
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol.4, No. 4, May-June 2005

Cite this column as follows: Conrad Bock: “UML 2 Activity and Action Models Part 6: Structured
Activities”, in Journal of Object Technology, vol. 4, no. 4, pp. 43-66,
http://www.jot.fm/issues/issue_2005_05/column4

UML 2 Activity and Action Models

Part 6: Structured Activities

Conrad Bock, U.S. National Institute of Standards and Technology

This is the sixth in a series introducing the activity model in the Unified Modeling
Language, version 2 (UML 2), and how it integrates with the action model [1]. The first
article gives an overview of activities and actions [2], while the next four cover models
typically used for graphical flow languages. This one describes models for languages that
usually have textual presentations. It covers structured nodes for sequencing,
conditionals, loops, and expansion regions for operating on collections, as well as
exception handlers, variables, and action pins.

1 STRUCTURED ACTIVITY MODELS

Two of the most common process notation styles are:
• Graphical notations usually support less restricted patterns of control flow. They

normally use data flow rather than variables to pass data between actions.
• Textual notations are usually designed for well-nested control, even if they

support non-local control flow in exceptional cases. They typically use variables
to pass data between actions, rather than data flow.

Ideally, there would be a single underlying model for these,1 but to simplify translation
from notation to repository, UML activities have models for both presentation styles,
informally called flow and structure models. Unfortunately, the models are not
independent, because the structured elements mainly address control, still requiring flow

1 Structured and flow models are equivalent as long as the value of each variable in the structured model is
only set once, and queuing is not used in the flow model. With a single underlying model, the various
notations could be easily compared and integrated. However, in general this requires complicated
translations between notation and repository. It may be easy enough when diagrams are translated all at
once, but more difficult when translated incrementally as the modeler edits the notation. Mappings from
notation to model also affect monitoring and debugging execution at the level of the original notation. In
the long run it can be expected that model compilation and execution visualization will become as
sophisticated as they are in convention languages, and translations between many notations and a single
underlying model more routine.

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 44

elements to pass data to actions in most cases (see example in). This is primarily because
the structured models are based on those provided in UML 1.5, which uses flows for
passing data between actions, and control flow for sequencing actions. Once the
independence of structured and flow models is achieved, the two models can be applied
in stages. For example, a textual language compiler could begin by translating a
structured notation to the structured model, and then transform that to a flow model for
data flow analysis.2

The dependencies of structured and flow packages are shown in Figure 1.3 The two
parts have a small common base at FUNDAMENTALACTIVITIES, which defines activities as
having activity nodes, without control or data flow. The flow models, starting with
BASICACTIVITIES, are independent of the structured models, and introduce control and
object flow edges along with other flow-based elements. The basic structured model in
STRUCTUREDACTIVITIES is independent of flows, and supports structured control
constructs rather than control flow, and variables instead of data flow. Structured models
beyond this, in COMPLETEACTIVITIES and EXTRASTRUCTUREDACTIVITIES, combine
structured and flow models, for the reasons given above.

Figure 1: Activities Package Dependency

2 The UML repository also supports tabular or matrix formats such as the Dependency Structure Matrix [3].
These provide a compact way to show function dependencies, by omitting some control information, but
are not restricted to hierarchical decomposition.
3 Compare to packaging before finalization in Figure 2 of [2].

FundamentalActivities

BasicActivities

ExtraStructuredActivities
IntermediateActivities

StructuredActivities

CompleteStructuredActivities CompleteActivities

FundamentalActivities

BasicActivities

ExtraStructuredActivities
IntermediateActivities

StructuredActivities

CompleteStructuredActivities CompleteActivities

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 45

The structured models in STRUCTUREDACTIVITIES and COMPLETESTRUCTURED
ACTIVITIES have elements analogous to control constructs found in typical programming
languages, although they are more general. They are kinds of activity nodes called
structured activity nodes, with specializations for sequencing, conditionals, loops, and
expansion regions for operating on collections, as described in sections 2 through 6. The
first three are familiar from conventional programming languages, while the expansion
regions are for operating on elements of a collection. The structured models are more
general than typical programming languages, providing inputs and outputs for control
constructs, as well as parallelism and pipelining.

Activities have structured and flow models for throwing and catching exceptions. The
model in EXTRASTRUCTUREDACTIVITIES supports protecting structured nodes and
actions, and catching exceptions thrown by the RAISEEXCEPTIONACTION, described in
section 7. It is more general than typical programming constructs, for example by
providing outputs from exception handlers. The model in COMPLETEACTIVITIES defines
two flow-oriented constructs for exceptions, interruptible regions and exception
parameters. These are covered as part of exception handling, even though they are not
part of the structured models.

The model in COMPLETESTRUCTUREDACTIVITIES provides for a “pull” style of data
flow, to complement the “push” style available in the flow model. In the pull style an
action starts when another needs a value from it, whereas in the push style an action starts
when another provides values to it. The pull style is applicable to modeling nested
expressions in programming languages, as covered in section 8.

