
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 4, May-June 2005

Cite this article as follows: John D. McGregor: “Secure Software”, in Journal of Object Technology, vol. 4,
no. 4, May-June 2005, pp. 33-42, http://www.jot.fm/issues/issue_2005_05/column03

Secure Software
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Granting access to those who should have it and denying access to those who shouldn’t
is a basic feature in many software products. Security is of strategic importance in many
markets and types of products. In this month’s issue of Strategic Software Engineering,
I will explore some issues about the strategic importance of security. I will discuss the
influence of other product qualities such as correctness on the security of the product.

1 INTRODUCTION

In January 2005, George Mason University found that hackers had gained access to a
database containing. In February 2005, ChoicePoint, a data collection service, announced
that a security breach threatened the personal information of over 145,000 people. And
the list could go on. We want the software that manages our personal and professional
data to be secure.

I recently attended the First Annual Cyber Security and Information Infrastructure
Research (CSIIR) Workshop on Software Security held at Oak Ridge National
Laboratory. As part of that workshop I made a presentation based on the following
premise: Poorly written software will have more security vulnerabilities than well written
software. In this issue I will expand on that topic with emphasis of the strategic
importance of producing secure software products.

Notice that the title of this column is “secure software” as opposed to “software
security.” That’s intentional. I am viewing this as the quality attribute of “being secure”
rather than considering security features such as access control and data encryption.
Taking this approach brings engineering processes to bear on the problem of how to
achieve that or any other quality.

Software is secure when those who have authorization can use its functions and
when those who do not have authorization can not. The secure quality attribute extends
this definition to the data managed by the software. It is difficult to confine the
achievement of security to a single application since its security usually depends upon the
security of the operating system and utilities that provide essential services. Therefore,
security is often defined as a quality of an entire environment – the platform and all
applications running on that platform.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_05/column03

SECURE SOFTWARE

34 JOURNAL OF OBJECT TECHNOLOGY Vol. 4, no. 4

Obviously being secure, like any quality attribute, is more important in some
products than others. Software that controls significant hardware, such as an airplane, or
that manages significant data, such as banking information, will require much higher
levels of security than software that controls an advertising sign or plays a game.
However, a security vulnerability in a game running on a platform shared with software
that performs secure business transactions may endanger those transactions.

McGraw makes the very good point that much of the software security work deals
with operational level fixes, such as firewalls, because they were designed by operational
level people [McGraw 04]. That is too late. The secure quality needs to be a part of the
engineering process from product inception. I will discuss how to incorporate security as
a quality consideration early in the development life cycle.

2 MOTIVATION

There is growing support for developing secure software by focusing on software
engineering best practices. I will review some of that support so that you can understand
the range of responses to the secure software problem. In succeeding sections, I will
consider several aspects of the software engineering approach in the context of that
support.

The Security Across the Software Development Lifecycle Task Force led by co-
chairs Ron Moritz of Computer Associates, and Scott Charney of Microsoft made a
number of recommendations about improving software development techniques that will
in turn improve the security of the software being produced [Moritz 04]. Included in
those recommendations are:

• Adopt software development processes that can measurably reduce software
specification, design and implementation defects.

• Software producers should adopt practices for developing secure software.
• Software producers, where appropriate, should conduct measured trials of

available approaches and publish their results.
I will discuss some actions that follow the first two recommendations.

Gary McGraw in his “Building Security In” department in IEEE’s Security and
Privacy describes the “trinity of trouble. [McGraw 04]” These are three problems that
contribute to increasing security problems. They are:

• Ubiquitous network connections
• Easily extensible systems
• Increasingly complex systems

The latter two problems are clearly software engineering issues and I will address these
shortly. McGraw’s department has presented a number of articles that relate to a software
engineering approach to secure software.

SECURE SOFTWARE

Vol. 4, no. 4 JOURNAL OF OBJECT TECHNOLOGY 35

What makes secure software strategic to a company? It’s the strategic risk of
losing the trust of your customers as well as the more immediate risk of litigation. There
are several ways to mitigate these risks. In the next section I will discuss qualities of
software products that reduce the probability of security problems and in the following
section I will discuss some techniques for achieving those qualities.

