
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 4, May-June 2005

Cite this article as follows: Luigi Lavazza and Alberto Agostini: “Automated Measurement of UML
Models an open toolset approach”, in Journal of Object Technology, vol. 4, no. 4, May-June 2005,
pp. 115-134. http://www.jot.fm/issues/issue_2005_05/article2

Automated Measurement of UML Models:
an open toolset approach

Luigi Lavazza, CEFRIEL and Politecnico di Milano
Alberto Agostini, Link snc, Corsico

Abstract
The Unified Modeling Language (UML) is the de facto standard language for modeling
object-oriented software systems. As the importance of UML within organizations
increases, the need for measuring UML models arises. This paper describes a UML
measurement tool that not only fully supports the measurement of models according to
the most popular metrics definitions, but also provides an open measurement base
supporting user-defined metrics, unforeseen analysis, and process measurement.

1 INTRODUCTION

Modeling is playing an increasingly important role in the development of object-oriented
software. In particular UML is becoming extremely popular as a modeling language for
object-oriented systems. In order to manage the development process it is of crucial
importance to be able to derive accurate quantitative knowledge from the software
artifacts. In particular, in the early stages of development the UML models should be
measured in order to provide project managers with the information needed to take
management decisions. Several object-oriented metrics proposed for code are applicable
to models too (possibly with minor adjustments). Thus it is reasonable to expect that
measurement of models anticipates some knowledge concerning the implementation
phase. This is a very relevant issue, since management decisions could be based on data
that are available earlier than code measures, and yet are both objective (as they are
derived from the models according to well defined measurement rules) and reliable (as
the models determine to a large extent how the system will be implemented). Since in
industrial software development processes it is not viable to derive measures manually,
the measurement process must be automated, in order to guarantee efficiency and
reliability.

This paper describes a tool that automates the measurement of UML models, and
derives the quantitative information needed for technical and managerial purposes. Note
that here we consider only the issue of measuring models in an automatic way; discussing
the usage of the automatically derived measures is out of the scope of the paper.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_05/article2

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

116 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

Requirements for a tool supporting the measurement of UML models

Based on our experience, a tool supporting the measurement of UML models should
satisfy the following requirements.

• It should be possible to measure UML models regardless of the CASE tool used
to edit them. Therefore, a first very practical requirement is that the measurement
tool has to be independent form the CASE tool used to build the models. An
effective way to pursue this objective is to rely on a unique file format directly or
indirectly supported by all the UML CASE tools.

• There is no unique suite of metrics for object-oriented models which is generally
recognized to provide a complete and satisfactory set of indicators. Actually, since
measurement is a typical goal-oriented activity, and each developer or project
manager may have different goals, probably there will never be such a universal
UML metrics suite. Therefore it is important that a UML measurement tool be
able to support the most widely known metrics suites as well as user-defined
metrics.

• Very often a model is obtained by updating an existing model. In fact, the greatest
part of the software development effort is devoted to the maintenance (or
evolution) of existing software. In such cases, the project manager is generally
interested in a quantitative evaluation of what has been added or changed, rather
than in the absolute dimensions of the new model. Therefore, in order to
effectively support the maintenance/evolution process, a UML measurement tool
must be able not only to measure a single model, but also to measure the
difference between two versions of the same model.

• Although of great importance, models account only for a fraction of the
development process. In order to get a comprehensive insight into the process, the
process owner usually needs to analyze the measures of different kinds of
artifacts, including models as well as code, problem reports, etc. Therefore, a tool
supporting the measurement of UML models should allow the user to combine
easily UML metrics with other kinds of metrics.

• A final requirement of great practical importance concerns interoperability. In
fact, the outcome of the tool should be easily usable by other tools. In particular,
users will be interested in performing statistical elaborations on the measurement
data, in providing input to estimation tools, in creating graphs and reports, etc. In
conclusion, the measurement tool should yield results in a form that is easily
usable.

The tool described in the rest of this paper satisfies all of the requirements described
above.

Structure of the paper

Section 2 briefly illustrates the object-oriented metrics that have been proposed by
various authors and constitute a basic set of metrics that should be supported by UML
measurement tools.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 117

Section 3 describes the conceptual architecture, design and implementation of our
UML measurement tool.

Section 4 illustrates how our tool can be used to collect a few of the most commonly
needed metrics.

Section 5 describes how our tool supports the measurement of variations among
different versions of UML models, thus supporting the evaluation of maintenance and
evolution activities.

Section 6 illustrates the application of the tool in an industrial development process.
Section 7 compares our work with other approaches to UML model measurement.
Finally, section 8 draws some conclusions and sketches future work.

