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In this paper, we present an analysis of remote objects in Microsoft’s Shared
Source Common Language Infrastructure. The contribution of our work is three-
fold. First, we analyze the behavior of remote objects. We find that the basic
behavior of these objects significantly differ from the ones of local objects, which
have been thoroughly studied in the past. We also study the behavior of remote
objects with respect to different activation modes (i.e. single-call, singleton, and
client-activated). Second, based on those behavioral differences, we study the
impacts of managing remote objects with a generational garbage collector that
is designed essentially to manage local objects. We find that the garbage col-
lection efficiency degrades significantly when the heap is interspersed with both
local and remote objects. Third, we suggest various optimization techniques to
improve the garbage collection efficiency in distributed objects environments.

1 INTRODUCTION

Web servicescomputing is an emerging technology for developing and deploying dis-
tributed applications. The main goal of Web services is to provide an infrastructure for
applications to communicate with each other using the World Wide Web [24, 33]. By
using Web services, applications from different system architectures (e.g. mainframe,
client/server, etc.) can easily exchange information without having to rely on vendor
specific middleware components.

Currently, the two major technologies that support Web services are Sun’sJava 2 En-
terprise Edition(J2EE) and Microsoft’s.NET Framework, which is based on theCommon
Language Infrastructure(CLI) standard [16]. According to industry observers, Sun will
have 40% of the new enterprise application market and Microsoft will have 30% by the
end of this year [22]. They also reported that “Web services will become the dominant
distributed computing architecture in the next ten years and will eventually define the
fabric of computing” [19]. Thus, it is not surprising that the revenue for Web services is
expected to be in excess of twenty one billion dollars by 2007 and twenty seven billion
dollars in 2010 [19].

In addition to Web services, distributed applications can be developed and deployed
using Microsoft’s.NET Remotingframework. Semantically, remoting is very similar to
JavaRemote Method Invocation(RMI). However, remoting is architecturally different
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from RMI in that remoting does not require stubs nor interfaces [34]. In .NET, Web ser-
vices is a special type of remoting that runs underInternet Information Services(IIS) [2].
Remoting is not only utilized for cross-platform communication and heterogeneous sys-
tems, as in Web Services, but also is optimized for communication between .NET-centric
applications. More importantly, .NET Remoting provides mechanisms that work with
stateful objects. This feature will potentially allow remoting to be the foundation of the
next distributed applications generation [20].

To the best of our knowledge, there have been no previous work to characterize the
behavior of distributed objects related to either Remoting or Web services. In addition,
the information about the effect of these objects on the garbage collector performance
is very limited. This paper represents one of the first attempts to study the behavior of
remote objects and their impacts on thegarbage collection(GC). The contributions of our
work are as follows:

• Characterization of remote objects—we classify remote objects as any objects cre-
ated directly or indirectly to service requests from remote clients [17]. Our study
encompasses differentactivationmodes that include bothserver-activated(single-
call and singleton) and client-activated. The results of our study show that the
majority of remote objects in our benchmark program live significantly longer than
local objects when singleton and client-activated modes are used.

• Analysis of generational garbage collection—we analyze it by monitoring the num-
ber of remote objects that are long-lived. We hypothesize that the efficiency of gen-
erational garbage collector is greatly reduced because the heap is interspersed with
both local and remote objects; and those local and remote objects behave differ-
ently. The experiments show that the long-lived remote objects greatly degrade the
efficiency of the garbage collector.

To perform our study, we have created a calendar program that can be configured
to use different activation modes. The workload is varied by changing the number of
clients that are simultaneously requesting services. It is worth noting that our bench-
mark program is created to represent the basic mechanisms of invoking remote methods
and interfacing with remote objects. Our application is intended to be a case-study of
remote object behavior based on different activation methods, which are fundamental to
distributed application development in .NET infrastructure. In spite of a small amount of
work performed for each client’s request, we have already seen that remote objects have
longer lifespan than that of the local ones in our application. Thus, with heavier/real-world
workload, the lifespan of remote objects may even be longer and result in less efficiency
for generational garbage collection.

