
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005 

 
Vol. 4, No. 4, May–June 2005 

 
 
 
 

Cite this column as follows: Anthony Simons: “The Theory of Classification: Part 18: Polymorphism 
through the Looking Glass”, in Journal of Object Technology, vol. 4, no. 4, May - June 2005, pp 
7-18 http://www.jot.fm/issues/issue_2005_05/column01  

The Theory of Classification 
Part 18: Polymorphism through the 
Looking Glass 

Anthony J H Simons, Department of Computer Science, University of Sheffield 

1 INTRODUCTION 

In this, the eighteenth article in a regular series on object-oriented type theory, we look at 
how object-oriented languages might evolve in the future, given that the formal notion of 
class is now better understood than at the outset. Object-oriented languages were the first 
family to suppose that there might be systematic sets of relationships between all the 
program data types and use this as the basis for a kind of type compatibility. However, 
the early formal models chosen were based on simple types and subtyping [1] and 
struggled in practice to support all the obvious, systematic relationships that programmers 
intuitively recognised [2]. For a while, objects were thought to have class and type 
independently, where class was demoted to a mere implementation construct. Later, it 
was realised that the notion of class is also a typeful construct that requires at least a 
bounded second-order λ-calculus model to explain it [3]. We have developed this model 
in the Theory of Classification, showing how it deals properly with typed inheritance [4, 
5] and generic types [6] in a consistent framework. 

However, current object-oriented languages fall short of what is actually possible in 
a language that really supports the notion of class. The majority still treat classes for the 
most part as if they were the same thing as simple types, and it only becomes clear that 
something more sophisticated is intended when dynamic binding in these languages is 
examined, showing dispatching behaviour equivalent to higher-order functions [7]. The 
additional template mechanisms of C++ and Java (from version 1.5) are intended partly 
to compensate for the lack of expressiveness caused by treating classes as simple types. 
But do we really need all these separate typing mechanisms? What would a language 
look like that consistently supported the higher-order notion of class throughout?

 

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_05/column01


 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

2 THE HALFWAY HOUSE 

In the very first article of this series [8], we described three increasingly more flexible 
kinds of plug-in type compatibility, in the context of supplying a component to match an 
interface: 

• correspondence: the component is identical in type and its behaviour exactly 
matches the expectations made of it when calls are made through the interface; 

• subtyping: the component is a more specific type, but behaves exactly like the 
more general expectations when calls are made through the interface; 

• subclassing: the component is a more specific type and behaves in ways that 
exceed the more general expectations when calls are made through the interface. 

An example of correspondence is the strong monomorphic typing exhibited in languages 
like Pascal or Modula-2, in which every object is of a single type and may only be passed 
to variables of exactly the same type. Pascal’s strong name equivalence rule means that 
even structurally equivalent types are considered distinct, if their type names are distinct 
(in contrast to C++’s typedefs, which are only aliases for the base type). 

An example of subtyping is where a subrange object is coerced to a base type 
variable, so that the base type’s function may be executed, such as where two SmallInt 
objects are passed to an Integer plus function and the result is returned as an Integer. The 
function originally expected Integers, but could handle subtypes of Integer and convert 
them. Note that no dynamic binding is implied or required. Also, a simply-typed first-
order calculus (with subtyping) is adequate to explain this behaviour. 

An example of subclassing is where the functions of the interface are systematically 
replaced by functions appropriate to the new type, such as where a Numeric type’s 
abstract functions plus, minus, times and divide, are replaced by retyped versions for a 
Complex type. Rather than coerce a Complex object to a Numeric, the call to plus through 
Numeric executes the replacement Complex plus function. This could be achieved 
through dynamic binding; or alternatively through template instantiation (in which the 
parameter Numeric is replaced throughout by an actual Complex type), requiring at least a 
second-order calculus. 

What are the important differences between the simple subtyping and subclassing 
approaches? In the subtyping approach, the Integer plus function treats its SmallInt 
arguments exactly as if they were plain Integers. It returns a result of the general type 
Integer and does not know or care whether the result is still in the range of a SmallInt. On 
the other hand, in the subclassing approach, there is an obligation to propagate type 
information about the actual argument and result types of Complex's plus back to the call-
site. Whereas the interface expected a Numeric, once this was bound to a Complex 
number, the second argument was also forced to be a Complex number. Furthermore, the 
result-type, which was formerly Numeric, is now known also to be of the Complex type. 
This means that the caller of plus must know how to deal with more specific types than 
originally specified in the interface. From our point of view, this is exciting stuff, in the 



 
 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18 

true spirit of classification, and something worth exploiting in the design of object-
oriented languages. 