3 QUALITIES RELATED TO SECURE SOFTWARE

Talking about “well written” software, as I did in my premise, is too vague for
engineering analysis. In this section I will examine specific qualities and their
relationship to being secure. Almost any specified quality that is not achieved by the
product could degrade the secure quality and introduce a security vulnerability. However,
certain qualities speak directly to the resistance of a product to attack.

Correct

Correctness is a quality that is often implicitly required rather than explicitly specified.
For our purposes, correctness is the ability of a software product to satisfy its functional
requirements. Security is often compromised by the mistaken idea that a formal proof of
the specification results in correctness. A proof is only a first step. In fact some of the
most prevalent security vulnerabilities arise from either an incomplete specification or a
failure to implement the specification exactly as stated.

Buffer overflow errors account for a large percentage of vulnerabilities. So called
“complete” specifications often consider only static qualities and do not specify
operational characteristics such as maximum size of a data structure or how overflows
will be handled.

The specification being complete and correct are not sufficient to guarantee the
product is correct if the implementation of that specification is created by a human.
Automatic program generation is similarly flawed unless the generator has been proven
correct.

If the program is not correct then it becomes difficult to know whether the
program’s failure to meet expectations is due to a security breach or just built-in
incorrectness.

Robust

The percentage of time that a product can continue to function in the face of unusual
conditions is the measure of robustness. Notice that I did not say function correctly. The
specification often does not indicate what happens in the case of unexpected errors in
which case there is no definition of “correct.” Engineers must apply a “reasonableness”
criteria when evaluating robustness. That is, is the product’s response to unusual events
reasonable?

SECURE SOFTWARE

36 JOURNAL OF OBJECT TECHNOLOGY Vol. 4, no. 4

Embedded systems are often implemented to be robust – it is not acceptable to
have your car reboot on the highway - by having an error state in which the system is
specified to perform some function that will do the least harm to the hardware or the
environment. This function is often a transition back to the initial state but it may be a
transition to some other intermediate, but stable, state. Any input that is not covered by
the specification results in the system entering that error state.

The software is most vulnerable in those regions of input where there is no
specification. Malicious attacks are often probes to find the boundaries of a specification.
Once this limit is established, data is supplied that stresses the system looking for areas in
which the software is not robust.

Robustness is achieved by allowing for “other” cases at every opportunity. That
is, the design should anticipate that not all cases are covered by the specification.

Reliable

The reliability of a product is measured by the percentage of the operating time that the
product performs requested functions correctly. Software is vulnerable when there are
specified inputs for which the product does not produce correct results. The user of the
product, or other products that consume that product’s output, may perform incorrectly
due to the incorrect output. The more unreliable the software the more vulnerable the
software.

Reliability is a property of individual components and it is an emergent property
of an assembly of components. When the faults causing the software to fail is a result of
the composition the vulnerability is particularly difficult to recognize. It can not be found
during unit testing and may be so narrow that finding it during system testing is also
unlikely.

Quality assurance activities such as conducting active design reviews, establishing
and checking compliance with design and coding standards, and testing the product code
contribute to the reliability of the resulting product.

4 BUILDING SECURE SOFTWARE

I will briefly address McGraw’s trinity of trouble, or at least two of the three problems.
Then I will talk about some necessary actions.

Extensible

McGraw’s concern, as I understand it, is that as software is designed to be extensible,
holes are created that are vulnerable to attack. On the other hand Fredrick Sheldon of Oak
Ridge National Laboratory is concerned with “How do we engineer software in a way
that makes the software malleable (extensible) with respect to security context changes?”
[Sheldon 05]. Both concerns are valid and must be accommodated - somehow.

SECURE SOFTWARE

Vol. 4, no. 4 JOURNAL OF OBJECT TECHNOLOGY 37

Extensibility mechanisms differ in their binding times. Designs that use
inheritance for extensibility bind choices at design time while architectures such as the
Eclipse plug-in architecture bind choices at execution time. The technique for making
each of these extension points secure will vary with the binding time. Some techniques
already exist. Java reflection allows access to the inheritance hierarchy but the policy
files that allow the specification of permissions can be used to thwart certain types of
access. This is definitely an area for further research.