The remainder of this paper is organized as follows. Section2 introduces related
work and background information. Section3 discusses the rationales for our hypothesis.
Section4 presents the experiments. Section5 presents the results obtained from our
experiments. Section6 discusses the future work and the last section summarizes this
paper.
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2 RELATED WORK AND BACKGROUND

This section provides an overview of other studies of the object behavior. It also provides
background information related to theShared Source Common Language Infrastructure
(SSCLI) which is the experimental platform of our research. The related work is provided
in section2 and the background information is provided in section2.

Related Work

As of now, very little research effort has been spent to study the object behavior in dis-
tributed Object-Oriented applications. While the extensive study of SPECjvm98 [26]
benchmarks by [4] yielded many insights into the allocation and garbage collection be-
havior of Java programs, SPECjvm98 does not represent distributed application and server
workloads. In [32], a study was performed to investigate whether the CLI implementa-
tions can be “useful for high-performance computing.” A large set of benchmarks was
used to compare the performance of four CLI implementations. Again, none of the bench-
marks represent server-type and distributed workloads. In [11], a performance study
of SPECjAppServer2002 [28] was performed. SPECjAppServer2002 is an application
Server benchmark based on the Java 2 Enterprise Edition technology. The study mainly
concentrated on the micro-architecture level and not at the object behavior level.

In [1], the the effectiveness of pretenuring is studied. Pretenuring is an extension
to the generational garbage collection to more efficiently managed long-live objects. A
profile based approach is used to select objects for pretenuring. The idea is to provide
profile information to the compiler so that the optimal object’s birthplace is available at
runtime. They classify objects into three different classes-short-lived, long-lived, and
immortal. They report up to 30% improvement in GC time and 7% improvement in the
overall system performance. It is worth noting that their study is mainly based on desktop
applications with one server that is not distributed in nature. We expect that their approach
may generate higher performance gains in distributed environment.

In [10], a thorough characterization of memory system behavior of SPECjbb2000
and SPECjAppServer2001 was performed. SPECjbb2000 [29] is a benchmark to evalu-
ate the performance of servers running typical Java business applications. It represents
an order processing application for a wholesale supplier. SPECjAppServer2001 [27] is
a client/server benchmark to measure the performance of Java Enterprise Application
Servers using a subset of J2EE API’s in a complete end-to-end web application. Their
work [10] mainly studied the performance of cache memory with a portion of the work
for a study of the effect of garbage collection on cache performance. In [13, 21], workload
characterization of SPECjbb2000 and VolanoMark [12] was performed. VolanoMark is
a multithreaded chat room application. Again, both studied the performance at the com-
puter architecture level and not from the object perspective.
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Background Information

Shared Source Common Language Infrastructure (SSCLI)

The main objective of the CLI is to allow programmers to develop component-based ap-
plications where the components can be constructed using multiple languages (e.g. C#,
C++, Python, etc.). ECMA-3351 (CLI) standard describes “a language-agnostic runtime
engine that is capable of converting lifeless blobs of metadata into self-assembling, ro-
bust, and type-safe software systems” [31]. There are several implementations of this
standard that include Microsoft’sCommon Language Runtime(CLR), Microsoft’s Shared
Source Common Language Infrastructure (SSCLI), Microsoft’s .NET Compact Frame-
work, Ximian’s Mono project, and GNU’s dotnet project. For this research, we use the
SSCLI due to the availability of the source code. Moreover, it seems to be the most mature
implementation than the Mono or GNU’s dotnet projects.

SSCLI is a public implementation of ECMA-335 standard. It is released under Mi-
crosoft’s shared source license. The code base is very similar to the commercial CLR
with a few exceptions. First, the SSCLI does not support ADO.NET and ASP.NET
which are available in the commercial CLR. ADO.NET is a database connectivity API
and ASP.NET is a web API that is used to create Web services. However, the SSCLI
does supportremoting, which enables us to construct basic Web services mechanisms via
remoting withSimple Object Access Protocol(SOAP) encoding andHypertext Transfer
Protocol (HTTP) communication channel. SOAP is an open standard sanctioned by the
World Wide Web Consortium (W3C). Second, the SSCLI uses a differentJust-In-Time
(JIT) compiler from the CLR. The latter provides a more sophisticated JIT compiler with
the ability to pre-compile code. Notice that both implementations of the CLI adopt JIT
compilation and not interpretation mode as in some earlier Java Virtual Machine imple-
mentations. Third, it is designed to provide maximum portability. Thus, a software layer
called Portable Adaptation Layer (PAL) is used to provide Win32 API for the SSCLI.
Currently, the SSCLI has been successfully ported to Windows, FreeBSD, and MacOS-X
operating systems.