However, the majority of languages only practise a halfway-house approach, which 
is subtyping with dynamic binding. This is similar to subtyping, except that the subtype 
may provide a replacement function that is executed instead. Recalling the earlier 
example, this is like the SmallInt type providing its own version of the plus function 
which wraps the result back into the SmallInt range. Syntactically, the result is acceptable 
as an Integer, but semantically it may yield different results from the original Integer plus 
function (when wrap-around occurs). From the type perspective, we still only know that 
the result is of the Integer type (rather than SmallInt) because there is no way of 
propagating type information about the actual arguments through to the result of the 
function. So, we have a situation where more specific functions are executed, but 
externally we cannot see that their type has changed. This gives rise to the phenomenon 
of “type loss” in C++ and Java, requiring corrective use of type downcasting to recover 
the most specific types of returned objects [2].

 

3 POLYMORPHISM REVISITED 

Stopping at the halfway house constitutes a failure of nerve in the design of object-
oriented languages. At the heart of this problem is the inability to distinguish the notions 
of class and type in the syntax of programming languages. If an object-oriented language 
implemented this distinction properly, a programmer should never have to perform type 
downcasting, but the language could always recover the most specific types of returned 
objects for itself. To make this distinction absolutely clear, in the Theory of 
Classification: 

• a type always refers to a simple monomorphic type, a first-order construct; 
• a class always refers to a polymorphic type, a second-order (or higher) construct. 

As stated previously [8], the term polymorphism has less to do with the dynamic binding 
of methods and properly describes the generalised types of variables that may receive 
values of more than one type. In conventional programming languages, we consider that 
type constructors, such as Stack[T] or Map[K,V] are polymorphic, because they contain 
type variables standing for possibly many types, and may be adapted to specific types by 
parameter instantiation. In object-oriented languages, we also consider that a variable of 
“class-type” is polymorphic and can be made to receive actual objects of possibly many 
types, where these are restricted by the class hierarchy to be of some “subclass-type” of 
the target variable. These polymorphic mechanisms seem on the surface to be quite 
different, but they are fundamentally the same. 

In the λ-calculus, polymorphism always requires a type parameter, standing for the 
generalised type; and when a polymorphic variable binds to a specific type, this type is 
propagated into the parameter, throughout the whole parameterised expression. The 



 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

formal model therefore brings together the notions of class-based polymorphism and 
template-based polymorphism. In earlier articles [2, 3], we deliberately drew out the 
similarity between classical Girard-Reynolds [9, 10] univeral polymorphism: 

∀τ . identity : τ → τ 

∀τ . insert : τ × List[τ] → List[τ] 
in which you could give functions truly generalised types (where τ ranges over absolutely 
any type) and Cook et al.’s [11, 12] function bounded polymorphism: 

∀(τ <: GenNumeric[τ]) . plus : τ × τ → τ 

∀(τ <: GenComparable[τ]) . insert : τ × SortedList[τ] → SortedList[τ] 
in which you could give functions class-types (where τ ranges over only those types 
which have at least the functions specified in the interface of the bounding generator 
function). F-bounded polymorphism is more general than universal polymorphism (since 
you can type more things using F-bounds, for example you can type SortedLists of 
Comparable elements with F-bounds, whereas you can only type plain Lists of universal 
elements, without them). This can be shown formally by recasting Girard-Reynolds 
polymorphism as a special case of F-bounded polymorphism: 

GenUniversal = λσ.{}  // the content-free constraint 

∀(τ <: GenUniversal[τ]) . identity : τ → τ 

∀(τ <: GenUniversal[τ]) . insert : τ × List[τ] → List[τ] 
That is, we constrain τ to range over those types which have at least the functions of the 
universal interface, but this interface is trivial (empty), so τ ranges again over any type.  

There are two practical consequences of this discussion. The first is that, wherever a 
polymorphic variable is required in our programming language, we should always model 
its type using some kind of type parameter in the formal calculus. The fact that object-
oriented languages don’t make the type parameters explicit for their classes is one of the 
reasons why the notions of class and type get so confused. The second is that we do not 
need separate mechanisms to explain template-based and class-based polymorphism. The 
class parameters constrained by F-bounds are adequate for both purposes [6], being more 
general than classical unconstrained parameters.