Most of the structured models do not have a standard UML notation, because they are
intended for generation from various programming and action languages.4 Examples in
the following sections use the textual syntax of typical programming languages, but only
as a visual presentation of the models, borrowing their keywords and punctuation without
their implementations [4]. Repository models are given to show how the notations
translate to instances of the UML metamodel.

4 See Appendix B of UML 1.5 [5] for example action languages.

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 46

2 STRUCTURED ACTIVITY NODES IN GENERAL

Structured activity nodes are nodes that contain other nodes, the only kind of activity
node that does. A node cannot be directly contained by more than one structured node.
Structured nodes may contain other structured nodes, so an action may be indirectly
contained by many structured nodes, but it will have only one that immediately contains
it. Figure 2 shows the standard UML notation for structured nodes, with an example of a
nested structured node and action. Structured nodes are a natural model for blocks in
textual languages, since opening and closing delimiters, such as parentheses and braces,
always match each other in an unambiguous and well-nested way.

Figure 2: UML Notation for Structured Activity Nodes

Structured activity nodes do not enforce well-nested flows. For example, an action can
provide and accept control and data to and from actions outside the structured node at any
point in the execution of the node. Textual languages allow this also, with “go to”
commands for example, though methodologies normally discourage it. These
methodologies can be applied to structured nodes if desired.

Like all nodes, a structured node can participate in control flows, and be contained in
structured control constructs like conditionals and loops (sections 3 through 6). Complete
structured nodes can also have pins and participate in object flows [2][6]. When a
structured node has all its required incoming control and data, it starts the nodes in it
according to the same rules that an activity starts its nodes. Directly contained initial
nodes, actions, and structured nodes that do not have incoming edges will start when their
containing node does.5 Conversely, nodes in a structured node cannot start unless the
structured node does, and can execute only as long as the structured node does. When
control in a structured node reaches a directly contained activity final node, the structured
node and its contents are terminated according to the same rules used for activity final
nodes directly contained by activities [7]. When a structured node completes, its outgoing
control edges receive control. If the node has output pins, the outgoing data edges receive
the values in the pins, or a null token if there are no values.
Structured nodes may also declare variables. For example, the code fragment shown in

5 The rules for starting nodes in activities and structured nodes were clarified in the finalized UML 2 [1].

«structured»

«structured»

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 47

Figure 3 is an example nonstandard notation for the UML repository model in Figure 4.
Curly braces are used to notate a structured node. The variable declaration appears in the
repository model as a link between the structured node and a variable. The initialization is
modeled with one of the actions for modifying variable values,
ADDVARIABLEVALUEACTION. The initial value is specified by a kind of input pin that
determines the input value by evaluating a value specification, VALUEPIN, see section 8.
Variables can also be declared on activities in a similar way. The complete set of actions
on variables will be described in a later article.

 {
 int count = 1;
 }

Figure 3: Example Textual Notation for Variables

Figure 4: Repository Model for Figure 3

Structured nodes have an option to model what is usually referred to as a transaction. If
the Boolean property MUSTISOLATE is true for a structured node, then any object used by
an action within the node cannot be accessed in a conflicting way by any action outside
the node until the node as a whole completes.6 Isolation does not imply that rollback
(atomicity) or other transaction mechanisms must be used to satisfy it, though they can
be. It can be notated graphically on structured nodes with the UML property notation
{ mustIsolate = true }.

6 The current specification could be clearer that this is a requirement on the execution of a structured node,
which is why the prefix is “must” rather than “is” (compare ISASSURED and ISDETERMINANT in section 4).

1 : LiteralInteger
value = 1

: StructuredActivityNode

count : Variable

variable

scope

: ValuePin
value

: AddVariableValueAction
isReplaceAll = true

containedNode

inStructuredNode

variable

value
1 : LiteralInteger

value = 1

: StructuredActivityNode

count : Variable

variable

scope

: ValuePin
value

: AddVariableValueAction
isReplaceAll = true

containedNode

inStructuredNode

variable

value

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 48

3 SEQUENCE NODE

The most basic structured node executes a series of actions. An example notation taken
from C [8] is shown in Figure 5, omitting variables and parameters for brevity. The
corresponding UML repository model in Figure 6. The sequence node contains three call
behavior actions in order. The notation “{1}” in the repository model is not standard
UML, but indicates the order of links of the EXECUTABLENODE association from the
sequence node. Executable nodes are a class of nodes in the UML metamodel that include
actions and structured nodes.7

 {
 CheckOrder();
 FillOrder();
 CloseOrder();
 }

Figure 5: Example Textual Notation for Sequences

Figure 6: Repository Model for Figure 5

As mentioned in the previous section, the structured models still depend on flows to
model most of what is done with variables and parameters in textual languages. For
example, Figure 7 adds input parameters to specify which order will be checked, filled,
and closed. The corresponding flow model in uses object flows from activity parameter
nodes [2][6] to pass an order from the input parameter to the actions, and control flow

7 Sequence nodes can take inputs and provide outputs, but do not currently identify output pins in the
sequence that provide values to the output pins of the sequence, as conditionals and loops do. A
workaround for the common case of sequences that have results calculated at the last step is to use object
flows from output pins of actions in the sequence to the output pins of the sequence. This is useful for
modeling some language constructs, such as Common LISP progn [9]. The general will be addressed in
UML revision.