2 OBJECT-ORIENTED METRICS

In the last decades the object-oriented paradigm has been largely employed in the
software development process. The metrics previously defined for traditional software
development techniques soon proved not applicable to the new paradigm: as a
consequence, several new metrics suites were proposed to capture the characteristics of
object oriented models and code. A quite comprehensive survey, analysis and explanation
of the numerous object oriented metrics proposed in the literature can be found in
[Purao03].

The metrics applicable to UML models are primarily those proposed for evaluating
object-oriented designs. In fact, these metrics concern typical object-oriented features that
are common to practically all the object-oriented notations, including UML. Probably the
best known of these metrics is the suite proposed by Chidamber and Kemerer
[Chidamber94]: it includes six object-oriented metrics overcoming the limitations of the
more traditional metrics. They are:

• “Weighted Methods per Class (WMC)”: this is the number of methods per class,
weighted according to their complexity. A class having a big WMC is expected to
call for a big effort for development and maintenance, to have a big impact on
subclasses, and to be difficult to reuse. Note that often all methods of a class are
considered to be equally complex: in these cases the value of WMC represents the
number of methods of the class.

• “Depth of Inheritance Tree (DIT)”: it is the distance of the class from the root of
the inheritance hierarchy. A high DIT implies that a big number of properties are
inherited, therefore the behavior of the class is largely affected by its ancestors,
and it will be probably difficult to evaluate.

• “Number Of Children (NOC)”: it is the number of classes that inherit directly
from the considered class. A big NOC indicates a large reuse of the class.

• “Coupling Between Object classes (CBO)”: it is the number of classes which the
considered class is coupled with. “Coupling” generally means that a class depends
on another class, e.g., because it uses the other’s properties. A high CBO indicates
little modularization. The consequences are a higher sensibility of the class to
changes in other classes, and more complex testing.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

118 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

• “Response For a Class (RFC)”: it is the number of methods (both internal and
external) that can be invoked in response to a message directed to a class instance.
It is a measure of the complexity of the class in terms of communications with
other classes. It is expected that the difficulty of managing classes (in terms of
development, debugging, etc.) is somehow proportional to the RFC.

• “Lack of COhesion in Methods (LCOM)”. It is defined as the number of methods
pairs that access non overlapping sets of properties minus the number of methods
pairs that access overlapping sets of properties (the metric is set to zero whenever
the above subtraction is negative). Cohesiveness of methods within a class is
considered desirable, since it promotes encapsulation. Low cohesion means that a
single class collects the properties that should be better located into two or more
subclasses. This increases complexity, thus increasing the likelihood of errors
during the development process.

Chidamber and Kemerer defined their suite of metrics for a generic object-oriented
design framework, thus it is quite easy to redefine them in terms of elements of the UML
(or, more specifically, in terms of the metamodel of UML, as discussed in section 3).

Chidamber and Kemerer’s metrics are by far the most widely known and used, since
they incorporate the most important concepts that can be adopted to derive object-
oriented quality indicators. For instance, correlations of Chidamber and Kemerer’s
metrics to fault-proneness [Basili96] and managerial indicators [Chidamber98] have been
studied. However, several other metrics have been proposed [Cartwright00, Kim02,
Lorenz94]. In particular, the metrics proposed by Cartwright and Shepperd are interesting
because they involve the measurement of UML state diagrams. In fact, they include the
measure of the number of states per class and the number of events that affect the
behavior of each class. In particular, Cartwright and Shepperd found a strong linear
relationship between the size of a class in terms of LOC and the number of states per
class. This is an interesting result because several prediction models use LOC size as the
main independent variable.

We provided our tool with built-in support of a set of metrics which includes most of
the Chidamber and Kemerer’s metrics as well as Cartwright and Shepperd’s metrics.
However, this choice does not represent a commitment to these metrics, since the
openness of the tool allows the user to easily extend the set of supported metrics (as
discussed in section 3).

We decided to measure only class and state diagrams, because these are generally
reported as the sources of the most relevant indications concerning the qualities of the
object-oriented models. This must not be regarded as a big limitation, since it is possible
–with a little of coding– to extend our approach to the measurement of the other diagrams
of a UML model.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 119

3 DESIGN AND IMPLEMENTATION OF A TOOL AUTOMATING
THE MEASUREMENT OF UML MODELS

The definition of UML by the Object Management Group [OMG03] includes a precise
definition of the metamodel of the language. The metamodel describes the syntax and –to
some extent– the semantics of UML models. For instance, the UML metamodel defines
the concepts of package, class, attribute, etc; it states that a class includes attributes and
methods, that associations can be established between classes, etc. The structure of a
given UML model always conforms to the metamodel: therefore a measurement tool has
to extract from the model the information conforming to the metamodel and derive the
required indicators.

