
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 4, May-June 05

Cite this article as follows: Gonzalez-Perez and Henderson-Sellers: “Templates and
Resources in Software Development Methodologies”, in Journal of Object Technology, vol. 4,
no. 4, May–June 05, pp. 173-190 http://www.jot.fm/issues/issue_2005_05/article5

Templates and Resources in Software
Development Methodologies

Cesar Gonzalez-Perez, University of Technology, Sydney
Brian Henderson-Sellers, University of Technology, Sydney

Abstract
A great deal of effort is needed to construct software products in a predictable and
repeatable manner. Having a precisely defined methodology in place can certainly help,
especially if it includes the comprehensive specification of the process to be followed
and the work products to be created. However, a convenient integration of these two
aspects (process and work product) has not yet been performed. This paper presents a
new approach to the definition of methodologies that supports the process and work
product domains concurrently through the specification of discrete methodology
elements. Some of these elements, called here templates, are designed to be
instantiated during the use of the methodology in specific projects, while others, called
resources, are intended to be used directly. Theoretical and practical implications of this
division, especially regarding metamodelling and the use of powertypes, are explored.
The proposed metamodelling approach is shown to facilitate the precise and complete
specification of comprehensive methodologies, establishing the foundations for
predictable and repeatable results from software development.

1 INTRODUCTION

The task of defining and describing a software development methodology must be
approached with care, since ambiguities or omissions in its definition will certainly lead
to vagueness in its enacted instances1 and thus hinder its ultimate usability and
usefulness. In order to achieve an acceptable degree of formality, precision and
completeness, we must first understand what a methodology is. Although some authors
identify methodology with process2, we prefer to adhere to a much broader view and
consider a software development methodology as the specification of the process to
follow as well as the work products to be generated, plus consideration of the people and
tools involved, during a software development effort. From this definition, a methodology

1 An “enacted instance” refers to the process being used on a real project with real team members and real
deadlines – as opposed to a methodology as defined in a handbook, applicable to many projects.
2 The Catalysis approach offers “how to” guidelines plus techniques; see [5], p xx-xxi. Martin & Odell
define methodology as a collection of methods, and method as a procedure; see [12], chapter 1.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 174

therefore comprises elements relevant to both the process domain and to the work product
domain.

Overall, a methodology can be formally specified as a collection of interrelated
methodology elements. Clearly, some of these elements must belong to the process
domain, while others correspond to the work product domain. Enacting the methodology
for a particular project means using the defined methodology elements3 in specific ways.
We will introduce (Section 3) the notion that some methodology elements (called
“templates” here) are used by being instantiated from the methodology into project-
specific elements, while others (named “resources”) are used without instantiation, thus
being directly applied to the project. This distinction is necessary to accommodate
different types of methodology elements as detailed in the following sections.

The next section explains our approach to methodology definition based on the use
of templates and resources, a necessary precursor for Section 3, which describes in detail
how templates and resources work. In turn, this leads to some interesting metamodelling
implications, which are discussed in Section 4. Section 5 then shows an architectural (i.e.
static) description of an example metamodel including the necessary mechanisms to
support templates and resources distributed across the process and work product domains.
Finally, our conclusions are presented.

3 Note that the argument presented here is independent of whether the methodology is to be constructed by
the user from the methodology elements by means of method engineering (see [4] for an example) or
whether the methodology is provided to the user as a single, pre-constructed entity by a methodology
vendor.