CloseOrder : Activity

FillOrder : Activity

CheckOrder : Activity

: CallBehaviorAction behavior

: CallBehaviorAction
behavior

: CallBehaviorAction
behavior

: SequenceNode

executableNode
{3}

executableNode
{2}

executableNode
{1}

CloseOrder : Activity

FillOrder : Activity

CheckOrder : Activity

: CallBehaviorAction behavior

: CallBehaviorAction
behavior

: CallBehaviorAction
behavior

: SequenceNode

executableNode
{3}

executableNode
{2}

executableNode
{1}

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 49

instead of a sequence node. The current version of UML does not have an action for
accessing parameters as it does variables.

 ProcessOrder(o : Order)
 {
 CheckOrder(o);
 FillOrder(o);
 CloseOrder(o);
 }

Figure 7: Example Textual Notation for Parameters

Figure 8: UML Notation for Parameters

4 CONDITIONAL NODE

The structured node for conditionals is composed of clauses that have test actions and
body actions, where test actions determine which body actions are executed. An example
textual notation taken from C is shown in Figure 9, for the repository model in Figure 10,
omitting parameters and variables for brevity, as well as the containment links from the
condition node the elements in the clauses.8 The clauses in this example are completely
ordered in execution, as specified by the precedence relation between them. The clause
without a predecessor is the translation of the first “if” in the textual notation, and the one
without a successor is the translation of the “else.” Each clause has a node for testing
whether the clause succeeds and a node to execute if it does. Each clause identifies an
output pin of the test action that provides a Boolean value determining if that clause
succeeds, called the decider pin. The “else” clause has a test that always returns true,
modeled with a value specification action. Test and body actions can be structured nodes,
and the decider pin can be inside a test structured node. Test and body actions can also be
sets of actions, where the first actions executed are the ones that do not have incoming
edges.

8 In UML 2 currently, test and body actions are not owned by clauses, and body output pins can be referred
to by multiple clauses. In UML 1.5, clauses owned their test and body actions. The effect in UML 2 is that
bodies can share actions. For example, the call to FILLORDER in Figure 10 could be shared between the first
and second clauses. It is unclear if this is much of a benefit, since changing the body of one clause will
change another, which may not be the intention.

ProcessOrder

Order

CheckOrder FillOrder CloseOrder

ProcessOrder

Order

CheckOrder FillOrder CloseOrder

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 50

 {
 if CheckOrder() FillOrder();
 else if ModifyOrder() FillOrder();
 else CancelOrder();
 }

Figure 9: Example Textual Notation for Conditionals

Figure 10: Repository Model for Figure 9

CheckOrder : Activity

FillOrder : Activity

ModifyOrder : Activity

FillOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction behavior

CancelOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: Clause
test

decider

body

: CallBehaviorAction behavior

: Clause
test

decider

successor

predecessor

body

: ConditionalNode

clause

clause

: Clause

body

successor

predecessor

clause

: LiteralBoolean
value = true

: OutputPindecider

: ValueSpecificationAction
test value

result

CheckOrder : Activity

FillOrder : Activity

ModifyOrder : Activity

FillOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction behavior

CancelOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: Clause
test

decider

body

: CallBehaviorAction behavior

: Clause
test

decider

successor

predecessor

body

: ConditionalNode

clause

clause

: Clause

body

successor

predecessor

clause

: LiteralBoolean
value = true

: OutputPindecider

: ValueSpecificationAction
test value

result

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 51

Conditional nodes are more general than typical programming conditionals, because
clauses can be partially ordered with some clauses having the same predecessor, or
multiple clauses with no predecessor.9 This means some tests may proceed concurrently.
If one test succeeds, the body of that clause is executed. If more than one test succeeds,
only one clause will be executed, but UML does not define which it is. The specification
does not require that all tests complete, or that the first one yielding true causes the other
tests to be terminated, though implementation may choose to do this. For applications that
require more specific semantics, conditionals can be marked with two Boolean properties
for specifying the intended behavior of the conditional:

• ISASSURED = TRUE specifies that at least one test will succeed.
• ISDETERMINATE = TRUE specifies that at most one test will succeed.

These are properties a modeler declares to be true, rather than properties guaranteed to be
true by the implementation. The modeler must ensure the activity is designed to meet
these requirements if the property values are true. The implementation may optimize
based on these properties, for example, by executing the body of the first succeeding test,
and terminating other concurrent tests that are not done yet.

Conditional nodes can have output pins providing results to other actions. Output
values are taken from output pins of the body of the succeeding clause, which are
identified by the clause. This is applicable to languages that support conditional
expressions. Figure 11 shows example textual notations taken from CommonLISP and C,
with expressions that return the cost of the filled order. The additional repository
elements to Figure 10 are shown in Figure 12. The BODYOUTPUT association identifies
pins in each clause that will have their values copied to the outputs of the conditional
when the clause succeeds. The number of body outputs on each clause must match the
number of conditional outputs, and the types must be compatible.