In order to read the information contained in the model it is preferable to access a
textual version of the model, so that it can be analyzed (and interpreted) according to the
meta-model. Luckily, the OMG has established a standard for the representation of UML
models. This standard, called XMI (for XML Metadata Interchange [OMG00]), specifies
how to represent a UML model in a way that is both XML-compliant and conformant to
the UML metamodel. XMI allows different tools to exchange UML models using a
common format: in fact, most UML editors are now equipped with facilities to convert
UML models from their proprietary format into XMI.

The availability of UML models in XMI format is a great opportunity for the
purpose of measuring UML models: in fact XMI files contain all the relevant information
to be measured, conforming to the metamodel, and independent from the tool used to
generate the model.

Exploiting XMI not only allows us to comply with the first of our requirements
(independence from the UML tool), but also eases the development of the tool. In fact we
identified two rather straightforward ways for implementing our UML Model
Measurement Tool (UMMT):

1. One possibility is to store the contents of the given XMI file into a XML
database. Measures can then be obtained by querying the database. Native XML
databases and XML query languages are appearing, thus making this approach
viable.

2. An alternative approach exploits the fact that XMI is a “specialization” of XML.
Being XML a widely popular standard format, several utilities to parse XML
files are available. By means of such utilities it is very easy to build an abstract
representation of the input file (i.e., of the given model). The abstract
representation can then be visited as required in order to compute the target
metrics.

We chose an implementation strategy that is a sort of trade-off between the two
approaches described above. We decided not to use XML databases because of two main
reasons: they are not yet a mature technology, and they do not guarantee a level of
interoperability with other tools as do –for instance– relational databases. Instead, we

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

120 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

retained the idea of storing the relevant contents of a model into a database, and to
perform measurements by means of suitable queries. The logical structure of the UMMT
is illustrated in Fig. 1. The organization of the tool has several advantages:

1. Using XMI files as input makes the tool independent from the source of the
models.

2. XMI files can be parsed very easily by means of the available utilities originally
developed to deal with XML files.

3. The UML metrics most commonly used do not consider the whole given model:
generally only the class and state diagrams are subject to measurement. Our tool
performs a selection of the contents of the model, and stores them in a relational
database. Dealing with a smaller amount of data makes the following
measurement activities faster.

4. The schema of the database is defined very simply after the metamodel.
5. Measurement is performed by running queries on the contents of the database.

We defined queries corresponding to the most common UML metrics: these
queries are ready to be executed by the user. In case the user needs other kinds
of metrics, he/she has simply to define the corresponding queries.

6. Measures can be stored in the database as well. Thus it is very simple to produce
reports, to export data towards other tools, or to let other tools retrieve the
needed data from the DB.

UML modeler

Model (XMI)

UMMT

Model data

Project manager
DBMS

measures

query

class and
state diagrams

Fig. 1. The logical structure of the UML measurement tool.

In order to define new metrics the user has to know the schema of the database
implementing the metamodel. This is not difficult, as the metamodel has been suitably
simplified (see Fig. 2 and Fig. 3), and the conceptual schema of the database is a plain
transposition of the metaschema itself. Given the complexity of UML, and in particular
considering the number of diagrams contained in a UML model, it is possible that the
user conceives metrics that our current implementation does not support, e.g., to count
use cases. In such a case, the user should modify the UMMT itself in order to extract the
required data. This is not a difficult task for people mastering XML.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 121

Our approach requires that we define a (relational) database which is suitable for
storing UML model data, i.e., data that comply with the definition of the UML
metamodel. Therefore we designed a database having such features: the metamodel is the
conceptual schema of the database, while the logical schema is obtained applying the
usual normalizations, optimizations, etc. The only relevant limit of our database with
respect to the ability to represent UML models is due to the fact that we implemented
only a subset of the UML metamodel, since we are not interested in all the data contained
in the source models. In particular, we tried to achieve a trade-off between efficiency and
content: on one hand we wanted to feed the database with as little information as
possible, on the other hand all the information required to compute the most common
metrics should be present. As a result, we selected the following elements for inclusion in
the simplified metamodel:

• packages, together with containment relations;
• classes, with the indication whether they are abstract or not, and the package they

belong to;
• interfaces, together with the indication of the associated package or class;
• attributes of a class, with their type and visibility (public, protected or private);
• methods of a class, with their signature and visibility (public, protected or

private);
• realization relations (as they are useful to specify how an interface is

implemented);
• associations between classes and/or interfaces, with the indications whether they

are aggregations or compositions;
• dependency relation between classes, interfaces and packages;
• generalizations relations.