Remotable versus Remote Objects

The .NET Remoting framework classifies objects into two categories: nonremotable and
remotable. There are three categories of remotable types:marshal-by-value, marshal-by-
reference, andcontext-bound[15]. Marshal-by-valueremotable type is declared by using
the Serializableattribute. Marshal-by-referenceremotable type is defined by deriving
from System.MarshalByRefObject. Simply deriving from this class enables the instances
(plus the methods) of the type to be remotely-accessible. Context-bound remotable type
is a refinement of marshal-by-reference type. Context-bound type is derived fromSys-
tem.ContextBoundObjectclass, which itself inherits from System.MarshalByRefObject.
Therefore, remotable objects can be “accessed outside their application domain or context

1European Computer Manufacturers Association
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using a proxy, or they can be copied and these copies can be passed outside their applica-
tion domain or context; that is, some remotable objects are passed by reference and some
are passed by value” [18].

In addition, there are two ways to activate remotable objects—client and server activa-
tions. Theserver-activatedobjects can be further categorized intosingle-callandsingle-
ton. A client-activatedobject is a server-side object whose lifetime is mainly controlled
by the client application [2]. It is commonly used in multi-tier client/server applications
that allow clients to make a series of method invocations on the same server to complete
one long and complex business transaction [17]. On the other hand, the lifetime of a
server-activatedobject is managed by the server. A single-call object is created by the
server to serve only one client request. When the client invokes a method on a single call
object, the object constructs itself, performs appropriate actions, and then is subject to
garbage collection [2]. Thus, single-call objects are stateless. Single-call is often used for
load balancing [14]. On the contrary, a singleton object is created by the server to serve
multiple clients that share information. As a result, singleton objects are stateful and tend
to live for the duration of a program [2]. Singleton is often used as listener threads in web
server and database server [3].

In this paper, we defineremote objectsas objects created to service remote requests.
Specifically, remote objects are objects created within a remote method; moreover, if the
remote method calls other methods, objects created within those methods are also con-
sidered as remote objects. Thus, our definition of remote objects encompasses marshal-
by-value and marshal-by-reference remotable types as well as all connected objects that
they reference. Figure1 shows the difference between remotable and remote objects. The
squares denote remotable objects and the three circles within a semicircle denote remote
objects. Those remote objects are created by a remote method within the remotable object
as part of method calls by the clients.

Garbage Collection in the SSCLI

The SSCLI adopts generational collection technique to manage objects. It is worth not-
ing that any objects larger than 85,000 bytes are considered large objects and managed
differently. The generational scheme employs two generations: ephemeral and mature
generations. The default sizes as specified in the SSCLI source code are 800 K-bytes
and 1 M-bytes, respectively. Intergenerational pointers are maintained using card mark-
ing [9, 25] where each card is 4 K-bytes. Objects from unmanaged code are also managed
by the garbage collector; handle list is used to store references coming from unmanaged
environment. In this approach, all objects that are not large objects are created in the
ephemeral space. Any objects that survive ephemeral collection would then be moved to
the mature region.
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Figure 1: Overview of different activation models in the benchmark program.

3 RATIONALE

As stated earlier, the main goals of this research are(i) to characterize the behavior of
remote objects and(ii) to study their effects on garbage collection. We hypothesize that
the behavior of remote objects differ from those of local objects and, thus, may degrade
the efficiency of generational garbage collectors (such as the one in the SSCLI). The
rationales for our hypothesis are as follows:

1. In distributed computing, the lifespan of remote objects would be much longer than
local objects. We base our hypothesis on the work by [6] where the experimental
results show that over 80% of objects that are connected together tend to die to-
gether. Based on [2], singleton object tends to live for the duration of the server
program. For a client-activated object, the default lifespan used in the SSCLI is
five minutes. If the client still needs to access the object after the initial lease time,
re-leasing mechanism can be used to further extend the object’s life. It is also pos-
sible that programmers can override this initial lease time with other values (e.g. 30
seconds). Since these objects are the roots of objects clusters, other objects con-
nected directly or indirectly to either singleton or client-activated objects should be
long-live as well.