 (setq Cost
 (cond ((CheckOrder) (FillOrder))
 ((ModifyOrder) (FillOrder))
 (t (CancelOrder))))

 Cost = (CheckOrder() ? FillOrder()
 : (ModifyOrder() ? FillOrder()
 : CancelOrder()))

Figure 11: Example Textual Notations for Conditionals with Outputs

9 Conditional nodes are also more general than using decision and merge nodes [7] for the above reasons,
and because descision nodes only route values based on the characteristics of each value.

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 52

Figure 12: Repository Model for Figure 11

5 LOOPNODE

The structured node for loops is composed of setup actions, test actions, and body
actions. Setup actions are performed once at the beginning of the loop, test actions are
performed either at the beginning or end of each iteration to determine when to exit the
loop, and the body actions are performed at each iteration.10 Example textual notations
taken from C are shown in Figure 13, for the repository model in Figure 14, omitting
parameters and variables for brevity, as well as the containment links from the loop node
to the elements in it. Loop nodes have an option to perform the test at beginning or the
end of each iteration, as specified by the Boolean property ISTESTEDFIRST. As in
conditionals, test and body actions in loops can be structured nodes, and the decider pin
inside a test structured node. Test and body actions can also be sets of actions, where the

10 Body actions are not organized into clauses as conditional actions are, because there would be only one
clause.

FillOrder : Activity

FillOrder : Activity

CancelOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction behavior

: OutputPin

result

: Clause
body

bodyOutput

: Clause

body

bodyOutput

successor

predecessor

: Clause
body

successor

predecessor

bodyOutput

: ConditionalNode

clause

clause

clause

: OutputPinresult

: ObjectFlow

source

: InputPin
target

Cost : Variable

: AddVariableValueAction

value variable

FillOrder : Activity

FillOrder : Activity

CancelOrder : Activity

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction behavior

: OutputPin

result

: Clause
body

bodyOutput

: Clause

body

bodyOutput

successor

predecessor

: Clause
body

successor

predecessor

bodyOutput

: ConditionalNode

clause

clause

clause

: OutputPinresult

: ObjectFlow

source

: InputPin
target

Cost : Variable

: AddVariableValueAction

value variable

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 53

first actions executed are the ones that do not have incoming edges.11

 PrepareToProcessOrders();
 while (IsStockLeft())
 ProcessOrder();

 for (PrepareToProcessOrders() ; IsStockLeft() ;)
 ProcessOrder();

Figure 13: Example Textual Notations for Loops

Figure 14: Repository Model for Figure 13

Loop nodes can have output pins providing results for input to other actions. Outputs are
taken from pins called “loop variables,” which are not variables in the sense of Figure4,
but can be set at each iteration. These pins are initialized from input pins identified for
that purpose. An example textual notation taken from CommonLISP is shown in Figure
15. Most of the additional repository elements to Figure 14 are shown in Figure 16.12 The
LOOPVARIABLE association specifies pins used for loop variables. In this example it is the
one corresponding to AMOUNTSHIPPEDSOFAR in Figure 15.13 The LOOPVARIABLEINPUT
association specifies input pins that initialize loop variables when the loop node starts.
The BODYOUTPUT associations identify output pins used to update the loop variables after
each iteration. The values of the loop variables are moved to the output pins of the loop

11 In UML 2 currently, test and body actions are not owned by loops. In UML 1.5, loops had a single
clause, which owned its test and body actions.
12 A complete model would include the BODYPART links to all the actions and pins on the flow from the call
to PROCESSORDER to the body output pin.
13 The current UML metamodel requires that output pins are owned by exactly one action through the
OUTPUT association, or one of its specializations, which conflicts with pin ownership through the
LOOPVARIABLE association. This will be addressed in revision.

PrepareToProcessOrders : Activity

IsStockLeft : Activity

ProcessOrder : Activity

: CallBehaviorAction
behavior

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: LoopNode
isTestedFirst = true

setupPart

test

decider

bodyPart

PrepareToProcessOrders : Activity

IsStockLeft : Activity

ProcessOrder : Activity

: CallBehaviorAction
behavior

: CallBehaviorAction
behavior

: OutputPin

result

: CallBehaviorAction
behavior

: LoopNode
isTestedFirst = true

setupPart

test

decider

bodyPart

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 54

when it is done.14 Loop nodes can have input pins that are not loop variables. These
provide constant values for the duration of the loop.

(setq TotalAmountShipped
 (progn (PrepareToProcessOrders)
 (do ((AmountShippedSoFar 0))
 ((IsStockLeft) AmountShippedSoFar)
 (setq AmountShippedSoFar
 (+ AmountShippedSoFar (ProcessOrder))))))

Figure 15: Example Textual Notation for Loops with Outputs

Figure 16: Repository Model for Figure 15

14 Values remain in the loop variable pins unless they flow to inputs of actions in the body. This only occurs
when all the required inputs to the action are available, including control [10], so the loop variables will
still have their values when the test fails and the body does not start again.