From state diagrams we selected states and sub-states (together with their inclusion
relations), transitions, and the associated triggering events, conditions and actions.

We specified the simplified metamodel by means of Entity/Relationship diagrams.
Fig. 2 and Fig. 3 represent the metamodel concerning the structural part of UML (class
diagrams) and the statecharts, respectively.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

122 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

interface

Method

Argument

Project

id

id

id

id name

name

name

id_type

0..1

0..n

0..n

0..n

1..1

1..1

visibility

abstract
id_result

id name

Package

Class

Attribute

id name visibility

id_type

0..n

1..1

0..n

0..1

abstraction

0..n

0..n

id name abstract level

0..n

0..1

uuid

Datatype

1..1

0..n

name1..1

0..n

id

name

id_parent

0..n
1..1

Fig. 2. Simplified metamodel of UML class diagrams.

Class State_diagram

State

Superstate

id id id

id name

name name

type (normal, init, final)

… …

1..10..n 0..n

0..n0..n

1..1

1..1

0..1

Fig. 3. Simplified metamodel of UML state diagrams.

Note that to make the figures readable we omitted a few elements that are actually present
in our metamodel:

• in the structural part we have also associations, aggregations, compositions, as
well as dependency relations (among classes, interfaces, etc.) and generalizations;

• in the statechart part we have also transitions, with the indication of triggering
events, conditions, and associated actions.

The complete logical schema of the database is not reported here for space reasons. It can
be found in [Agostini03].

The tool was implemented in Java, in order to assure portability to different
environments. The Database Management System employed is MySQL [MySQL]. It was
chosen because it is open source and sufficiently reliable and fast. The UML Model

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 123

Measurement Tool interfaces with the data-base by means of a module that can be easily
reconfigured in order to use a different DBMS supporting standard SQL.

The main component of the tool is the one that reads XMI files, extracts the relevant
information and populates the database with such information. The XMI parser is based
on the well-known Xerces library for XML [Xerces].

4 PERFORMING MEASURES

As already mentioned, measures are obtained by querying the database. For instance, in
order to get the number of classes contained in a model, one has to perform the following
query:

SELECT count(*)
FROM Class
WHERE id_project=@prj

Although the logical schema of the database was not reported here, the reader can easily
understand the details of the queries. For instance in the query above id_project is an
attribute of table Class identifying the project which the class belongs to. @prj is a
variable whose value must be set to the identifier (named uuid) of the project we are
interested in.

The concept of project corresponds to the concept of model. We used the term
“project” to stress that in a single database one can collect data from models belonging to
different systems (or projects). The list of projects contained in the database can be
obtained as follows:

SELECT name, uuid
FROM project

As an example of metrics belonging to the Chidamber & Kemerer suite, let us consider
the Number Of Children (NOC) and the Depth of Inheritance Tree (DIT).

The NOC of the class identified by @id_class in a project identified by @proj is
computed as follows:

SELECT count(*)
FROM generalization
WHERE id_project=@prj AND parent=@id_class

where generalization is a table that contains four attributes:
• id: the unique identifier of the relation;
• descendant: the identifier of the subclass in the generalization hierarchy;
• parent: the identifier of the superclass in the generalization hierarchy;
• id_project: the uuid of the project.

The DIT of the class identified by @id_class in a project identified by @proj is
computed as follows (level is an attribute of table Class that represents the distance
from the root class in a generalization hierarchy):

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

124 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

SELECT level
FROM Class
WHERE id=@id_class AND id_project=@prj

More complex metrics can be computed as well: for instance, the following query
computes how many classes do not belong to a generalization hierarchy (in a given
project):

SELECT count(*)
FROM Class
WHERE id_project=@prj
 AND level=0
 AND id NOT IN (SELECT parent
 FROM generalization
 WHERE id_project=@prj)

On the contrary, the following query computes how many classes are root of a
generalization hierarchy (in a given project):

SELECT count(*)
FROM Class
WHERE id_project=@prj
 AND level=0
 AND id IN (SELECT parent
 FROM generalization
 WHERE id_project=@prj)

As an example of metrics concerning the state diagrams, consider the query that counts
the number of states (excluding initial and final ones) of a class identified by
@id_class in project @prj:

SELECT COUNT(*)
FROM State s, State_diagram d
WHERE d.id_class=@id_class AND s.id_diagram=d.id
AND s.type='normal' AND s.id_project=@prj AND d.id_project=@prj

5 MEASURING VARIATIONS OF UML MODELS

The importance of measuring variations of UML models can be understood by means of
a very simple example. Suppose that version n of a given UML model contains 100
classes. Version n+1 of the same model contains 110 classes. Since version n+1 was
obtained by modifying version n, the new measure does not provide a representation of
the work done (and –worse– of the work still to be done in the following implementation
and test phases). In fact, both of the following cases are possible:

a) in the new version, 10 new classes were introduced, while the former 100
remained unchanged;

b) the new version was obtained by dropping 20 classes, modifying other 25 classes,
and introducing 30 new classes.

It is quite clear that in case b) we expect that the development effort will be much greater
than in case a). Similarly we expect that more defects will be introduced, and therefore

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 125

more testing effort will be required. In order to deal with this kind of evolution-oriented
development we need to measure the differences between the two versions. In fact, we
expect that the development effort will be proportional to the number of new and
modified classes (with possibly some contribution from the deleted classes too).

The measurement of differences is a feature of fundamental importance, since it can
provide indicators that are essential to assess relevant features of the product or process.
For instance, the variance of the changed (added or updated) classes in a specification
model indicates the stability of requirements.

Given the structure of UMMT, the measurement of differences between model
versions is achieved quite simply: we load the database with data coming from two
different versions, making sure that every piece of data is associated with an identifier of
the version it belongs to. Then it is quite straightforward to write queries that take into
account version identifiers and measure differences. For instance it is possible to subtract
the set of classes belonging to version n from the set belonging to version n+1, thus
obtaining the set of new classes. The process is illustrated in FFig. 4.

UML modeler UMMT

Model data v. n

Model data v. n+1

Project manager
Query engine

UMMT
DBMS

Delta
measures

query

Model
versions

(XMI)

Model data v. n+i

F
Fig. 4. Measurement of UML model evolution.

Technically, the idea is implemented as follows. We exploit an identifier, called uuid,
which is present in every XMI file. For instance, the following XMI fragment specifies
that the uuid of the model is “S.11”:

<XMI.content>
 <Model_Management.Model xmi.id="S.100050" xmi.uuid="S.11">

If the UML editor does not manage the uuid in an effective way, it is possible to edit the
XMI file by means of a text editor and change the uuid. For instance, we could set
xmi.uuid="S.1.version2". The uuid is thus naturally part of the XMI file. We just
need to load this piece of information in the database. Then we can set variables v1 and
v2 with the uuids of the considered versions:

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

126 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

SET @v1='S.1'
SET @v2='S.1.version2'

Now it quite easy to find the classes that are in model v2 and not in v1:
SELECT name FROM Class
WHERE id_project=@v2
AND name NOT IN (SELECT name
 FROM Class WHERE id_project=@v1)

Actually the former query finds the classes whose name appears in v2 and not in v1. In
fact, whenever two elements of the model have to be compared, we need a criterion to
perform the comparison. It is the user who has to decide whether simple criteria (like the
comparison of names) are suitable, or more complex queries are needed. The tool
supports metrics based on both simple and complex comparison criteria, the only
constraint being that the criterion must be expressible by means of a query.
A final remark concerns the process to be used for managing models and measures. Since
the database will generally contain data from several model versions, it is advisable that a
configuration management system is used to track the association of models with related
data. In particular, the user must make sure that for every model version the uuid is
univocally defined.

6 A MEASUREMENT PROCESS SUPPORTED BY UMMT

We tested UMMT by measuring several models developed both by means of Rational
Rose [Rose] and Argo/UML [Argo/UML]. In particular, we measured the model of a
library management program that we use as an example when teaching UML. The model
is not reported here for space reasons.

Fig.5 shows the screen of the MySQL Control Center being used to write and
execute measurement queries on the database containing the relevant information
extracted from the model by means of UMMT.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 127

Fig. 5. Measurement of the model by means of MySQL Control Center.

In particular, in the background of it is possible to see the list of tables belonging to the
umldb database: table “classe” 1 is selected and its definition appears in the right hand
side of the window. Two query windows are also visible: the window on the left reports
the list of the classes belonging to the model, while the window on the right shows both
the definition and the result of the query. The definition of the shown query is

SELECT livello, COUNT(nome)
FROM classe
WHERE id_progetto=“3FE21B8E034E”
GROUP BY livello

It counts the classes at the same level (‘livello’ in Italian) of the generalization hierarchy.
It is possible to see that in the examined model we have 16 root classes and 7 classes that
are children of root classes. No classes are at levels greater than 1.