2. Since all objects (except those larger than 85,000 bytes) are initially created in the
ephemeral space and more remote requests result in more remote objects being cre-
ated, remote objects will occupy the majority of the ephemeral space. As mentioned
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in 1, these objects may be long-live. Therefore, the initial premise of generational
schemes that “the majority of objects die young” may no longer be true in remoting
applications. In fact, the generational garbage collection efficiency may degrade
significantly.

Our goal of this paper is to prove the correctness of our hypothesis. We perform experi-
ments to show that there are a lot of long-lived objects in distributed applications. Once
we establish the fact that a large number of objects are long-lived, we perform more anal-
ysis to show that the majority of these long-lived objects are remote. Lastly, to make sure
that we have adequate ephemeral generation size for our experiment, we compare the
survival rate of remote and local objects based on the allocation request for each type in
between two GC invocations. In doing so, we demonstrate that remote objects are indeed
long-lived.

4 EXPERIMENT

This section describes our experimental environment. The description includes the de-
tailed overview of our benchmark programs, the detailed modifications made to the SS-
CLI, and the analysis tools to study the behavior of remote objects. We conduct our
experiments on Windows XP Professional workstation running on 2.6 GHz Pentium IV
with Hyper-Threading [8]. The system has 512 MB of memory.

Benchmark Program

Currently, there are no standardized benchmark programs for distributed application in
.NET environment. In addition, the SSCLI does not have a complete set of libraries as
in the commercial CLR. Therefore, the benchmark for our experiment must utilize basic
mechanisms to invoke and interface with distributed objects and execute correctly in the
SSCLI. As a result, we create a benchmark program that can be easily customized to use
different activation modes and to support a large number of concurrent clients. As stated
in the introduction, it isnot our intention to create a benchmark program that emulates
real-world workloads as different applications would exhibit different workload behavior.
On the contrary, our application is intended to be a case-study of remote object behavior
based on different activation modes (singleton, single-call, and hybrid). The three activa-
tion modes are used. We then compare the differences in object behavior among different
modes. The basic characteristic of the benchmark program is summarized in Table1.

Our benchmark is a three-tier client/server calendar program, as depicted in Figure1.
The primary server waits for client connections, forwards each client’s requests to the sec-
ondary XML server, which queries corresponding information from an XML file, and then
returns the results back to the clients. Since the primary and secondary servers operate
in two different application domains, they also need remoting mechanism to communi-
cate with one another. The connection between the primary server and the XML server is
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Application Configuration Number of Allocated Objects Methods Thread
Clients by bytes by objects Compiled Created

1 972,115 13,502 3,433 6
15 6,061,786 98,067 3,448 17

single-call 30 11,438,351 188,033 3,445 24
60 22,697,904 374,633 3,731 29
1 971,989 13,600 3,433 6
15 5,974,442 96,123 3,455 19

Calendar singleton 30 11,251,682 184,679 3,455 23
60 22,210,707 369,422 3,632 29
1 1,029,305 14,560 3,459 6
15 6,650,288 100,979 3,473 20

client-activated/hybrid 30 12,506,027 192,807 3,467 23
60 24,633,000 384,595 3,695 25

Table 1: Benchmark Characteristics

established using the singleton mode. It is worth noting that we use HTTP channel and
SOAP formatter to emulate the behavior of Web-service applications.

The server and the client programs can be configured to use single-call, singleton, or
client-activated mode for the remotable object activation. The basic overview of the three
activation models is given in Figure1. In our implementations of the single-call and the
singleton models, every client makes two similar requests—each request is to retrieve all
appointment details for a particular day. For the client-activated model, each client makes
two different requests—the first one is to retrieve only the appointment subjects for a
particular day and the second is to get the detailed information of a particular appointment.