TotalAmountShipped : Variable

: AddVariableValueAction

variable

: InputPin

value

: ObjectFlow
target

ProcessOrder : Activity

0 : LiteralInteger
value = 0

: OutputPin

: OutputPin

source

: CallBehaviorAction behavior

result

: ValuePin
value

: ObjectFlowsource

: ObjectFlow

+ : FunctionBehavior

: InputPin
target

: InputPin
target

: OutputPin source

: CallBehaviorAction

behavior

argument

argument

: LoopNode
isTestedFirst = true

result

bodyPart

loopVariableInput

loopVariable

: OutputPin resultbodyOutput

TotalAmountShipped : Variable

: AddVariableValueAction

variable

: InputPin

value

: ObjectFlow
target

ProcessOrder : Activity

0 : LiteralInteger
value = 0

: OutputPin

: OutputPin

source

: CallBehaviorAction behavior

result

: ValuePin
value

: ObjectFlowsource

: ObjectFlow

+ : FunctionBehavior

: InputPin
target

: InputPin
target

: OutputPin source

: CallBehaviorAction

behavior

argument

argument

: LoopNode
isTestedFirst = true

result

bodyPart

loopVariableInput

loopVariable

: OutputPin resultbodyOutput

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 55

6 EXPANSION REGION

An expansion region is a structured node that takes collections as input, acts on each
element of the collections individually and produces elements to output collections. It can
act on the elements iteratively, so that actions on each element proceed only after actions
on the previous elements are done. It can also act on the elements in parallel, or as a
pipelined stream of values through the nodes in the region. An example in standard UML
notation is shown in Figure 17, with an example textual notation from CommonLISP in
Figure 18. The input and output collections arrive and leave from specialized object
nodes [10] called expansion nodes, which are notated as groups of small rectangles
overlapping the boundary of the region. These have a similar function to pins, but have
flows going in and coming out, and are not directly attached to actions. They have
specialized semantics that transform collections to elements of the collection on input,
and the reverse on output. The region outputs the filled orders only, so it filters the input
collection (see [7] about decision nodes and decision input behaviors). Regions that
produce an output for each input are equivalent to mappings over the collection.15

Figure 17: UML Notation for Expansion Regions

 (dolist (o orders filled-orders)
 (cond ((CheckOrder o)
 (setq filled-orders
 (nconc filled-orders '(o))))
 (t (CancelOrder o))))

Figure 18: Example Textual Notation forFigure 17

15 Expansion regions replace the UML 1.5 filter action, map action, and iterate action. They do not replace
UML 1.5 reduce action, which transforms a collection into a scalar by repeated binary combination of the
input elements. It was inadvertently dropped in UML 2.0 and will be returned in revision.

«iterative»

Cancel
Order

[true]

[false]

Fill
Order

«decisionInput»
CheckOrder

«iterative»

Cancel
Order

[true]

[false]

Fill
Order

«decisionInput»
CheckOrder

«decisionInput»
CheckOrder

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 56

The expansion region in is marked as being in ITERATIVE mode, so each order is filled or
cancelled before the previous one is checked. Alternatively, it could have processed
orders in parallel, or as a stream. In PARALLEL mode, the elements of the collection move
through “copies” of the region and do not interact with each other. If the example used
this mode, orders that are quickly filled and checked could be processed in parallel with
orders that take longer. In STREAM mode, elements enter the same “copy” of the region
one after the other. If the example used this mode, it would allow checking an order in
parallel with filling the order that came before it, informally called “pipelining.”16 In all
modes, the entire region completes when all the elements of the input collection have
been acted on by the region.Figure 19 shows most of the repository model for and Figure
18, omitting parameters and variables for brevity, as well as the containment links from
the expansion node the elements in it. Expansion nodes are specified with the
inputElement and outputElement associations.17 They can be the source and target of
object flows, as all object nodes can.

Figure 19: Repository Model for Figure 17 and Figure 18

It is common to have a region that simply calls a behavior or operation on each element

16 The activity model supports hybrid stream/parallel modes where values upstream can overtake other
values downstream. This means some of the actions in the activity allow concurrent executions, which is
indicated by the ISREENTRANT property on invoked behaviors. This will be described later in the series.
17 The INPUTELEMENT and OUTPUTELEMENT associations are not specialized from the INPUT and OUTPUT
associations for pins, because the semantics of expansion nodes are not the same as pins, as described
above and in the bullet above Figure 22.

: ObjectFlow

: ExpansionNode

target

: ExpansionRegion
mode = iterative

outputElement

regionAsOutput

FillOrder : Activity: OutputPin

source

: CallBehaviorAction

behavior
result

: FlowFinalNode : ObjectFlow
target

: ExpansionNode

inputElement

regionAsInput

: InputPin
argument

: OpaqueExpression
body = "result = true"

CancelOrder : Activity: OutputPinsource

CheckOrder : Activity

: ObjectFlow

source

: ObjectFlow

target

guard

: CallBehaviorAction

behaviorresult

: DecisionNode

decisionInput

target

source

: InputPin

argument

: OpaqueExpression
body = "result = false"

: ObjectFlow

source

target

guard

: ObjectFlow

: ExpansionNode

target

: ExpansionRegion
mode = iterative

outputElement

regionAsOutput

FillOrder : Activity: OutputPin

source

: CallBehaviorAction

behavior
result

: FlowFinalNode : ObjectFlow
target

: ExpansionNode

inputElement

regionAsInput

: InputPin
argument

: OpaqueExpression
body = "result = true"