 

4 DISTINGUISHING CLASS AND TYPE 

In current object-oriented languages, objects and variables are “typed” using the names of 
the classes like type identifiers. These identifiers are used ambiguously, to describe either 



 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18 

an object or value with an exact type (a monomorphic type in the theory), or, 
alternatively, to describe a variable with a flexible type (a polymorphic class in the 
theory). What we should like is for object-oriented languages to indicate a class, or a type 
unambiguously. 

Informally, it is possible to infer the intended semantics of class identifiers from the 
program context in which they appear. In a C++ or Java-like language, when we create an 
object, we usually intend to create something with a fixed implementation and an exact 
type: 

… = new Point;  // exactly typed object creation 
In this context, we do not expect to obtain some instance of a subclass of Point, but rather 
an exact instance of the exact type Point. On the other hand, when we declare a program 
variable of the Point class, it is clear that we intend this to be flexible, capable of 
receiving values that might be more specific than a Point, but which are at least of this 
class: 

Point p = …   // polymorphic variable declaration 

accept(Point p) { … }  // polymorphic method arguments 
In this context, we do not expect these variables to be restricted to accepting only objects 
of the exact Point type, but rather any type which is at least a subclass of Point. We can 
model these differences in the λ-calculus, to make them explicit. 

Recall that a class is defined essentially as a flexible, open-ended implementation, 
parameterised by self, with a corresponding polymorphic type, parameterised by σ, the 
self-type [4]. We give the type-shape of the class using a type generator, followed by the 
implementation-shape using an object generator, which is typed using the type generator 
as the F-bound, restricting what types may eventually replace the self-type: 

GenPoint = λσ.{x : Integer, y : Integer, equal : σ → Boolean } 

genAPoint : ∀(τ <: GenPoint[τ]).τ → GenPoint[τ] 
genAPoint = λ(τ <: GenPoint[τ]).λ(self : τ). 
  { x a 2, y a 3, equal a λ(q : τ).(self.x = q.x ∧ self.y = q.y)} 

In our C++ or Java-like programming language, when we declare a variable of the Point 
class, what we are really asserting is the polymorphic typing p0 : τ, where τ is a type 
parameter constrained to range over any type in the Point class: 

 
Programming Language  Formal Model 

Point p;  p0 : ∀(τ <: GenPoint[τ]) . τ 
 

Table 1: Polymorphic variable declaration 



 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

On the other hand, when we create an exact instance of the Point type, we must fix both 
the type and the implementation. In the calculus, this is done by taking the fixpoint of the 
type generator and of the object generator [4]: 

Point  =  Y GenPoint 
  =  µσ.{x : Integer, y : Integer, equal : σ → Boolean } 
  ⇒ {x : Integer, y : Integer, equal : Point → Boolean }, after unrolling; 

aPoint  =  Y genAPoint[Y GenPoint]  =  Y genAPoint[Point] 
  = Y λ(self : Point).{ x a 2, y a 3,  
    equal a λ(q : Point).(self.x = q.x ∧ self.y = q.y)} 
  = µ(self : Point).{ x a 2, y a 3,  
    equal a λ(q : Point).(self.x = q.x ∧ self.y = q.y)} 
  ⇒ { x a 2, y a 3, equal a λ(q : Point).(aPoint.x = q.x ∧ aPoint.y = q.y)}, 
        after unrolling. 

This creates the exact instance aPoint of the exact Point type. We can therefore model the 
meaning of object creation expressions in our programming language: 
 

Programming Language  Formal Model 

new Point;  p1 = Y genAPoint[Y GenPoint]; 
p1 : Point  

 
Table 2: Exactly-typed object creation 

Here, we have taken the liberty of introducing the temporary variable p1 in the formal 
model, so that we can initialise this variable to the rather complex object creation 
expression and then see that it has an exact type, which is the Point type we expected. 
The temporary variable is simply a convenience, to save repeating longer expressions. In 
section 6 below, we will use a similar approach to analyse program behaviour in step-by-
step detail.
 