It is worth noting that a hybrid implementation is used to exercise the client-activated
model. The hybrid implementation is preferred to its pure client-activated model counter-
part because no compiled server objects needs to be shipped to the client. Shipping com-
piled server objects violates the principle of distributed objects and is undesirable due to
deployment and versioning issues [17]. In the hybrid model, a client makes a connection
through a main singleton object in the server, which then instantiates a client-activated
object for the corresponding client. The singleton object serves as a factory object to cre-
ate query objects for the calendar program. One additional proxy object is then set up on
the client side so that it can directly access the newly-instantiated client-activated object
in the server. The terms client-activated and hybrid are used interchangeably throughout
this paper.

We vary the testing workload by changing the number of simultaneous clients (i.e. 15,
30, and 60 clients) for each of the three—single-call, singleton, and hybrid—models. The
benchmark allocates over 384,000 objects and 24 M-bytes in the hybrid model with 60
clients. Notice that the number of objects created in our benchmark is similar to the num-
ber of objects created in well accepted client/server benchmarks such as VolanoMark [12].
For instance, in our benchmark with 15 clients, the number of objects is about 200,000.
For VolanoMark with 20 clients, there are about 257,000 objects [7]. The program also
compiles over 3,400 methods during its execution. The comparison of object behavior
among these three models is given in section5.
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Trace Generation and Analysis

We perform our experiments by running the benchmark with different configurations on
the modified SSCLI. The modified SSCLI is an SSCLI in which the source code is modi-
fied to generate information related to thread creation, JIT compilation, object allocation,
garbage collection, thread termination, etc. The information is then piped to a trace file.
The basic overview of our experimental platform is provided in Figure2.

Figure 2: Overview of the experimental platform.

Each time a remote method is entered, the modified SSCLI will generate a line in the
trace file. The line includes the method name and a unique identification number of a
particular thread executing the method. Any objects created by the same thread while the
remote method is still active are considered to be remote objects. Since our benchmark
is multithreaded, we segregate concurrent allocation requests from different threads by
generating a thread identification number as part of the object allocation trace line. For
example, since the workstation used for the experiment has a Hyper-Threading capability,
it is possible for two threads from the same application domain to execute simultaneously.
However, by recording the thread identification number as part of the object allocation
trace line, we can precisely identify whether the object is local or remote.

It is also possible for the thread that executes a remote method to delegate some works
to other threads in the same application domain. The most common approach is to create
a pool of threads for the delegated tasks. Since these threads also perform works to satisfy
remote requests, the objects created by these worker threads are also considered as remote
objects.

The complete trace file is then used as the input of the analysis tool, which is used
to identify each object’s type (i.e. local or remote), calculate the garbage collection effi-
ciency, compute the object size distribution, and so on. The result is then outputted to an
analysis result file. The result is discussed in the next section (section5).

5 EXPERIMENTAL RESULT

Basic Behavior of Remote Objects

We initially hypothesize that the majority of objects in the heap will be remote objects (i.e.
remotable objects and any objects connected to them). However, as shown in Figure3,
this is not the case. The ratios of remote and local objects in both single-call and singleton
models are close to half (52% for local and 48% for remote). For the hybrid model, each
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client request results in more local objects created. Such objects include leasing managers
and other structurally complex objects for keeping information across states, to support
additional runtime requirements. Therefore, the amount of space for local objects also
increases as reflected in Figure3.

Figure 3: Ratio of remote versus local objects in the benchmark applications.

We also find very few differences between the local and remote object size distribu-
tions. Studies by [4, 35] find that the average object size of Java programs is less than
50 bytes. Another study by [23] finds that a high percentage of objects is smaller than
512 bytes. Figure4 depicts the local and remote size distributions for all the three models
with 60 clients. It shows that most of the objects (local and remote) are smaller than 128
bytes.

Figure 4: Size distribution of remote and local objects in the benchmark applications.