In order to assess the suitability of UMMT to support real and demanding
development processes, we employed the tool in a project carried out in the Mobile
Communication department of a big telecom company. The object of the measurement
activity were three versions of the models of a GSM network management system. The
size of the models ranged from 4312 to 5029 classes [Denaro03].

1 Currently the schema of the database employed in the UMMT is written in Italian. The terms “classe”, “livello”,
“nome”, “id_progetto” mean, respectively, “class”, “level”, “name” and “id_project”. The translation of the schema
into English is in progress.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

In this case, the process owners were not interested only in the measures of the
models; they also wanted to explore the relationships between the measures concerning
the models and the measures of the corresponding C++ code. It must be noted that while
the UML models could be adequately characterized by a suitable subset of the
Chidamber&Kemerer metrics already supported by the UMMT, such metrics were not
sufficient to fully characterize the C++ code. In fact, the process owners indicated
explicitly that they were interested in the widest possible set of metrics, including both
the Chidamber&Kemerer metrics and more traditional ones, namely LOCs and
cyclomatic complexity.

In order to extract the required measures, the measurement process was organized as
illustrated in Fig. 6. The C++ code was measured by means of a commercial tool. In
particular, every C++ versioned file was measured. In order to perform analyses
involving both the measures of the models and the measures of the code, we loaded the
latter into the UMMT database. In this case, the openness of the UMMT played an
important role, as we were able to load the UMMT database with the data provided by the
C++ measurement tool with minimum effort. Also writing queries to combine the model
and code measures was relatively straightforward.

UML modeler UMMT

Model data v. n

Query engine

UMMT
DBMS

Composite
model/code
measures

query

Model
versions

(XMI)
Model data v. n+i

Code
version k

(C++)

Code data v. k

C++ measu-
rement toolProgrammer

Project manager

Code
measures

Fig. 6. Comparison of model and code measures.

The UMMT worked quite satisfactorily, and its outcome was useful to study both the
relations existing between different versions of the models and between models and the
corresponding code. As an example, Fig. 7 reports the comparison of the number of
methods per class in two model versions, considering only classes present in both
versions. These data were obtained easily from the UMMT.

AUTOMATED MEASUREMENT OF UML MODELS: AN OPEN TOOLSET APPROACH

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 129

Fig. 8 reports the comparison of the number of methods per class, considering
classes present in both the model and the corresponding code. These data can be obtained
combining the measures performed by the UMMT with the measures obtained from an
external C++ measurement tool.

-10

0

10

20

30

40

50

UML model v. 6.01 UML model v. 6.02
Fig. 7. Number of methods per class: comparison

of versions 6.01 and 6.02.

UML model v. 6.01 Code v. 6.01

-5

0

5

10

15

20

25

30

35

Fig. 8. Number of methods per class: comparison
of model and code measures, version 6.01.

The experience briefly sketched above was useful to confirm the effectiveness of UMMT
(the tool was able to measure models including thousands of classes in a very reasonable
time). Moreover, we were able to appreciate the flexibility provided by the openness of
the measures database. In fact, we were able to load the UMMT database with all the
needed data –which involved extending the schema of the database suitably– and, more
important, we could write ad-hoc queries to perform the computations involving the C++
measures.

7 RELATED WORK

Several tools for the measurement of UML models are able to analyze only the models
produced by a specific UML editor. For instance:

• Fast&Serious [Carbone02] automatically extracts data about the project under
analysis from Rational Rose. After data about a project has been extracted from
UML diagrams, a measurement process is applied that computes for each class a
size estimation, which in its turn is used to estimate the development effort.

• UMP (UML Metrics Producer) [Kim02] was developed on top of Rational Rose
using its BasicScript language. It computes a set of software metrics (partly
defined ad-hoc) that are used to predict various characteristics of the software
product in the early stages of the life cycle.

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

Both of these tools can be applied only to Rose models; they do not allow the user to
specify new metrics (unless by re-programming the tools) and do not take into
consideration the measurement of variations.

Objecteering/Metrics is a module of the Objecteering UML modeling tool that can
be used to derive metrics from a UML model built with Objecteering [Objecteering]. The
metrics collected are the usual counting metrics (e.g., number of classes, methods, etc.)
and a set of quality metrics (mainly similar to those proposed by Chidamber and
Kemerer). The tool does not allow the user to define new metrics. Similarly, it does not
support the comparison of different model versions.

