having password protection in this case or obfuscation. 
As mentioned before, Dotfuscator includes an option for encrypting strings within the 
assembly. After exercising this option, the new decompiled source code is shown in 
Listing 8. 
 
Listing 8 – Decompiled Version of Listing 6 Using String Encryption 
 

public a() { 
      int num1 = 5; 
      this.a = 
a("\ue6ad\u9eb1\u94b3\uc1b7\u9ab9\ud2bb\uadbf\ua7c1\ue4c3\uafc
5\ubbc7\ueac9\u9ccb\uafcd\ua5cf\ubed1\ufad3", num1); 
} 
 
public static void a() 
{ 
      int num1 = 13; 
      a a1 = new a(); 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 83 

      
Console.WriteLine(a("\uf3b5\ud6b7\uceb9\uccbd\ue0bf\ub2c1\ua5c
3\ub5c5\ubbc7\ubdc9\ua3cb\ubccd\ub4cf\ue8d1\uf4d3", num1)); 
      string text1 = Console.ReadLine(); 
      if (!text1.Equals(a1.a)){         
Console.WriteLine(a("\uffb5\ud6b7\ud3bb\uccbd\ub2bf\ua7c1\ua7c
3\ub2c5\ue8c7\ubac9\uadcb\ubdcd\ua3cf\ua5d1\ubbd3\ua4d5\ubcd7\
uf4d9", num1)); 
      } 
      else 
      { 
            
Console.WriteLine(a("\uf5b5\ud7b7\uc8b9\ucebb\ua3bf\ub6c1\ue4c
3\ub6c5\ua9c7\ub9c9\ubfcb\ub9cd\ubfcf\ua0d1\ub0d3\uf8d5", 
num1)); 
      } 
      Console.ReadLine(); 
} 

 

Clearly the string encrypted version is much better protected. It is not at all obvious that 
the decompiled code relates in any way to password solicitation. It should be clear that 
the string encryption feature of Dotfuscator is invaluable and indispensable. 

Preserving features prior to obfuscation is of fundamental importance. As indicated 
earlier, this is essential before obfuscating assemblies that perform dynamic class loading 
or utilize runtime type identification. There are other motivations for preserving features 
(the use of serialization and remoting). Dotfuscator provides an outstanding graphical 
user interface that allows the user to select for preservation a class name or individual 
fields or methods within a class. Each of these features is presented in a tree that shows 
the fine-grained features of the class (class name, method names and field names). 
Associated with each feature is a checkbox that when selected prevents that particular 
feature’s name from being mangled. After extensive testing I am pleased to report that 
this important feature works exactly as advertised.  

As a useful security measure, Dotfuscator allows the user to embed watermarking 
within the obfuscated assembly. Using a command-line utility, Premark, the watermark, 
if present, can be retrieved from the obfuscated assembly. 

Dotfuscator produces map files in XML format. A sample map file, in this case 
associated with the generic sorting application presented in Listing 1, is shown in Listing 
9. 
 

Listing 9 – Map file associated with Obfuscation of Listing 1 
 
<?xml version="1.0" encoding="utf-8"?> 
<!DOCTYPE dotfuscatorMap SYSTEM 
"http://www.preemptive.com/dotfuscator/dtd/dotfuscatorMap_v1.1.dtd"> 
<dotfuscatorMap version="1.1"> 
    <header> 
        <timestamp>2005-04-05T09:32:20</timestamp> 



 
OBFUSCATION AND .NET 

 
 
 
 

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

        <product version="3.0.1920.16311" user="Dr. Richard Wiener" 
serial="(removed)">Dotfuscator(tm) Professional Edition</product> 
    </header> 
    <mapping> 
        <module> 
            <name>Sorting.exe</name> 
            <type> 
                <name>&lt;PrivateImplementationDetails&gt;{F458E8E5-
6075-4944-A3B6-2E98BF906274}</name> 
                <newname>b</newname> 
                <methodlist /> 
                <fieldlist> 
                    <field> 
                        