Complex

The concern here is that as software products are becoming more and more complex,
security vulnerabilities will be more likely to exist and to be hidden from the usual
testing. This is really no different than the problems that many software development
efforts are facing as they attempt to achieve a wide range of qualities.

My reaction to complexity is usually to decompose it away. The key is to start
small and grow as the product comes together. By this I mean begin with the basic units -
components, classes, functions, or whatever that are being used as the building blocks.
Apply the appropriate techniques to these units to achieve the required level of quality.
Then as units are integrated, again apply the appropriate techniques to assure that the
assembly has the desired level of quality. Repeat as assemblies are assembled into still
larger assemblies.

This technique doesn’t eliminate complexity from the product, but it does address
a major risk. That risk is the possibility that the assembly of two secure components is not
a secure assembly. Emergent behaviors that result from the assembly, and are not
observable in the individual components, can introduce vulnerabilities. By recursively
applying reviews and tests for the secure quality as the assemblies grow, take advantage
of previous work but does not assume that the newly created assembly is also secure.

Consistent error handling

A large number of vulnerabilities are exploited by causing an error and taking advantage
of how the error is handled. The best strategy is to bullet-proof the software so that errors
don’t happen but none of us is perfect so we have to anticipate errors. Therefore, the
alternative strategy is to provide a consistent error handling scheme. The expectation is
engineers will be less likely to make mistakes in the presence of a consistent error
handling scheme.

I will not go into a comparison of returning error codes versus exceptions here.
The point to be made here is that the error handling needs to be visible at the appropriate
design level. Error mechanisms that will be propagated between functions but within the
component must be visible in the function-level specifications within the component.
Error mechanisms that will be propagated between components need to be explicit and
public in the component’s specification and recognized in the architecture.

SECURE SOFTWARE

38 JOURNAL OF OBJECT TECHNOLOGY Vol. 4, no. 4

Robust data structures

As I said above the best defense is to bullet proof the software. Buffer overflows are a
leading source of vulnerability. One of the participants in the CSIIR workshop made the
excellent point that you can’t overflow a hardware buffer. Why should it be different with
a software buffer? There are widely-used practices that can prevent overflows but too
often they are not followed.

What is the acceptable behavior when new data is available and there is no room
for it in the existing buffer? The possible answers are:

• Standard approach – continue as usual, runoff the end, reference random memory,
cause wild and crazy things to happen in your program

• Not so standard approach – do nothing, don’t write the data, it will eventually be
lost

• Throw a specified exception – allow others to handle
• Expand buffer to accommodate, after checking that there really is more memory

Obviously, the first two approaches are not acceptable but the first one is widely used.
The last two approaches are not mutually exclusive. Taken together they form an
implementation pattern (different from a language idiom and more detailed than a design
pattern). Figure 1 shows the decision tree for the implementation. Different languages
will require different language idioms.

Room for
data

Write and
return

Room for
expansion

Expand
buffer, write
and return

Throw buffer
overflow
exception

yes

yes

no

no

Figure 1 - Buffer overflow implementation pattern

SECURE SOFTWARE

Vol. 4, no. 4 JOURNAL OF OBJECT TECHNOLOGY 39

While I have focused on the buffer overflow problem for obvious reasons, the same
detailed analysis should be done for every state that is maintained in a product.

Misuse and Abuse cases

Software engineering provides techniques to build a product to a purpose. The use case
technique has proven an effective technique for capturing the thinking of stakeholders
about how the product will be used [Jacobson 92]. Change cases are a type of use case
that capture how stakeholders think the product will change [Ecklund 96].

Several authors describe misuse and abuse cases as an approach to helping
stakeholders think about possible scenarios that need to be defended against [Hope 04].
This includes defining actors that model attackers and brain storming how the attackers
would “use” the system. These abuse cases can be built on known attack patterns. The
report of the Security Across the Software Development Lifecycle Task Force included a
list of 49 such patterns. Table 1 shows a few of their attack patterns.

Use a User-Supplied Configuration File to Run Commands
That Elevate Privilege

Make Use of Configuration File Search Paths

Direct Access to Executable Files

Embedding Scripts within Scripts

Leverage Executable Code in Non-executable Files

Argument Injection

Table 1 - Attack patterns

Our use case template includes multiple scenarios that describe how the actor uses the
product. We include “sunny day,” alternative, and exceptional scenarios. Misuse
scenarios can also be included in the standard use cases. These differ from the ones that
accompany an attack actor in that these may be accidental situations initiated by an
innocent, careless user.