CancelOrder : Activity: OutputPinsource

CheckOrder : Activity

: ObjectFlow

source

: ObjectFlow

target

guard

: CallBehaviorAction

behaviorresult

: DecisionNode

decisionInput

target

source

: InputPin

argument

: OpaqueExpression
body = "result = false"

: ObjectFlow

source

target

guard

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 57

of the collection and outputs a collection of the return results. Two standard UML
shorthand notations are available for this, as shown in Figure 20. These examples call a
single behavior for processing orders, which returns the order modified to indicate
whether it was successfully processed or not. They are equivalent to the full notation in
Figure 21. The shorthand at the top of Figure 20 supports all modes, while the one at the
bottom always translates to parallel mode.18

Figure 20: Shorthand UML Notations for Expansion Regions

Figure 21: Longhand UML Notation for Figure 20

Expansion regions have more general features than illustrated so far:
• Input collections can be ordered. In iterative mode, the region will act on the

elements according to the order specified by the collection. The stream mode will
feed elements into the region in that order also.

• A region can accept multiple collections and output multiple collections. Each
execution of the region draws an element from each input collection into the same
“copy” of the region, but may act on elements across collections according to
mode. For example, Figure 22 shows multiple collections for a fragment of the
Fast Fourier transform algorithm, adapted from Figure 261 of [1] and Figure C-24
of [5]. An execution of the region takes one element from each input collection,
LOWER, UPPER, and ROOT, which is informally called a “slice.”19 Since the region

18 In UML 1.5 the asterisk in the lower notation of Figure 20 specified a multiplicity constraining the
number of concurrent executions of the behavior. In UML 2 it is purely notational.
19 UML does not currently specify whether the name and type of expansion nodes refer to collections, as
the values appear outside the region, or to the elements, as they appear inside. This will be addressed in
revision. Figure 22 uses the name and type of the elements.

«parallel»

Process Order

*
Process Order

«parallel»

Process Order

«parallel»

Process Order

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 58

is in parallel mode, it can act on all slices through the inputs simultaneously.
Multiple input collections must have the same number of elements at runtime
when execution starts on an expansion region. The number of input collections
may differ from the number of output collections, as in Figure 22, and the type of
elements in each collection do not need to be the same.

• Values flowing into the region without going through an expansion node are taken
as constant inputs to executions of the region. The same applies to values arriving
on input pins (expansion nodes are not pins). This is a weak form of loop variable,
where the values cannot be modified.

Figure 22: Expansion region with Multiple Input Collections

lower + upper (lower - upper) * root

lower :
Complex

upper :
Complex

nxtodd : Complex

Cut

«concurrent»

Shuffle

Sneven : Complex [*] {ordered} Snodd : Complex [*] {ordered}

S’ : Complex [*] {ordered}

Slower :
Complex [*] {ordered}

Supper:
Complex [*] {ordered}

V : Complex [*] {ordered}S : Complex [*] {ordered}

root :
Complex

nxteven : Complex

lower + upper (lower - upper) * root

lower :
Complex

upper :
Complex

nxtodd : Complex

Cut

«concurrent»

Shuffle

Sneven : Complex [*] {ordered} Snodd : Complex [*] {ordered}

S’ : Complex [*] {ordered}

Slower :
Complex [*] {ordered}

Supper:
Complex [*] {ordered}

V : Complex [*] {ordered}S : Complex [*] {ordered}

root :
Complex

nxteven : Complex

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 59

7 EXCEPTION HANDLING

UML 2 has two exception handling facilities, one typically used with structured models
and the other for flow models. The structured one is analogous to try/throw/catch
constructs in programming languages. It provides a way to indicate that a structured node
or action traps exceptions raised from inside it or from behaviors it calls. An exception in
UML is any object thrown with the predefined action RAISEEXCEPTIONACTION. An
example in standard UML notation is shown in Figure 23, omitting parameters and the
contents of the structured node for brevity, with an example textual notation from C++
[11] in Figure 24, and repository model in Figure 25. It assumes the CHECKORDER
behavior will raise an exception of type NOFILLREASON if the order does not pass the
check. When this happens, all tokens flowing in the execution of CHECKORDER and the
node invoking it are destroyed. The zigzag arrow to the input pin of NOTIFYBUYER
indicates the structured node traps exceptions of type NOFILLREASON, and the reaction
will be to notify the buyer that something is wrong with the order.20

Figure 23: UML Notation for Exception Handlers

try
 {
 CheckOrder();
 FillOrder();
 CloseOrder();
 }
catch (NoFillReason *r)
 NotifyBuyer(r);

Figure 24: Example Textual Notation for Exception Handlers

20 An alternative notation for the zigzag line is to use a zigzag icon above a straight line. See Figure 254 of
[1].

FillOrder

CheckOrder

CloseOrder

«structured»