5 TYPE CHECKING WITH FIRST-ORDER TYPES 

First, we shall introduce a test-case that exemplifies some of the difficulties identified 
with type systems that check types in the first-order model (with simple types and 
subtyping). The example code fragment, expressed in our C++ or Java-like language, is a 
cut-down version of the infamous “Eiffel type failure” problem first identified by Cook 
[13]: 



 
 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18 

Point p = new Point3D; // alias a more specific Point3D 
Point q = new Point;  // create a standard Point 
Boolean b = p.equal(q); // dynamically invoke the specific equal 

Programmers expect a Point3D instance to be type-compatible with a Point variable, but 
in the first order model, this is not the case. To explain why the above fragment is 
problematic, we should define the Point3D class, which describes a three-dimensional 
point, whose interface extends that of a standard two-dimensional Point: 

GenPoint3D = λσ.{x : Integer, y : Integer, z : Integer, equal : σ → Boolean} 

genAPoint3D : ∀(τ <: GenPoint3D[τ]).τ → GenPoint3D[τ] 
genAPoint3D = λ(τ <: GenPoint3D[τ]).λ(self : τ). 
  {x → 2, y a 3, z a 5,  
   equal a λ(r : τ).(self.x = r.x ∧ self.y = r.y ∧ self.z = r.z)} 

In particular, an instance aPoint3D : Point3D, created from these generators by taking the 
fixpoints (see section 4) will have an extra z field; and when aPoint3D tests itself for 
equality against another point, it will compare all of its x, y and z fields. 

In the original “type failure” scenario, the programming language expected the 
subtyping relationship Point3D <: Point to hold. In fact, we now know that these types 
are not in a subtyping relationship, because the retyping of Point3D’s equal method 
violates the function subtyping rule [1]. However, Eiffel allowed subclasses to retype 
their methods with more specific argument types, since it is unlikely in practice that we 
should want a Point3D to compare itself with more general kinds of point. 

An undetected type failure arises as follows. First, we create a specific Point3D 
instance and assign it (by polymorphic aliasing) to the more general variable p : Point. 
This is permitted by the (faulty) assumption that Point3D <: Point. Then, we create 
another instance q : Point. Finally, we invoke p.equal(q), at which moment the 
undetected type failure occurs. Statically, the type of equal is Point.equal : Point → 
Boolean, so it appears to be legal to pass in the given argument q : Point. However, p 
currently contains a dynamic instance of Point3D and the version of the equal method 
which is actually invoked is Point3D.equal : Point3D → Boolean. This receives the too-
general argument q : Point, and during the execution of the method body, an attempt is 
made to access the z field of a plain Point, which will cause the program to crash, 
generating a memory segmentation fault. 

Cook originally proposed to fix this problem by forcing Eiffel to conform to strict 
subtyping rules [13]. Redefined argument types for equal would therefore not be allowed. 
Although this technically satisfies subtyping, we have seen how this results in a strictly 
less expressive language [2]. In particular, the equal method, which is required by every 
class, may only be typed with the most general kind of argument (usually, the root class 
Object), and it may never be retyped with more restricted types of argument. Instead, 
redefined versions of equal have to accept Object arguments and use runtime-checked 
type downcasting internally, to recover the more specific dynamic type of the argument, 



 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

before comparison can be made. This merely pushes the type failure problem back into 
the run-time.

 

6 TYPE CHECKING WITH SECOND-ORDER CLASSES 

Classes are type-recursive, meaning that their methods often accept or return arguments 
of the self-type. So it is natural to want these arguments and results to become uniformly 
specialised along with the class itself. We want to allow a Point3D to specialise the 
argument type of its equal method. However, we still want to avoid unchecked type 
failures.  
 

Programming Language  Formal Model 

Point p …  p0 : ∀(τ <: GenPoint[τ]).τ  

… new Point3D;  p1 = Y genAPoint3D[Y GenPoint3D]; 
p1 : Point3D  

Point p = new Point3D;  p2 = (p0 := p1);  {Point3D / τ } 
p2 : Point3D 

Point q …  q0 : ∀(σ <: GenPoint[σ]).σ 

… new Point;  q1 = Y genAPoint [Y GenPoint]; 
q1 : Point  

Point q = new Point;  q2 = (q0 := q1);  {Point / σ } 
q2 : Point  

Boolean b …  b0 : Boolean  

… p.equal … p2 : Point3D; 
p2.equal : Point3D → Boolean 

… p.equal(q); q2 : Point; 
p2.equal : Point3D → Boolean; 
p2.equal(q2 : Point) : 
  ERROR  Point ≠ Point3D 