In terms of lifespan, we find that a large number of objects survive ephemeral col-
lections. A detailed illustration of such objects is given in Figure5. For example, in the
single-call model with 30 clients, we find that the survival ratios are about 40%. Notice
that when the number of clients increases to 60, the SSCLI enlarges the ephemeral gener-
ations from 800 K-bytes to 2,600 K-bytes in case of single-call, 3,500 K-bytes in case of
singleton and 5,800 K-bytes in case of hybrid toward the end of the execution.
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Figure 5: Illustration of surviving objects for each GC invocation.

Application Configuration Number of Survival Ratio Ephemeral GC
Clients Min Max Average Invocation

single-call 30 27.79 46.85 37.38 11
60 19.01 57.95 38.73 18

Calendar singleton 30 25.29 52.35 39.44 13
60 15.53 59.70 33.15 15

client-activated/hybrid 30 24.74 53.71 36.71 15
60 16.62 44.59 30.36 19

Word count (desktop) - 10.5 25.30 15.93 11

Table 2: Survival rates

Table2 provides the aggregated results of our finding. For example, the hybrid model
with 30 clients has the survival rates ranging from 25 to 53%, with an average of 36.71%.
We find that the averages of the survival rates fall between 30 to 39% in all configurations.
For a comparison, we use aword countutility program, which is included as part of the
SSCLI test suite, to represent a common desktop application. The utility is used to count
the number of characters, words, and lines in one of our trace files. The application allo-
cates 8 M-bytes of memory and invokes 11 ephemeral garbage collections. We find that
the objects’ average survival ratio in the application is only 16% and that the maximum
survival ratio is only 25%, which is smaller than the average survival ratio in our remoting
benchmark application.

Distribution of Long-lived Objects

In this section, we perform a detailed comparison between the distributions of long-lived
local and long-lived remote objects. By monitoring the objects that are promoted dur-
ing each ephemeral garbage collection, we can compare the amount of remote and local
objects that are long-lived. For example, we calculate the amounts of local (Lo) and re-
mote (Ro) objects in the young generation before and after each GC. We also calculate
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the amounts of local (Lm) and remote (Rm) objects that survive the ephemeral collections
(i.e. promoted to the mature generation). Thus, we can express the percentage of survival
asPL = Lm

Lo
andPR = Rm

Ro
,wherePL andPR are the percentages of survived local

objects and survived remote objects, respectively.

Figure6 provides detailed distributions between long-lived remote and local objects
per GC invocation. The main objective is to illustrate that the majority of long-lived
objects are remote. Due to space limitation, we only include the distributions in the three
models with 60 clients as representatives of other workloads. As illustrated in the figure,
most objects that survive the majority of GC invocations are remote objects.

Figure 6: Distributions of long-lived objects per GC invocation.

Potential Effect to the Local Collector

As stated earlier, we hypothesize that the introduction of remote objects to the same heap
would degrade the efficiency of generational GC. As a reminder, the efficiency of gen-
erational GC is mostly determined by the amount of objects that has to be migrated to
the mature region. The basic rationale behind generational scheme is that “the majority
of objects die young” [9] and thus, less object will be promoted during each ephemeral
collection. The efficiency of a garbage collector is defined as the amount of garbage col-
lected in a given time [9]. As illustrated thus far, remote objects in distributed applications
tend to live longer. Therefore, the amount of garbage collected in each invocation would
be less and the collection time would be longer. We intend to prove our hypothesis by
showing that the remote objects are indeed long-lived.

To perform our preliminary analysis, we compare the behavior of local and remote
objects based on the amount of allocation during an ephemeral garbage collection. To
illustrate our technique, let us consider the following. Figure7 depicts the distribution
of allocated objects that are remote and local. We record the information just prior to
each GC. For example, we investigate the fifth and sixth GC invocations. We find that
the amount of remote allocation in the fifth invocation is nearly identical to the amount
of local allocation in the sixth. Again, the size of ephemeral generation is maintained at
800 K-bytes. What we want to monitor here is the amount of survived objects after an
ephemeral GC is invoked. In this example, we find that the percentage of long-lived local
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objects in the 5th invocation is 30% whereas the percentage of long-lived remote objects
in the 6th invocation is 52%. In this approach, we eliminate one of the common pitfalls
in lifespan study of the generational scheme which is the adequacy of the generation
size. It is possible that the default ephemeral generation size is too small and therefore a
large number of objects are migrated regardless whether they are local or remote. When
the young generation size is too small, both remote and local objects would have a very
similar chance of getting promotion. However, we can see that generation size is not a
big factor in our analysis. As clearly shown in Figure8, given the same allocation space,
remote objects are likely to live longer than local objects.