Plan of action

Building secure software requires the same techniques as building reliable software or
modifiable software. The attribute-driven design approach (ADD) [Bass 00] calls for
several items:

• A clear definition of the quality attribute
• A framework for reasoning about the quality
• A set of architectural tactics that enhance the quality

SECURE SOFTWARE

40 JOURNAL OF OBJECT TECHNOLOGY Vol. 4, no. 4

At the workshop I proposed an agenda for research to expand the range of techniques
available for engineering security. The items on the agenda are:

Develop method engineering tactics and guidelines that enhance the security
quality of the software through improved processes.

Structure architecture evaluation techniques to focus on security by searching for
static security patterns.

Discover and capture test patterns that correspond to dynamic security patterns.
Develop focused test techniques to effectively explore security test patterns while

reducing the test suite size.
Create a defect model for security that can be used to predict types and number of

security vulnerabilities in scientific codes.
Execution of these actions would add to the set of tactics that are currently

available for engineering secure software.
At the workshop, Professor Ali Mili summed up what I and others were saying,

“Security cannot be achieved by focusing on vulnerabilities, no more than reliability can
be achieved by focusing on faults, as vulnerabilities may have widely varying impacts on
security, just as faults are known to have widely varying impacts on reliability. Rather,
security should be managed by pursuing a policy that targets the highest impact
vulnerabilities first. In light of this observation, we argue in favor of shifting our focus
from vulnerability avoidance / removal / detection to measurable security attributes.

5 SUMMARY

I have discussed some of the things that are being done to engineer secure software. I
believe there is much more that can be done and I have provided an initial agenda. Many
good ideas were advanced at the workshop.

Security is a quality like any other non-functional requirement. It must be
engineered into the product rather than being added on at the last minute. It can also be
subject to tradeoff with other more important qualities – security versus testability for
example. It can also be a point of variation in a product line architecture - products that
are secure and products that are not.

Security becomes more important as more of our personal and business data is
computerized. The secure quality attribute has to be as carefully engineered as every
other quality upon which our strategic goals depend.

SECURE SOFTWARE

Vol. 4, no. 4 JOURNAL OF OBJECT TECHNOLOGY 41

ACKNOWLEDGEMENTS

Thanks to Fredrick Sheldon for comments on an earlier version of this and to all the
attendees of the First Annual Cyber Security and Information Infrastructure Research
(CSIIR) Workshop on Software Security for the discussions.

REFERENCES

[Bass 00] Felix Bachmann; Len Bass; Gary Chastek; Patrick Donohoe; and F. Peruzzi.
The Architecture Based Design Method (CMU/SEI-2000-TR-001,
ADA37581). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2000

[Ecklund 96] Earl F. Ecklund, Lois M.L. Delcambre, and Michael J. Freiling. Change
Cases: Use cases that identify future requirements. Proceedings of the
Eleventh Conference on Object-Oriented Programming Systems,
Languages, and Applications, Association for Computing Machinery, 1996.

[Hope 04] Paco Hope, Gary McGraw, and Annie I. Anton. Misuse and Abuse Cases:
Getting Past the Positive, IEEE Security and Privacy, IEEE Computer
Society, 2004.

[Jacobson 92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Overgaard. Object-Oriented Software Engineering, Addison-Wesley,
reading, Massachusetts, 1992.

[McGraw 04] Gary McGraw. Software Security, IEEE Security & Privacy, IEEE
Computer Society, 2004.

[Mili 05] Ali Mili. Personal communication, 2005.

[Moritz 04] Ron Moritz and Scott Charney. Improving Security Across the Software
Development Life Cycle, Security Across the Software Development
Lifecycle Task Force, 2004.

[Sheldon 05] Fredrick Sheldon. Personal communication, 2005.

SECURE SOFTWARE

42 JOURNAL OF OBJECT TECHNOLOGY Vol. 4, no. 4

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests include software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

mailto:johnmc@lumsoft.com