<signature>&lt;PrivateImplementationDetails&gt;{F458E8E5-6075-4944-A3B6-
2E98BF906274}/__StaticArrayInitTypeSize=64</signature> 
                        <name>$$method0x6000007-1</name> 
                        <newname>a</newname> 
                    </field> 
                </fieldlist> 
            </type> 
            <type> 
                <name>&lt;PrivateImplementationDetails&gt;{F458E8E5-
6075-4944-A3B6-2E98BF906274}/__StaticArrayInitTypeSize=64</name> 
                <newname>b/a</newname> 
                <methodlist /> 
                <fieldlist /> 
            </type> 
            <type> 
                <name>GenericSorting.Application</name> 
                <newname>a</newname> 
                <methodlist> 
                    <method> 
                        <signature>void()</signature> 
                        <name>.ctor</name> 
                    </method> 
                    <method> 
                        <signature>void()</signature> 
                        <name>Main</name> 
                        <newname>a</newname> 
                    </method> 
                </methodlist> 
                <fieldlist /> 
            </type> 
            <type> 
                <name>GenericSorting.Sorting</name> 
                <newname>c</newname> 
                <methodlist> 
                    <method> 
                        <signature>void()</signature> 
                        <name>.ctor</name> 
                    </method> 
                    <method> 
                        <arity>1</arity> 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 85 

                        <signature>void(!!0[], int32)</signature> 
                        <name>SelectionSort</name> 
                        <newname>a</newname> 
                    </method> 
                </methodlist> 
                <fieldlist /> 
            </type> 
            <type> 
                <name>Sorting.Properties.Resources</name> 
                <newname>e</newname> 
                <methodlist> 
                    <method> 
                        <signature>void()</signature> 
                        <name>.ctor</name> 
                    </method> 
                    <method> 
                        
<signature>System.Globalization.CultureInfo()</signature> 
                        <name>get_Culture</name> 
                        <newname>a</newname> 
                    </method> 
                    <method> 
                        
<signature>System.Resources.ResourceManager()</signature> 
                        <name>get_ResourceManager</name> 
                        <newname>b</newname> 
                    </method> 
                    <method> 
                        
<signature>void(System.Globalization.CultureInfo)</signature> 
                        <name>set_Culture</name> 
                        <newname>a</newname> 
                    </method> 
                </methodlist> 
                <fieldlist> 
                    <field> 
                        
<signature>System.Globalization.CultureInfo</signature> 
                        <name>_resCulture</name> 
                        <newname>b</newname> 
                    </field> 
                    <field> 
                        
<signature>System.Resources.ResourceManager</signature> 
                        <name>_resMgr</name> 
                        <newname>a</newname> 
                    </field> 
                </fieldlist> 
            </type> 
            <type> 
                <name>Sorting.Properties.Settings</name> 
                <newname>d</newname> 
                <methodlist> 
                    <method> 



 
OBFUSCATION AND .NET 

 
 
 
 

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

                        <signature>void()</signature> 
                        <name>.cctor</name> 
                    </method> 
                    <method> 
                        <signature>void()</signature> 
                        <name>.ctor</name> 
                    </method> 
                    <method> 
                        
<signature>Sorting.Properties.Settings()</signature> 
                        <name>get_Value</name> 
                        <newname>a</newname> 
                    </method> 
                </methodlist> 
                <fieldlist> 
                    <field> 
                        <signature>object</signature> 
                        <name>m_SyncObject</name> 
                        <newname>b</newname> 
                    </field> 
                    <field> 
                        
<signature>Sorting.Properties.Settings</signature> 
                        <name>m_Value</name> 
                        <newname>a</newname> 
                    </field> 
                </fieldlist> 
            </type> 
        </module> 
    </mapping> 
    <statistics> 
        <statisticline> 
            <description>Total Classes</description> 
            <statistic>6</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Total Methods</description> 
            <statistic>11</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Total Fields</description> 
            <statistic>5</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Total Classes Renamed</description> 
            <statistic>6</statistic> 
            <statistic>100.00 %</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Total Methods Renamed</description> 
            <statistic>6</statistic> 
            <statistic>54.55 %</statistic> 
        </statisticline> 
        <statisticline> 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 87 

            <description>Total Fields Renamed</description> 
            <statistic>5</statistic> 
            <statistic>100.00 %</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Methods Renamed to 'a'</description> 
            <statistic>5</statistic> 
            <statistic>45.45 %</statistic> 
        </statisticline> 
        <statisticline> 
            <description>Methods Renamed to 'b'</description> 
            <statistic>1</statistic> 
            <statistic>9.09 %</statistic> 
        </statisticline> 
    </statistics> 
</dotfuscatorMap> 
 

After spending several days testing and using Preemptive Solutions Dotfuscator 
(http://www.preemptive.com/), I can report that this product presents an outstanding role-
model in product design and implementation. Its user-interface is simple and clean 
providing for a high degree of usability. Although I did not choose to do so, many users 
will appreciate its integration into Visual Studio. Its many important fine-grained features 
most important of which include its overload induction engine (heavy overloading of 
single-character identifiers), string encryption option, fine-grained control of features that 
are to be preserved, ability to provide the customer incremental patches, simple and 
useful map file and its ability to embed water marks make this full-featured product first 
in its class. 