Defining a Methodology

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 175

2 DEFINING A METHODOLOGY

As we have already stated, the definition of methodology used here encompasses both a
process domain and a work product domain. Also, a methodology is formally specified as
a collection of elements that are distributed between the aforementioned domains. A point
that is often missed is that the specification of the work products to be generated must be
accompanied by the definition and description of the atomic modelling units that are to be
used to construct such work products. Using a grammatical parallel, process elements can
be viewed as verbs and work products as nouns. Because most “verbs” in a methodology
are transitive, it is necessary to take into account the grammatical objects (noun-like) they
act upon in order to obtain a complete and meaningful result. Therefore, the defined
process (especially beyond a certain level of detail) must take into account the objects of
its actions, i.e. the model units used to construct work products, in order for the
methodology to attain a high degree of integration and cohesiveness. As an example,
consider the following fragment of a process definition: “construct a class model”. Any
methodology containing such an indication must also describe what a class model is
before any details regarding its construction can be offered. A shallow explanation for
“class model” such as “the collection of classes and relationships that represent the
structure of the system” is inadequate since (a) the model units “class” and “relationship”
used in the explanation are not defined and (b) we know from practice that many
additional kinds of model units may be necessary in order to complete a class model,
such as interfaces, attributes, operations, roles etc. To make things worse, some of these
kinds of model units (typically operations) are not to be added to the class model at this
stage, but later, when a much richer and more expressive definition of the links between
the process and work product domains is needed.

Interestingly, the often quoted term “object-oriented methodology” frequently
addresses only the epistemological issue of using objects (and perhaps the very ontology4
of software-intensive systems) that belong to the work product domain but, surprisingly,
does not refer to the process domain. Paradoxically, object-oriented, process-focussed
methodologies usually define the process elements but include little or nothing related to
work products. This contradiction must serve as a call for attention toward the need for a
complete and holistic approach to methodology definition, one that defines a
methodology as a collection of method fragments (e.g. [4], [15]) or of interrelated
methodology elements, distributed into stages, work units, techniques, actions, work
products, model units, languages and notations [11]. For example, well accepted
modelling languages such as UML [14] deal with modelling issues but neglect process,
while widespread methodological frameworks such OPEN ([8]) or Extreme Programming
([3]) emphasize the process side and are less detailed when it comes to work products, in
the sense that they usually have a pointer to an external modelling language package or
product such as the UML. While modularity and decoupling issues are often used to

4 We are using this term with its primary and most appropriate connotation, i.e. the study of being itself.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 176

argue for such an imbalance, methodology definition could probably be considered as one
of those wicked problems5 for which the what and the how cannot be approached
separately. We propose a revision of the traditional approach to one providing a
comprehensive set of methodology elements that cover the whole spectrum of needs,
potentially attaining the richness of UML on the modelling side and, at the same time, the
power of OPEN on the process side, together with a neat integration of them both.

It is also appropriate at this point to note the approach taken by SPEM [13] in the
sense that it is not sufficient for our purposes of an integrated approach to methodology.
First of all, SPEM only addresses process issues, neglecting product and modelling needs.
Although a WorkProduct class exists in SPEM, a complete methodology needs to
describe the products used and created with finer granularity than this. Secondly, the
connection between WorkProduct and process-related entities (such as WorkDefinition)
is not expressive enough, since it relies on an input/output characterisation when real
world applications need richer semantics, ideally including an extensible set of product-
process interaction types and the capability to support constraints. Finally, SPEM does
not distinguish between what must be done in a process and when it is done,
encapsulating both issues in the same element, namely Activity. Using this approach, is
not possible to define some work to be done without being forced to specify, as well,
when (in the lifecycle) it must be done. In contrast, for example, OPEN uses the
metaclass Activity for the what and the metaclass Stage for the when. For all these
reasons, we must conclude that SPEM is not a suitable solution for the definition of
methodologies.

Using our new, more holistic approach to methodology definition, we note that
methodology elements are now the only component of a methodology specification; that
is, no other information apart from them is needed to formally define and describe the
methodology. Also, methodology elements are objects subject to the conventional rules
for objects in an object-oriented environment: they possess identity, they may carry
values (corresponding to attributes) and they may be linked to other methodology
elements (as defined by associations). Being objects, methodology elements must be
instances of some classes; this issue is discussed in Section 4. Figure 1 shows an example
fragment of a methodology specification in the form of a UML object diagram. The idea
of dealing with methodology elements as objects is interesting for several reasons. First
of all, methodology elements exhibit typical object characteristics, as we have already
mentioned; in addition, and from a method engineering point of view [4], as objects they
are just as valid and useful as are objects representing automobile parts for a car
manufacturer or functions and matrices for a mathematician. Finally, methodology
elements are nicely managed by CASE tools as objects in a repository [16].