Metrics from XMI [Paterson02] is a Java applications that derives object-oriented
metrics from the XMI representations of UML models. However, the tool has severe
limitations with respect to the requirements stated in Section 1: it does not support the
measurement of variations, it does not support measurement of state diagrams, it does not
allow the user to define new metrics, and it does not export the results of measures in
easy-to-use formats.

SDMetrics [SDMetrics] is a quite mature tool that supports the measurement of
several UML diagrams, including activity diagrams and use cases. It even supports the
measurement of differences between two versions of UML models.

SDMetrics shares several features with UMMT, for instance it also derives object-
oriented metrics from the XMI representations of UML models. The main drawback of
SDMetrics with respect to UMMT is that it is not as open. In particular, the measures
repository is not directly available to the user. This limits the usability of the tool in
several respect. For instance, with SDMetrics it is only possible to compare two versions
of a model. Computing the average and the standard deviation of the increment in classes
among several successive versions of a model is not possible. Similarly, analyzing
measures of models and code together is not possible. For this purpose, the suggestion
from the developer of SDMetrics is to reverse-engineer the code into a UML model, and
then measure this model. In this way, however, some of the most interesting
characteristics of the code (e.g., LOCs, cyclomatic complexity, etc.) are lost.

Actually SDMetrics allows the user to export measures in several formats, so that it
is possible to load an external database with model data from SDMetrics and code data
from some other tool. However, in this way the “real work” is carried out of SDMetrics.

In conclusion, we believe that UMMT is a step forward with respect to the existing
tools. SDMetrics is probably a better choice than UMMT for routine work. However,
when specific needs arise, requiring to handle more data than SDMetrics can manage, as
in the cases described in Section 6, the openness of UMMT –e.g., the possibility to
extend the schema of the database, to write new queries, and even to write programs that
interface with the UMMT database–is a clear advantage. For instance, since the
relational calculus is not computationally complete, it is clearly possible to devise metrics
that cannot be expressed by means of queries. In order to perform this kind of metrics a
program interfaced with the database is needed: with our approach writing such program
is possible and relatively easy.

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

8 CONCLUSIONS AND FUTURE WORK

In the introduction we reported the requirements for a UML measurement tool:
• Independence form the tool used to build the models.
• Support of user-defined metrics.
• Measure the differences between versions of the same model.
• The combination of UML metrics with other kinds of metrics should be possible,

in order to support the measurement of the artifacts produced in the various
phases of the development process.

• Interoperability: the outcome of the measurement tool should be usable by other
tools, e.g., tools performing statistical analysis.

UMMT, the tool described in the paper, satisfies all of the requirements described above.
UMMT is built according to a flexible, open approach, based on two steps: first the
relevant data concerning a model are retrieved from the model itself and loaded into a
database, then measures are derived by querying the database. This approach allows the
user to load data concerning different versions of the model, and even data concerning the
code, and then measure differences, similarities, and whatever property is considered of
interest. UMMT is going to be released under the GPL license. Currently we are
preparing the distribution package and writing some the documentation.

Future work

In Section 6 we have shown that the proposed approach can be applied to compare a
model with the corresponding implementation code. However, in Section 6 we adopted
an ad-hoc approach, employing an external tool for code measurement, and importing the
results in the UMMT database. This process required –beside acquiring a measurement
tool– to extend the schema of the database and to write some additional queries.

Since most of the measures of the code have the same meaning and definition of
those derived from UML models, we can aim at a tighter integration of code
measurement in the UMMT. In particular, it is possible to conceive a common meta-
model that applies both to object-oriented models and code: therefore it would also be
possible to write the corresponding database schema that makes it possible to manage in
an integrated way both code and model measures. This integrated approach is illustrated
in Fig. 9 (in the figure only Java is mentioned, but the approach can be applied to object-
oriented code in general). Note that since there is a unique meta-model for code and
models, a unique version of UMMT is able to handle both code and models. This new
UMMT does not need to be dramatically different from the current one, e.g., object-
oriented code can be represented by means of XML, much like UML models. Tools that
convert Java code into XML are already available [BeautyJ], therefore we could exploit
them to get a representation in XML of the Java code. Then we should just enhance

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

UMMT to analyse XML files and load the database with the required information. The
same queries that are applied to the model data could be applied to the code data,
implementing the same measures. The realization of such a tool is among our future
objectives.

UML modeler UMMT Model data v. n

Query engine

UMMT
DBMS

Composite
model/code
measures

query

Model
versions

(XMI)

Model data v. n+i

Code
version k

(Java)

Code data v. k

Java to XML
conversionProgrammer

Project manager

Code
version k

(XML)

Fig. 9. UMMT for model and code measurement.