Figure 7: Allocation distribution of remote and local objects in singleton model with 60
clients.

Figure 8: Lifespan comparisons between local and remote objects in three activation mod-
els.

To compare the lifespan of remote and local objects, we focus on the amount of sur-
vived objects during ephemeral collections. Figure8 compares the amount of survivors
based on the young generation occupancy (Lo andRo) in single-call, singleton, and hybrid
activation models. The X-axis represents the amount of space allocated, in K-bytes, prior
to each ephemeral garbage collection. The Y-axis represents the percentage of survived
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objects. Since we recordLo, Ro, Lm, andRm before and after each ephemeral GC, we
can compare the survival ratios based on the amount of object allocated. When the num-
ber of simultaneous clients are 1 and 15, the experimental results indicate that the lifespan
of remote objects is longer than that of local objects. When we increase the number of
simultaneous clients to 30 and 60, it is conclusive that the lifespan of remote objects is
much longer than that of local objects. In the majority of ephemeral garbage collection
invocations, over 40% of the remote objects survive. On the other hand, very few GC
invocations indicate the survival rates to be above 40% for local objects. It is worth not-
ing that isolated data points in cases of 60 clients (e.g. between 1,500 and 2,000 K-bytes
in singleton) are the result of ephemeral space enlargement performed by the SSCLI to
accommodate heavier workload. The actual enlarged heap size was previously presented
in Figure5.

Figure9 shows the percentage of total ephemeral garbage collections that results in
more than 40% survival rate for local and remote objects. In case of singleton model with
60 clients, there are 15 ephemeral collections. Out of these 15, there is one collection
in which 40% of local objects still alive and there are nine collections in which 40% of
remote objects still alive. In other words, only in 6.67% of the total ephemeral collections
that local objects have 40% survival rate. However, 40% survival rate for remote objects
happen in 60% of the total ephemeral collections.

Figure 9: Percentage of ephemeral collections that results in over 40% survival rate.

From our experimental results, it is clear that remote objects are long-lived. Therefore,
the garbage collector will be likely to spend additional time and resources to promote
these long-lived remote objects.

6 FUTURE WORK

This paper represents one of the first attempts to study object behavior in distributed
Object-Oriented applications. Based on the experimental results, we can see that remote
objects have different lifespan compared to local objects. For this experiment, we use
our micro-benchmark that can be configured to use different object activation modes and
support various number of concurrent clients. For future work, we will create a set of
benchmarks that performs more complex functions and utilizes more advanced threading
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techniques (e.g. thread pool for work delegation). As stated earlier, there is presently no
standardized benchmarks for remoting.

In this paper, we demonstrate that remote objects tend to be long-lived. In the fu-
ture, we will experiment with various optimization techniques to improve the efficiency
of generational garbage collection. For example, adaptive and dynamic pretenuring [1]
can be used to directly create remote objects in the mature generation. We will also ex-
periment to manage remote objects separately. In addition, our results clearly indicate
that workload can greatly affect the object creation and garbage collection. We plan to
investigate different algorithms that would pre-enlarge the heap during the thread creation
or thread join; moreover, we plan to investigate the amount of objects shared by multi-
ple threads in distributed applications. If very few objects are shared, it is possible to
improve the performance by adopting algorithms such as thread specific and thread local
heaps [5, 30].

7 CONCLUSION

Based on the experimental results, remote objects in distributed applications have much
longer lifespan than that of local objects. We determine the lifespan of each object type by
comparing the amount of survived objects given the same amount of allocation space. We
find that in most instances, local objects rarely have survival rates of more than 40%. On
the contrary, remote objects constantly maintain the survival rates of 40% or more. We
conclude that a typical generational collector, such as the one in the SSCLI, would lose
its efficiency in a distributed environment because more time will be needed to promote
the long-lived remote objects.
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