5 Wicked problems are described in [6].

Defining a Methodology

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 177

Figure 1. Sample fragment of a methodology. Methodology elements are shown as objects. Class names

with a “/*” in them are actually powertype patterns and are explained in Section 4.

3 TEMPLATES AND RESOURCES

Let us now consider how a methodology is utilized. Usually, methodologies are applied
to different projects, each of them being run by different teams and having different
timeframes. As noted earlier, the action of applying a methodology to a specific project is
called enactment. Enacting a methodology involves using the existing methodology
elements to create project elements and, eventually, develop the targeted software system
(Figure 2). Project elements, in turn, are elements that exhibit object characteristics at the
project level; they may belong to the process or work product domains6.

6 Project elements are called “project entities” in [8]. We refer to the same thing, and will use “elements”
henceforth.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 178

Methodology

Project A

Project B

enacted for

enacted for

Development Team
for Project A

Development Team
for Project B

Figure 2. Enactment of a methodology for different projects. Methodology elements are shown

schematically as circles inside the rectangle depicting the methodology. Project elements are shown
schematically as circles within each project.

Some examples of process-related project elements are tasks and stages (performed by
specific people by specific dates); some examples of work product-related project
elements may include models (representing a particular view of the system to be built,
and created by specific authors) and classes (representing specific concepts of the
system’s structure). Figure 3 shows an example fragment of a project being performed.
Each project element is depicted as an (anonymous) object. The task being performed is
that of building service models, commencing on 5/11/02 and with a stated termination
date of 18/11/02. This task has performed an action consisting of creating a specific
service model. The result of this action being performed is the service model with name
“Service Model 12”. It is version number 3 written by Terry and John. This model
describes the service of printing a document, which includes two associated states:
actually printing the document (here denoted as of type “busy”) and that of showing an
options window (denoted as of type “modal”).

Templates and Resources

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 179

Figure 3. Sample fragment of a project being performed. Project elements are shown as objects.

Obviously, a strong connection exists between project elements and methodology
elements. This relationship is often described as a conventional “instance of” dependency
([8], p 61, for example), but we believe that it is often more complex than that. It is true
that project elements are created by instantiating some methodology elements, such as
introducing a new attribute in the class model by instantiating the Attribute class in
the methodology, or defining a new task to be performed by instantiating the Task class
in the methodology. Figure 4 shows the same project elements as in Figure 3, but
including the explicit connection to the methodology elements.

Figure 4. The same project elements as in Figure 3 are shown, but now their relationships to the

methodology elements from which they are instantiated are also included. Metamodel elements such as
Task and Action are also shown to help contextualize the latter. The generalizations between methodology

elements and metamodel elements are explained in Section 4.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 180

The very act of instantiating methodology elements to create new project elements needs
some extra information that cannot be found in the methodology elements being
instantiated, such as guidelines for the proper use of the methodology and the
specification of notational artefacts to depict the aforementioned project elements. If we
assume our already stated principle that the whole specification of a methodology must
be done through methodology elements, such guidelines and notations must also be
methodology elements but are not created by an instantiation mechanism. We must
conclude, therefore, that some methodology elements are instantiated during enactment,
while others (such as guidelines and notations) are not. We call the methodology
elements that are instantiated into project elements templates, while those that are used
directly without being instantiated are named resources. From conventional object-
oriented wisdom, we can deduce that templates must be classes if they are intended to be
instantiated; however, they also must be objects, since all methodology elements are
objects. Therefore, template methodology elements are simultaneously classes and
objects (see further discussion below and in [1]). Resource methodology elements, on the
other hand, are simple objects, since they are not intended to be instantiated.

The dual facet of templates can be easily recognized through some examples (see
Figure 5). Within the process domain, the concept of the “BuildServiceModels” task kind
is represented as:

• An object, since it has identity (it is, after all, the “BuildServiceModels” task kind,
as opposed to, say, the “DefineOperations” task kind) and it has attribute values
(name = BuildServiceModels, essential = true).