Notify Buyer
NoFillReason

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 60

Figure 25: Repository Model for Figure 23 and Figure 24

In general, an exception is passed from the point at which it is raised, up the “call tree”
through all containing structured nodes, activities, synchronous call behavior and
operation actions, until it reaches a structured node or action protected by an exception
handler for the type of exception raised. All tokens are destroyed in constructs the
exception object passes through on the way up to the handler. Then the handler is run.
UML does not specify what happens if no handler is found for an exception at all.21
Exceptions are not passed up through asynchronous invocation actions. These actions do
not expect a reply, and separate the caller and callee completely. If the protected node has
an output pin, and an exception is thrown, the handler output value is used. This makes
exception handlers more general than typical programming constructs, because they can
be used on expressions as well as statements.22

Two exception handling facilities for flow models provide for the abandonment of an
activity or portion of it when some values pass outside it. The first is shown in Figure 26,
where a portion of an activity is indicated as an interruptible region with an interrupting
edge shown as a zigzag line.23 When a value flows along the interrupting edge, all tokens
in the region are destroyed.24 In this example, the interrupting value happens to be a
signal of type NOFILLREASON sent by the lower level activities when there is a problem
filling the order, and received by the overall activity.25 In general, the signal can be sent
from any activity, not just the ones called in the region, as with exceptions thrown to
handlers. The repository model for interruptible regions is shown in Figure 25, omitting
the order actions for brevity. It is similar to those of structured nodes, except that it

21 The current specification is not clear about the effect of multiple handlers matching the exception, but it
is expected to be clarified as choosing one of the handlers indeterminately.
22 Exception handlers replace UML 1.5 jump handlers. UML 1.5 used exceptions to model programming
constructs for non-local control flow, such as breaks and continues. This is not necessary, since they have
the same effect as an unstructured control flow.
23 An alternative notation for an interrupting edge is to place a zigzag icon above a straight line. See Figure
273 of [1].
24 The term “interruptible” region is a misnomer, because the region cannot be restarted with the same
token state as when it was terminated.
25 The signal may be sent to the object executing the overall activity or to the activity itself, which is also an
object [2].

NotifyBuyer : Activity

NoFillReason : Classifier

: StructuredActivityNode

: InputPin

: CallBehaviorAction
behavior

argument

: ExceptionHandler exceptionType

handler

protectedNode

exceptionInput

handlerBody

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 61

identifies the edges that can interrupt it, and it allows a node to be in more than one
interruptible region.

Figure 26: UML Notation for Interruptible Regions

Figure 27: Repository Model for Figure 26

FillOrder

CheckOrder

CloseOrder

«interruptibleRegion»

Notify Buyer
NoFillReasonNoFillReason

NotifyBuyer : Activity

: CallBehaviorAction

behavior

: OutputPin

: InputPin

argument

: ObjectFlow

source

target

: InterruptibleRegion

interruptingEdge

interrupts

NoFillReason : Signal: SignalEvent signal

: AcceptEventAction

resultexecutableNode

inInterruptibleRegion

:Trigger event
trigger

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 62

The second exception handling facility for flow models is exception parameters. These
provide output values to the exclusion of any other output parameter or outgoing control
of the action. They destroy all tokens in the activity or action they flow out of. Figure 28
shows an activity for processing orders, using the triangle annotation for an exception
parameter. If a NOFILLREASON signal arrives while the activity is executing, it flows to
the exception parameter, which terminates the activity. The order is not output. If the
signal does not arrive, the order is output and the exception is not. These are also
described in an earlier article of the series, see Figure 10 of [6].

Figure 28: Exception Output Parameter

8 EXPRESSION TREES

Most textual languages provide for nested expressions to pass results of one function to
another without using variables. For example, Figure 29 shows an expression used to
calculate the value of a variable. This is a natural application of data flow models, since
there are no variables for intermediate results in the expression, like the sum of X and 1.
Figure 30 shows the equivalent UML notation.26 The textual and graphical notations can
be compiled to the same underlying repository model.

 y = x / (x + 1)

Figure 29: Example Textual Notation for Expression Trees

Figure 30: Equivalent UML Notation for Figure 29

26 UML provides for more compact notation for reading variables and injecting value specifications, by
placing the variable and value specification near the input pins that use their values.

«ValueSpecificationAction»
1

«ReadVariableAction»
x

+

«AddVariableValueAction»
y/

divisor

dividend

ProcessOrder

FillOrderCheckOrder CloseOrder

NoFillReasonNoFillReason

Order

NoFillReason

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 63

When nested expressions are translated to activities, control first arrives at leaves of the
expression tree, after which data cascades through to the root, producing the final result.
For example, in Figure 30, control is passed to the value specification and read variable
actions on the left, and the final result is produced from the division action. This contrasts
with the expectation of some compiler authors, who expect control to start at the
statement that requires the expression, and the expression to be evaluated from the root
down. In this view, control would arrive at the add variable action in Figure 30, which
would begin the evaluation of the division expression, which would begin the reading of
the X variable, and so on to the leaves of the tree. This is a “pull” style of data flow,
where an action requiring data initiates other actions that provide it, as compared to the
“push” style of Figure 30, where actions that produce data initiate other actions that
accept it.