Salamander RemoteSoft .NET Explorer, Version 2.0 

Dr. Huihong Luo, the architect of the Salamander .NET Explorer, has been extremely 
helpful and responsive to questions sent during this review. I would expect customers to 
enjoy a high degree of support and satisfaction if they were to run into any problems 
while using the .NET Explorer. 

The .NET Explorer product is both a capable decompiler and obfuscator. The focus 
in this review is on its obfuscation features. 

Listing 10 shows the decompiled source code after obfuscating Listing 1 (the generic 
sort) using the Salamander .NET Explorer obfuscator (henceforth referred to as the 
Salamander obfuscator). 
 

Listing 10 – Decompiled Source Code After Using the Salamander Obfuscator 
public static void @abstract<T>(T[] localArray1, int num4)  
         where T: IComparable 
{ 
      for (int num1 = num4 - 1; num1 >= 1; num1--) 
      { 
            T local1 = localArray1[0]; 

http://www.preemptive.com/


 
OBFUSCATION AND .NET 

 
 
 
 

88 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

            int num2 = 0; 
            for (int num3 = 1; num3 <= num1; num3++) 
            { 
                  if (localArray1[num3].CompareTo(local1) > 0) 
                  { 
                        local1 = localArray1[num3]; 
                        num2 = num3; 
                  } 
            } 
            T local2 = localArray1[num2]; 
            localArray1[num2] = localArray1[num1]; 
            localArray1[num1] = local2; 
      } 
} 
 
 
 
 
namespace @abstract { 
      internal class @abstract 
      { 
            // Methods 
            internal @abstract(); 
            public static CultureInfo @abstract(); 
            public static ResourceManager @abstract(); 
            public static void @abstract(CultureInfo); 
 
            // Fields 
            private static CultureInfo @abstract; 
            private static ResourceManager @abstract; 
      } 
 
      public class @as : ApplicationSettingsBase 
      { 
            // Methods 
            static @as(); 
            public @as(); 
            public static as @abstract(); 
 
            // Fields 
            private static as @abstract; 
            private static object @abstract; 
      } 
} 
 
public static void @abstract() 
{ 
      double[] numArray1 = new double[8] { 2.5, -1.3, -0.75, 
1.5, 2.4,  
           -0.5, 
0.75, 1 } ; 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 89 

      abstract.abstract<double>(numArray1, numArray1.Length); 
      for (int num1 = 0; num1 < numArray1.Length; num1++) 
      { 
            Console.Write(numArray1[num1] + "  "); 
      } 
      Console.WriteLine(); 
      Console.ReadLine(); 
} 

 
Here, C# names were chosen as the base-set for name mangling (the identifiers in the 
original C# source file converted to standard C# names). You may wish to compare 
Listing 10 with Listing 5. 

The Salamander obfuscator does not support string encryption. After obfuscating and 
decompiling Listing 6, the source code is shown in Listing 11. 

 
Listing 11 – Decompiled Version of Listing 6 Using Salamander Obfuscator 
 

public @abstract() 
{ 
      this.abstract = "Hi, my name is Paul."; 
} 
 
public static void @abstract() 
{ 
      abstract abstract1 = new abstract(); 
      Console.WriteLine("Enter password: "); 
      string text1 = Console.ReadLine(); 
      if (text1.Equals(abstract1.abstract)) 
      { 
            Console.WriteLine("Correct password."); 
      } 
      else 
      { 
            Console.WriteLine("Incorrect password."); 
      } 
      Console.ReadLine(); 
} 

 

This example once again highlights the importance of being able to achieve string 
encryption. 

Salamander does not provide the same degree of control as Dotfuscator in 
determining which features are not to be transformed (mangled) in building the 
obfuscated assembly. Class names may be chosen for preservation, method names or all 
public members and all fields may be selected for preservation. For many purposes this is 
adequate. Identifier preservation is achieved using a context menu that appears when 
right-mouse clicking the feature that you wish to preserve. 



 
OBFUSCATION AND .NET 

 
 
 
 

90 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

The on-line documentation, although adequate, is less detailed than the 
documentation provided in Dotfuscator. In part, this is because Salamander contains 
fewer features. 

The log file (Dotfuscator’s equivalent of a map file) produced in connection with the 
generic sort is shown in Listing 12. It provides important and useful information to the 
user. 
 