• A class, since it has attributes (startDate, endDate) and associations
(creates), serving as a template for actual tasks that create service models
during the project.

Figure 5. An example of the dual facet of templates. There is a “BuildServiceModels” object (inside the

ellipse), which is an instance of TaskKind, and a BuildServiceModels class (also inside the ellipse), which
is a subtype of the Task class.

Templates and Resources

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 181

The concept of “clabject”, as introduced by Atkinson & Kühne in [2], is ideal for
describing such dual-faceted entities; a clabject is an entity that can exhibit, concurrently,
a type (or class) facet and an instance (or object) facet. For example, the
BuildServiceModels template methodology element is a clabject, since it has a class
facet (is instantiated into actual tasks that build service models during the project) and an
object facet. While templates are clabjects, resources are not, as they can be described as
simple objects, since they do not need the type facet. They exist at the methodology level,
probably being linked to other methodology elements (both resources and templates,
through their object facet) and are used during enactment as reference or guidance – but
they are not instantiated.

4 METAMODELLING IMPLICATIONS

Describing methodologies in the context of an underpinning metamodel is a widespread
practice that adds formality to the methodology definition and allows for its extension
and adaptation. From this perspective, methodology elements are usually viewed as
instances of their respective metamodel elements; for example, OPEN defines “Develop
iteration plan” (a task at the methodology level) as an instance of Task, a metamodel
element (see [8], p 264).

Although we agree that methodology elements must be defined as instances of some
metamodel elements, we must make an interesting point here. Continuing with our
example, the Task metamodel element in OPEN is instantiated during process
construction into “instances of Task”, i.e. kinds of tasks ready to be enacted. However,
from an intuitive point of view, the tasks are those performed by actual people during the
project, not the abstract definition at the methodology level. We therefore suggest using
the name Task for project elements and use instead TaskKind for the methodology
element to avoid confusion7. Following this assumption, “Develop iteration plan” and
“Keep client informed” are not tasks, but task kinds. Every single enactment of one of
these task kinds, with actual people and dates, is a task. Both concepts Task and
TaskKind exist at the metamodel level; task-related methodology elements are instances
of TaskKind and, simultaneously, subtypes of Task. An actual task at the project level
is an instance of one specific subtype of Task. We must note, however, that only
template methodology elements are subject to this condition; as noted earlier, resources
are simple objects obtained through conventional instantiation of metamodel elements
(Figure 6).

The generalization of this example to the whole methodology leads to the notion of
“powertype-based metamodelling” [10]. From this perspective, template methodology
elements are instances of metamodel classes named with a “kind” suffix (such as
TaskKind or ModelKind), to indicate that they represent specific kinds of things. For
example, the DefineOperations methodology element is an instance of TaskKind
representing an abstraction of every single task that defines operations. Simultaneously,
DefineOperations is a subtype of Task, since all tasks defining operations are, by

7 In this context, tasks as defined by OPEN would be better named as task kinds. The same conversion must
be applied to most metamodel elements.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 182

definition, tasks. Task and TaskKind compose a powertype pattern at the metamodel
level ([9], section 3.2). Powertype patterns are pairs of classes in which one of them (the
powertype) partitions the other (the partitioned type) by having the instances of the
former be subtypes of the latter. Note that powertypes, by definition, cross the traditional
levels of a metamodelling hierarchy. In our example (see Figure 6), TaskKind is a
powertype and Task is the associated partitioned type. When using UML to depict
powertype patterns, two separate classes (for the powertype and the partitioned type) are
sometimes used. However, it is often convenient to use a single class to represent the
whole powertype pattern; in such cases, the class can be named as <name>/*Kind,
where <name> corresponds to the partitioned type’s name. For example, the
Task/TaskKind powertype pattern would be depicted as a single class labelled
Task/*Kind.