 
Table 3: Polymorphic checking with type substitution 



 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18 

In the Theory of Classification, we take the view that a class is not a first-order concept, 
but a second-order, polymorphic concept. One of the advantages this brings is the ability 
to relate closed recursive types to each other, by relating their generators in a (second-
order) pointwise subtyping relationship [3]. This allows us to specialise argument and 
result types uniformly, in line with programmers’ intuitions about classes. However, the 
recursive types themselves do not enter into simple subtyping relationships, so we cannot 
type-check them in the usual first-order system. By properly distinguishing the 
polymorphic notion of class from the monomorphic notion of type, we may type-check 
the same fragment of object-oriented code in a second-order model, showing that 
polymorphic assignment really involves the propagation of types into polymorphic type 
parameters. This is a very powerful checking mechanism, capable of resolving many of 
the difficulties formerly identified with object-oriented type systems. 

On the left-hand side of table 3, the expressions in the programming language are 
broken down into small steps, in order to examine the types of these expressions in the 
formal model on the right-hand side. On the first row, we declare a polymorphic Point 
variable and show this to have a F-bounded parametric type. On the second row, we 
create an exact Point3D object and show this to have the exact Point3D type. On the third 
row, we assign the specific instance to the general variable. This is where the new type-
checking principle first comes into play. At the moment of polymorphic aliasing, the 
exact type of the object is propagated into the type parameter of the variable, shown by 
the substitution: {Point3D / τ}. As a consequence, we obtain a new context p2 after the 
assignment (p0 := p1), in which the type of the bound variable expression has been 
updated. 

This is how the type mismatch is eventually detected. When checking the program 
expression: p.equal(q), the model can predict the type of the equal method, and its 
expected argument type, since statically it knows that this is selected from p2. At the 
same time, the model knows the type of the actual argument, from the context q2. The 
formal and actual argument types are shown to conflict (Point ≠ Point3D), so the checker 
can raise a type mismatch at compile time. Not only do we spot the type error at compile 
time, but we do this without having to restrict the expressiveness of the language. We still 
allow Point3D objects to be passed into polymorphic variables p : ∀(τ <: GenPoint[τ]).τ, 
so long as this does not conflict with other typing requirements further down the line. For 
example, the following code fragment is readily accepted by this checking algorithm: 

Point p = new Point3D; // alias a more specific Point3D 
Point3D q = new Point3D; // create a specific Point3D 
Boolean b = p.equal(q); // dynamically invoke the specific equal 

since, at the moment of selection, the equal method has the type Point3D.equal : Point3D 
→ Boolean. As a consequence, it can happily accept the actual argument q : Point3D. 
The following code fragment is also acceptable: 

Point p = new Point3D; // alias a more specific Point3D 
Point q = new Point3D; // alias another specific Point3D 
Boolean b = p.equal(q); // dynamically invoke the specific equal 



 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

because the type substitution {Point3D / τ <: GenPoint[τ]} is made consistently when 
both p and q alias values of exact types, before the typing of the equal method invocation 
is considered. Though the variables p, q were originally declared with general 
polymorphic types, new type contexts are established by the polymorphic aliasing.
 

7 CONCLUSION 

Any object-oriented language that truly supports the notion of class should be able to 
distinguish contexts where simple types, or polymorphic classes are intended. The secret 
to success is to preserve the underlying type parameter in expressions where 
polymorphism is intended. When polymorphic variables alias each other, this has the 
effect of substituting one type parameter for another, possibly strengthening the F-bound 
constraint (this is because unifying two type variables requires that you accept the more 
restricting of the two type constraints – see the previous discussion on intersection types 
in [5]). When polymorphic variables alias objects with exact types, these types are 
substituted into the type parameters. As a consequence, it is always clear whether an 
expression has a polymorphic, or fixed type, in a given context. 

Object-oriented lanaguages that adopted this simple rule could remove a lot of clutter 
from their syntax. To start with, there would be no need to have both this kind of 
(genuine) polymorphic typing and subtyping. So, type checkers that performed 
parametric substitutions would not also have to perform subtyping coercions. If two 
simple types turned out not to be the same, the checker could immediately rule them as 
mutually incompatible! Secondly, there would be no need for separate syntactic 
treatments of template-based and class-based polymorphism, since both would be 
handled using the same underlying F-bounded parametric mechanism. However, the type 
instantiation process might happen at run-time as well as at compile-time (this unifies the 
notions of dynamic binding and template instantiation). Thirdly, we would have to 
consider more carefully the scope of type substitutions made when polymorphic aliasing 
occurs. We would expect, for example, that a polymorphic method would bind type 
parameters on entry, but release these bindings on exit, so that the method could be 
applied to an object of some different type on another occasion. What then is the scope of 
a polymorphic assignment? We saw above that binding one type rules out subsequent 
assignments to different types. The scope of an assignment would have to be defined 
carefully, with rules for “undoing” an assignment and recovering the old polymorphic 
type of the variable. 