Finally, if the usage of UMMT will indicate the necessity of analyzing additional
elements of UML models (e.g., use cases), we shall enhance the tool in order to read from
XMI files the needed data, and load them in the measurement database. In particular we
shall consider the possibility of defining and supporting measures covering OCL: this
could be useful to support measures concerning requirements and design for testing,
where OCL is most often employed.

REFERENCES

[OMG03] OMG Unified Modeling Language Specification Version 1.5, March 2003,
formal/03-03-01. http://www.omg.org.

[OMG00] OMG XML Metadata Interchange Specification Version 1.1, November 2000.

[Agostini03] Alberto Agostini: Uno strumento per la misurazione di modelli UML,
Tesina di Laurea, Politecnico di Milano, July 2003 (in Italian).

http://www.omg.org

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

[Chidamber94] S.R. Chidamber and C.F. Kemerer: “A Metric Suite for Object-Oriented
Design”, IEEE Trans. Software Eng., vol.20, no.6, pp.476-493, June1994.

[Cartwright00] M. Cartwright and M. Shepperd, “An Empirical Investigation of an
Object-Oriented Software System”, IEEE Trans. Software Eng., vol.26, no.8,
pp.786-796, August 2000.

[Argo/UML] http://argouml.tigris.org/

[Rose] http://www.rational.com/products/rose/index.jsp

[Carbone02] M. Carbone and G. Santucci: “Fast & Serious: a UML Based Metric for
Effort Estimation”, 6th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, June 11th, 2002.

[Kim02] H. Kim, C. Boldyreff: “Developing Software Metrics Applicable to UML
Models” , 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering, June 11th, 2002.

[SDMetrics] http://www.sdmetrics.com

[Paterson02] T. Paterson: Object-Oriented Software Design Metrics from XMI MSc
Dissertation, Heriot-Watt University, 2002.

[Objecteering] http://www.objecteering.com

[Lorenz94] M. Lorenz and J. Kidd: Object-oriented Software Metrics, Prentice-Hall
Object Oriented Series, 1994.

[MySQL] http://www.mysql.com/

[Xerces] http://xml.apache.org/#xerces

[Purao03] S. Purao and V. Vaishnavi: “Product Metrics for Object-Oriented Systems”,
ACM Computing Surveys, vol. 35, no. 2, pp. 191–221, June 2003.

[Basili96] V.R. Basili, L.C. Briand and W.L. Melo: “A validation of object-oriented
design metrics as quality indicators”, IEEE Transactions on Software
Engineering, vol. 22, no. 10, pp.751-761, 1996.

[Chidamber98] Chidamber, S.R., Darcy, D.P. and Kemerer, C.F. “Managerial use of
metrics for object-oriented software: and exploratory analysis”, IEEE
Transactions on Software Engineering, 24, n. 8, 1998, pp.629-639.

[BeautyJ] http://beautyj.berlios.de/

[Denaro03] G. Denaro, L. Lavazza and M. Pezzè, “An Empirical Evaluation of Object
Oriented Metrics in Industrial Setting”, The 5th CaberNet Plenary Workshop,
Porto Santo, Madeira Archipelago, Portugal, November 2003.

http://argouml.tigris.org/
http://www.rational.com/products/rose/index.jsp
http://www.sdmetrics.com
http://www.mysql.com/
http://xml.apache.org/#xerces
http://beautyj.berlios.de/

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 4

About the authors
Luigi Lavazza received his Dr. Eng. degree in Electronic Engineering
from Politecnico di Milano in 1984. He is currently an assistant
professor at Politecnico di Milano, Dipartimento di Elettronica e
Informazione, where he carries out his research activity in the Software
Engineering group. Since 1990 he is a member of the Software
Engineering research group at CEFRIEL. Here he leads research projects

as well as consultancy activities and technology transfer initiatives.
His research interests include advanced software engineering environments, software

process modeling, assessment, improvement and measurement, and requirements
engineering. Additional information are available from http://www.cefriel.it/~lavazza,
E-Mail: lavazza@cefriel.it

Alberto Agostini received his Dr. Eng. degree in Electronic
Engineering from Politecnico di Milano in 2003. The work described
here is the subject of his Thesis. He is currently involved in the
development of application software supporting the call center of a big
telecommunication company. E-mail: albago@inwind.it

http://www.cefriel.it/~lavazza
mailto:lavazza@cefriel.it
mailto:albago@inwind.it