Finally, and since every methodology element must be derived from some
metamodel element, we must enhance conventional metamodelling approaches in order
to support clabjects. A clabject can be defined as an “instance” of a powertype pattern if
we agree to (a) extend the customary meaning of the “instance of” relationship and (b)
deal with powertype patterns as single entities when convenient. Assuming this, the
object facet of a clabject is a conventional instance of the powertype class in the
powertype pattern, while the class facet of the clabject is a subtype of the partitioned type
class in the powertype pattern.

Metamodelling Implications

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 183

Figure 6. Example of relationships between metamodel, methodology and project levels. The “Define

operations” template methodology element is an instance of TaskKind in the metamodel, and also a subtype
of Task. Specific tasks defining operations performed at the project level are instances of such a subtype of

Task. The ellipse at the methodology level represents the fact that the included class and object are two
facets of the same clabject. The “User interface sketching” resource methodology element is an instance of

Notation in the metamodel. (After [9]).

5 AN EXAMPLE METAMODEL

Taking the previous sections as an expression of what a comprehensive metamodel
should offer, we would like to outline a specific example as a partial “validation” of the
theoretical discussion above. From our perspective, a metamodel must allow the method
engineer to exert some control over the project elements, as well as on the methodology
elements. Our example metamodel includes a MethodologyElement class, which acts
as an abstract type for all methodology elements, and a ProjectElement class, of
which project elements would be indirect instances. Since every project element is

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 184

derived from a certain methodology element, these two classes are arranged into a
powertype pattern, as shown in Figure 7. Templates and resources are modelled as
abstract subclasses of MethodologyElement. In addition, UserAttribute and
UserAssociation classes are provided to allow the method engineer to add attributes
and associations to the class facet of template methodology elements. Conventional
instantiation mechanisms used to generate methodology elements from metamodel
classes do not support the manipulation of attributes, associations or classes at all at the
methodology level, so the UserAttribute and UserAssociation classes are
necessary at the metamodel level.

Figure 7. Very high-level view of the example metamodel. Methodology elements and project elements

compose a topmost powertype pattern, shaping the linkages to be kept between metamodel, methodology
and project. User attributes and user associations allow for customization of the class facet of template

methodology elements.

From the described framework, we can derive more concrete classes. Specific kinds of
template methodology elements are introduced, accompanied by their respective
partitioned type classes (Figure 8). Classes used to model resources are also introduced.

An Example Metamodel

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 185

Figure 8. The example metamodel at an intermediate abstraction level. The UserAttribute and

UserAssociation classes have been removed for clarity, as well as the powertype association between
MethodologyElement and ProjectElement. Powertype associations also exist (but are omitted here for

clarity) between StageKind and Stage, WorkUnitKind and WorkUnit, etc.

Finally, some additional classes must be introduced to provide support for every single
type of methodology element. Associations between classes must also be incorporated.
Figure 9 shows a detailed view of the resulting structure.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 186

Figure 9. Low-level view of the example metamodel. Only instantiable classes (and their direct supertypes)
are shown. Associations between classes establish a highly abstract structure for any methodology derived

from the metamodel. (After [9]).

In summary, Table 1 shows a brief description of all the classes in the exemplar
metamodel.
Class name Description Example instances
Action A specific act or usage of a given work

product by a given task.
Modifying the detailed class
model when Designing class
details for class “Invoice”

ActionKind A specific kind of action. Class Model can be modified by
Design Class Details

Activity A cohesive yet heterogeneous collection of
tasks that achieves a set of related goals.

Specifying the requirements;
Doing low-level modelling for
feature set number 12

ActivityKind A specific kind of activity. Requirements Specification;
Technological Design

Build A scheduled part of a phase leading to an
increment towards the final system.

Construction build number 132

BuildKind A specific kind of build. Construction Build

An Example Metamodel

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 187

Class name Description Example instances
Document A durable depiction of some of the

problem’s or system’s properties.
System requirements description;
Class description of class
“Invoice”

DocumentKind A specific kind of document. Deployment Procedure; Class
Description

Language A set of interrelated model unit kinds, which
can be used to construct certain model kinds.