The advantages of (genuine) polymorphic typing do not stop there. For example, 
type propagation may have considerably stronger and pervasive effects on the behaviour 
of a piece of software. The C++ Standard Template Library makes use of this when it 
defines template allocators for handling the memory management aspects of regular data 
types. Substituting different actual allocators can alter the efficiency of the whole 
program. In fact, parametric substitution is related to reflective meta-programming and, 



 
 

 
 
 
 

17 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 

when properly exploited, can produce most of the pervasive benefits claimed by aspect-
oriented programming. By understanding the true polymorphic nature of the class, we 
may yet obtain much simpler, yet more powerful programming languages. 

REFERENCES 

[1] A J H Simons, “The theory of classification, part 4: Object types and sub-
typing”, Journal of Object Technology, vol.1 no.5, November-December 
2002, pp 27-35. http://www.jot.fm/issues/issue_2002_11/column2 

[2] A J H Simons, “The theory of classification, part 7: A class is a type family”, 
Journal of Object Technology, vol.2 no. 3, May-June 2003, pp 13-22. 
http://www.jot.fm/issues/issue_2004_05/column2 

[3] A J H Simons, “The theory of classification, part 8: Classification and in-
heritance”, in Journal of Object Technology, vol. 2, no. 4, July-August 2003, 
pp. 55-64. http://www.jot.fm/issues/issue_2003_07/column4 

 [4] A J H Simons, “The theory of classification, part 11: Adding class types to 
object implementations”, in Journal of Object Technology, vol. 3, no. 3, 
March-April 2004, pp. 7-19. 
http://www.jot.fm/issues/issue_2004_03/column1 

 [5] A J H Simons, “The theory of classification, part 16: Rules of extension and 
the typing of inheritance”, in Journal of Object Technology, vol. 4, no. 1, 
January-February 2005, pp. 13-25. 
http://www.jot.fm/issues/issue_2005_01/column2 

 [6] A J H Simons, “The theory of classification, part 13: Template classes and 
genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August 2004, 
pp. 15-25. http://www.jot.fm/issues/issue_2004_07/column2 

 [7] W Harris, “Contravariance for the rest of us”, Journal of Object-Oriented 
Programming, Nov-Dec 1991, 10-18. 

[8] A J H Simons, “The theory of classification, part 1: Perspectives on type 
compatibility”, Journal of Object Technology, vol. 1 no. 1, May-June 2002, 
pp 55-61. http://www.jot.fm/issues/issue_2002_05/column5 

[9] J-Y Girard, Interpretation fonctionelle et elimination des coupures de 
l'arithmetique d'ordre superieur, PhD Thesis, Universite Paris VII, 1972. 

[10] J Reynolds, Towards a theory of type structure, Proc. Coll. Prog., New York, 
LNCS 19 (Springer Verlag, 1974), 408-425. 

[11] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, “F-bounded 
polymorphism for object-oriented programming”, Proc. 4th Int. Conf. Func. 
Prog. Lang. and Arch. (Imperial College, London, 1989), 273-280. 

http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2005_01/column2
http://www.jot.fm/issues/issue_2004_07/column2
http://www.jot.fm/issues/issue_2002_05/column5


 
 
 
 
 
 

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18 

[12] W Cook, W Hill and P Canning, “Inheritance is not subtyping”, Proc. 17th 
ACM Symp. Principles of Prog. Lang., (ACM Sigplan, 1990), 125-135. 

[13] W Cook, “A proposal for making Eiffel type safe”, Proc. 3rd European Conf. 
Object-Oriented Prog., 1989, 57-70; reprinted in Computer Journal 32(4), 
1989, 305-311 

About the author 
Anthony Simons is a Senior Lecturer and Director of Teaching Quality 
in the Department of Computer Science, University of Sheffield, where 
he leads object-oriented research in verification and testing, type theory 
and language design, development methods and precise notations. He 
can be reached at a.simons@dcs.shef.ac.uk. 

mailto:a.simons@dcs.shef.ac.uk