Listing 12 – Salamander Log File after Obfuscating Listing 1 
 
// Remotesoft MSIL Disassembler 1.1.5. 
// Copyright (C) 2002 Remotesoft Inc. All rights reserved. 
// http://www.remotesoft.com/dotexplorer/index.html 
 
.module Sorting 
.namespace GenericSorting 
{ 
  .class public Sorting => as.abstract 
  { 
    .method public static void SelectionSort(!!0[] data, int32 size) => 
abstract 
    .method public void .ctor() 
  } 
 
  .class public Application => base.abstract 
  { 
    .method public static void Main() => abstract 
    .method public void .ctor() 
  } 
 
} 
 
.namespace abstract 
{ 
  .class private Resources => abstract.abstract 
  { 
    .field private static class 
[mscorlib]System.Resources.ResourceManager _resMgr => abstract 
    .field private static class 
[mscorlib]System.Globalization.CultureInfo _resCulture => abstract 
    .method assembly void .ctor() 
    .method public static class 
[mscorlib]System.Resources.ResourceManager get_ResourceManager() => 
abstract 
    .method public static class 
[mscorlib]System.Globalization.CultureInfo get_Culture() => abstract 
    .method public static void set_Culture(class 
[mscorlib]System.Globalization.CultureInfo value) => abstract 
 
    .property class [mscorlib]System.Resources.ResourceManager 
ResourceManager() : deleted 



 
OBFUSCATION AND .NET 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 91 

    { 
      .get class [mscorlib]System.Resources.ResourceManager 
Sorting.Properties.Resources::'abstract'() 
    } 
 
    .property class [mscorlib]System.Globalization.CultureInfo Culture() 
: deleted 
    { 
      .get class [mscorlib]System.Globalization.CultureInfo 
Sorting.Properties.Resources::'abstract'() 
      .set void Sorting.Properties.Resources::'abstract'(class 
[mscorlib]System.Globalization.CultureInfo) 
    } 
  } 
 
  .class public Settings => abstract.as 
  { 
    .field private static class Sorting.Properties.Settings m_Value => 
abstract 
    .field private static object m_SyncObject => abstract 
    .method public static class Sorting.Properties.Settings get_Value() 
=> abstract 
    .method private static void .cctor() 
    .method public void .ctor() 
 
    .property class Sorting.Properties.Settings Value() : deleted 
    { 
      .get class Sorting.Properties.Settings 
Sorting.Properties.Settings::'abstract'() 
    } 
  } 
 
} 
 
.class private <PrivateImplementationDetails>{F458E8E5-6075-4944-A3B6-
2E98BF906274} => base.as 
{ 
  .class nested private sealed __StaticArrayInitTypeSize=64 => abstract 
  { 
  } 
 
  .field assembly static valuetype 
'<PrivateImplementationDetails>{F458E8E5-6075-4944-A3B6-
2E98BF906274}'/'__StaticArrayInitTypeSize=64' $$method0x6000007-1 => 
abstract 
} 
 

Salamander does not currently support the embedding of water marks in its obfuscated 
assemblies. 

One of Salamander’s major features, Protection, could not be evaluated since it does 
not currently work with .NET 2005 assemblies. Dr. Luo has indicated that this important 
capability will be working under .NET 2005 in several months. 



 
OBFUSCATION AND .NET 

 
 
 
 

92 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

The following claim is made on RemoteSoft’s website 
(http://www.remotesoft.com/salamander/protector.html) 
“Our protector is not an obfuscator, rather it converts the decompilable Microsoft 
Intermediate Language code (MSIL or CIL) of your assemblies into native format while 
keeping all .NET metadata intact, and thus it provides the same level of protection as 
native C/C++ code. Further more, it offers code, string and resource encryption, and 
therefore, it provides even better protection than native C/C++ code.” 

I look forward to testing and later reporting more about this capability using the suite 
of .NET 2005 assemblies that were used in this review. 

A table that summarizes the major features of Dotfuscator and Salamander .NET 
Explorer is shown below. 

Major Features of Dotsfucator and Salamander .NET Explorer Obfuscators 
Feature Map 

file 
Incremental
obfuscation 

Preservation 
of user-
selected 
features 

String 
encryption

Water 
marks

Integration  
With 
Visual 
Studio 

Dotfuscator x x x x x x 
Salamander x x x    
 

About the author 
Richard Wiener is Associate Professor of Computer Science at the 
University of Colorado at Colorado Springs. He is also the Editor-in-
Chief of JOT and former Editor-in-Chief of the Journal of Object 
Oriented Programming. In addition to University work, Dr. Wiener has 
authored or co-authored 21 books and works actively as a consultant 
and software contractor whenever the possibility arises.  His latest book, 
to be published by Course Technology in late 2005, is entitled Modern 

        Software Development Using C#/.NET. 

http://www.remotesoft.com/salamander/protector.html