User Interaction Language; Class
Structure Language

MethodologyElement An entity that exists at the methodology
level, either a template methodology
element or a resource methodology element.

Design Class Details (a task kind)

Model A mental representation of the problem to
solve or the system to build.

Domain class model; Persistence
model for persistence cluster
“Invoices”

ModelKind A specific kind of model. Class Model; Persistence Model
ModelUnit An atomic unit used to compose models

during a project.
Class “Invoice”; Attribute
“Amount” of class “Invoice”

ModelUnitKind A specific kind of model unit. Class; Attribute; Operation
ModelUnitUsage A specific usage of a given model unit on a

given model.
Class “Invoice” is depicted in the
Domain class model

ModelUnitUsageKind A specific usage of a given model unit kind
on a given model kind.

Operation is modelled in a
Collaboration Model; Class is
involved in a Class Model

Notation A set of perceptible artefacts (usually
graphical) plus usage rules, which can be
used to depict specific model kinds.

User Interface Sketches; Class
Diagrams

Phase A usually long stage performed at a certain
level of abstraction and focus.

Defining the system;
Constructing the system

PhaseKind A specific kind of phase. System Definition; System
Construction

ProjectElement An entity that exists at the project level,
either a stage, a work unit, an action, a work
product, a model unit, a model unit usage or
a technique.

Designing class details for class
“Invoice” (a task)

ResourceMethodology
Element

A methodology element designed to be used
at the project level “as is”, without being
instantiated. It is either a language or a
notations.

User Interaction Language

Stage A managed interval of time, or a point in
time, within a project.

Construction build number 132

StageKind A specific kind of stage, either a BuildKind
or a PhaseKind.

Construction Build; System
Construction

Task A single assigned job that creates or
modifies one or more work products.

Defining system operations;
Designing class details for class
“Invoice”

TaskKind A specific kind of task. DefineOperations; Implement
Exceptions

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 188

Class name Description Example instances
Technique Usage of a specific way to perform a task. Interviewing users on 5/11/02;

Doing role modelling on 7/10/02
TechniqueKind A specific kind of technique. Interviewing; Role Modelling
TemplateMethodology
Element

A methodology element designed to be
instantiated to create project elements, either
a stage kind, a work unit kind, an action
kind, a work product kind, a model unit
kind, a model unit usage kind or a technique
kind.

Service Model (a model kind)

UserAssociation An association between the class facets of
specific template methodology elements.

Attribute “IsAbstract” of class
“Class”; Attribute “Variations” of
class “UseCase”

UserAttribute An attribute of the class facet of a specific
template methodology element.

Classes have Attributes;
UseCases have UseCaseSteps

WorkProduct A significant thing of value developed
during a project.

Domain class model; Class
description for class “Invoice”

WorkProductKind A specific kind of work product, either a
ModelKind or a DocumentKind.

Class Model; Deployment
Procedure

WorkUnit A functionally cohesive operation performed
during a project.

Define operations for class
“Invoice”

WorkUnitKind A specific kind of work unit, either an
ActivityKind or a TaskKind.

Requirements Specification;
Define Operations

Table 1. Description of metamodel classes. The descriptions for most of the process-related classes are
taken from [8].

Table 1 can be used as a reference for the classes in the example metamodel,
summarizing succinctly the more detailed graphical depictions in Figure 7 to Figure 9.
We can thus create metamodels specific to certain situations such as capability
assessment, software development, computer-supported cooperative work (CSCW) or
web development. Each metamodel can then be used to create methodologies useful to a
particular organization or context. Such a methodology more closely describes, models
and prescribes the steps and work products necessary to undertake the software
development. It also clearly differentiates which project elements need to be instantiated
and which can be used “as is” (templates cf. resources in the terminology used in this
paper).