For those preferring pull data flow for expression trees, UML 2 provides a specialized
form of input pin that invokes an action when the pin needs a value. These action input
pins are only invoked when all the other inputs to the action are already available. The
action being invoked must have exactly one output pin. Since action input pins are for
parsing textual languages, they do not have a standard UML notation. The repository for
an action pin model of Figure 29 is shown in Figure 31. When control arrives at the
action for setting the Y variable, an action input pin for the value initiates the division
action, which has action input pins initiating other actions, and so on. The leaves of the
expression tree only have actions that have no inputs. Action input pins are a
generalization of value pins, introduced in Figure 4. A value pin is equivalent to using a
value specification action with an action input pin, and has the same pull semantics.

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 64

Figure 31: Repository Model for Figure 29 Using Action Pins

9 CONCLUSION

This is the sixth in a series on the UML 2 activity and action models. It covers models for
languages that usually have textual presentations, including structured nodes for
sequencing, conditionals, loops, and expansion regions for operating on collections, as
well as exception handlers, variables, and action pins. Examples are given in various
nonstandard textual formats, because UML does not specify a textual notation, along with
a repository model to show how they translate to the activity model. Expansion regions
provide for mapping and filtering collections in multiple modes, including concurrency.
Exception handling and expression trees are supported in three ways, one for structured
models and another two for flow models. It is explained how each construct is more
general than the corresponding ones in typical programming languages.

y : Variable

: AddVariableValueAction
isReplaceAll = true

variable : OutputPin

: ActionInputPin
value

/ : FunctionBehavior

1 : LiteralInteger
value = 1

: ValueSpecificationAction
value

: ActionInputPin

fromAction

: ActionInputPin

: OutputPin

+ : FunctionBehavior

: CallBehaviorAction
result fromAction

behavior

argument

x : Variable

: ActionInputPin

argument

: OutputPin

: CallBehaviorAction

argument

fromActionresult

behavior
: ReadVariableValueAction

variable

fromAction

result

: ActionInputPin

argument

fromAction

y : Variable

: AddVariableValueAction
isReplaceAll = true

variable : OutputPin

: ActionInputPin
value

/ : FunctionBehavior

1 : LiteralInteger
value = 1

: ValueSpecificationAction
value

: ActionInputPin

fromAction

: ActionInputPin

: OutputPin

+ : FunctionBehavior

: CallBehaviorAction
result fromAction

behavior

argument

x : Variable

: ActionInputPin

argument

: OutputPin

: CallBehaviorAction

argument

fromActionresult

behavior
: ReadVariableValueAction

variable

fromAction

result

: ActionInputPin

argument

fromAction

UML 2 Activity and Action Models Part 6: Structured Activities

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 65

ACKNOWLEDGEMENTS

Thanks to James Rumbaugh for input to this article and the original merger of UML 1.5
actions into UML 2 activities, and to Evan Wallace and James Odell for their reviews.

Commercial equipment and materials might be identified to adequately specify
certain procedures. In no case does such identification imply recommendation or
endorsement by the U.S. National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available for the
purpose.

REFERENCES

[1] Object Management Group, “UML 2.0 Superstructure Specification,”
October 2004. http://www.omg.org/cgi-bin/doc?ptc/04-10-02

[2] Bock, C., “UML 2 Activity and Action Models,” in Journal of Object
Technology, vol. 2, no. 4, July - August 2003, pp. 43-53,
http://www.jot.fm/issues/issue_2003_07/column3

[3] Sharman, D. and Yassine, A. “Characterizing complex product architectures,”
Journal of the International Council on Systems Engineering, vol. 7, no. 1,
pp.35-60, February 2004.

[4] Bock, C., “UML Without Pictures,” IEEE Software Special Issue on Model-
Driven Development, vol. 20, no. 5, pp. 33-35, September/October 2003.

[5] Object Management Group, “OMG Unified Modeling Language,” version
1.5, March 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01

[6] Bock, C., “UML 2 Activity and Action Models, Part 2: Actions,” in Journal
of Object Technology, vol. 2, no. 5, pp. 41-56, September-October 2003.
http://www.jot.fm/issues/issue_2003_09/column4

[7] Bock, C., “UML 2 Activity and Action Models, Part 3: Control Nodes,”
Journal of Object Technology, vol. 2, no. 6, pp. 7-23, November - December
2003. http://www.jot.fm/issues/issue_2003_11/column1

[8] Kernighan, B., Ritchie, D., The C Programming Language, Second Edition,
Prentice Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1988.

[9] Graham, P., ANSI Common LISP, Prentice Hall, Inc., Englewood Cliffs,
New Jersey, U.S.A., 1995.

[10] Bock, C., “UML 2 Activity and Action Models, Part 4: Object Nodes,”
Journal of Object Technology, vol. 3, no. 1, pp. 27-41, January - February
2004. http://www.jot.fm/issues/issue_2004_01/column3

UML 2 Activity and Action Models Part 6: Structured Activities

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 66

[11] Kalev, D., ANSI/ISO C++ Professional Programmer's Handbook, Que, 1999.

About the author
Conrad Bock is a Computer Scientist at the U.S. National Institute of
Standards and Technology, specializing in process models and
ontologies. He is one of the authors of UML 2 activities and actions,
and can be reached at conrad.bock at nist.gov.