6 CONCLUSIONS

We have proposed a new approach to methodology definition, taking into account that
both the process and work product domains must be described concurrently, and that both
templates and resources must be supported at the metamodel level in order to
accommodate the different types of methodology elements and also allow the method
engineer to exert control on both methodology and project elements. Although some of
these ideas have been dealt with in the literature for some time, no formalization of them

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 189

has been performed. We have presented in this paper a suitable formalization of these
ideas. As validation of our approach to metamodelling, we have also defined an example
metamodel that permits the precise specification of comprehensive methodologies.

ACKNOWLEDGEMENTS

We wish to thank the Australian Research Council for providing funding. This is
Contribution number 04/05 of the Centre for Object Technology Applications and
Research (COTAR).

REFERENCES

[1] Atkinson, C., 1998, Supporting and applying the UML conceptual
framework, in The Unified Modeling Language. «UML»’98: Beyond the
Notation, (eds. J. Bézivin and P.-A. Muller), LNCS 1618, Springer-Verlag,
Berlin, 21-36

[2] Atkinson, C. and Kühne, T. 2000. Meta-Level Independent Modelling.
International Workshop on Model Engineering at the 14th European
Conference on Object-Oriented Programming 2000 (Sophia Antipolis and
Cannes, France, 12-16 June 2000).

[3] Beck, K. 2000. Extreme Programming Explained. Addison-Wesley: Upper
Saddle River, NJ, USA, 190pp.

[4] Brinkkemper, S. 1996. Method engineering: engineering of information
systems development methods and tools, Inf. Software Technol., 38(4), 275-
280

[5] Brinkkemper, S., Saeki, M. and Harmsen, F. 1998. Assembly techniques for
method engineering, Procs. CAiSE 1998, Springer-Verlag, 381-400.

[6] D’Souza, F. D. and Wills, A.C. 1999. Objects, Components, and Frameworks
with UML: The Catalysis Approach. Addison-Wesley: Upper Saddle River,
NJ, USA, 785pp.

[7] DeGrace, P. and Stahl, L. H. 1990. Wicked Problems, Righteous Solutions.
Yourdon Press: Upper Saddle River, NJ.

[8] Firesmith, D. and Henderson-Sellers, B. 2002. The OPEN Process
Framework — An Introduction. Addison-Wesley: Harlow, UK, 330pp.

[9] González-Pérez, C.A. and Henderson-Sellers, B. 2003. A Powertype-based
Metamodelling Framework. Submitted to Software and Systems Modelling.

TEMPLATES AND RESOURCES IN SOFTWARE DEVELOPMENT METHODOLOGIES

 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4 190

[10] Henderson-Sellers, B. and González-Pérez, C.A. 2004. A Comparison of Four
Process Metamodels and the Creation of a New Generic Standard. To appear
in Information and Software Technology.

[11] Henderson-Sellers, B. 1995. Who needs an OO methodology anyway? J.
Obj.-Oriented Programming, 8(6), 6-8

[12] Martin, J. and Odell, J.J. 1996. Object-Oriented Methods: Pragmatic
Considerations. Prentice-Hall: Englewood Cliffs, NJ.

[13] OMG. 2002. Software Process Engineering Metamodel Specification. OMG
document formal/2002-11-14 [Online]. Available http://www.omg.org

[14] OMG. 2001. OMG Unified Modeling Language Specification, Version 1.4,
September 2001, OMG document formal/01-09-68 through 80 (13
documents) [Online]. Available http://www.omg.org

About the authors
Cesar Gonzalez-Perez is a Post-doctoral Research Fellow at the Centre
for Object Technology Applications and Research at University of
Technology, Sydney (UTS), and has been developing and applying OO
methodologies for over ten years to both research and commercial
projects. He is the lead author of the OPEN/Metis methodology. E-Mail:
cesargon@it.uts.edu.au

Brian Henderson-Sellers is Director of the Centre for Object
Technology Applications and Research and Professor of Information
Systems at University of Technology, Sydney (UTS). He is author of ten
books on object technology and is well known for his work in OO
methodologies (MOSES, COMMA and OPEN) and in OO metrics. He
was recently awarded a DSc degree by the University of London for his

work in object-oriented methodology. E-Mail: brian@it.uts.edu.au

