
Vol. 4, No. 3
Special issue: 6th GPCE Young Researchers Workshop 2004

Identifying Variations in Mobile Devices

Vander Alves, Informatics Center, Federal University of Pernambuco, Brazil

Product lines promise to improve software quality and development productivity. A
central issue to meet this is systematically dealing with variations within products in a
certain domain. Although various techniques are available, their use is constrained by
the specific application domain. This paper presents an extractive method for handling
variation in the mobile device application domain. Being based on Aspect-Oriented
Programming and general program transformation, it offers enhanced configurability
and composability. We illustrate the approach with a game product line built with
J2ME.

1 INTRODUCTION

As software demands grow in various domains with ever-increasing quality standards
and shorter development cycles, software product lines have emerged as a promise
to not only improve quality and lower development costs, but also to reduce time-
to-market. A software product line consists of a set of products developed from the
same set of artifacts and targeted at a specific domain [2]. Indeed, by moving to
the product line approach, an organization may increase its competitiveness in a
specific domain of software development. At the same time, adopting this approach
involves both organizational and technical commitments.

At the technical level, the product line approach to software development en-
compasses the following activities: domain analysis, domain design, domain im-
plementation, and application engineering [4]. In the first three, a set of reusable
artifacts is developed; in the fourth activity, these artifacts are potentially adapted
and composed with custom-specific artifacts in building applications.

A central issue in this process is managing the communalities and the variabilities
among the products [9]. It is a non-trivial task, due to the potentially high number of
product composition instances. Indeed, to accomplish this task various techniques
at the implementation level exist [1]. Their use, however, is constrained by the
application domain.

In this context, this paper reports on-going work to define an extractive approach
for managing variability at the implementation level. It relies on a combination of
Aspect-Oriented Programming (AOP) [7] and general program transformation in
order to structure and instantiate product lines, and it aims at providing enhanced
configurability and composability in the mobile device domain.

The remainder of this paper is organized as follows. Section 2 describes the

Cite this article as follows: Vander Alves: ”Identifying Variations in Mobile Devices”, in Journal
of Object Technology, vol. 4, no. 3, April 2005, Special issue: 6th GPCE Young Researchers
Workshop 2004, pp. 51–56, http://www.jot.fm/issues/issue 2005 04/article7

http://www.jot.fm/issues/issue_2005_04/article7
http://www.jot.fm


IDENTIFYING VARIATIONS IN MOBILE DEVICES

application domain and the specific product line which is the subject of our approach;
in Section 3, we explain our method, showing how it combines AOP and general
program transformation; Section 4 evaluates the approach and discusses related
work; we conclude in Section 5.

2 DOMAIN DESCRIPTION

Game development for mobile devices is an example of a domain with business and
technical constraints for which the product line approach is likely to be suitable.
Numerous functional variations are possible on a single game type, and each game
may have to be deployed in a dozen of platforms. In addition, the development
cycle must be tuned so that short time-to-market and high quality standards are
met, since these games may be delivered in millions of devices.

We consider game development for mobile phones using J2ME’s MIDP 1.0 profile,
which is targeted at mobile devices with constrained resources, including reduced
memory and computing power, and intermittent low-bandwidth connectivity [11].
Although MIDP 1.0 is supported by a number of devices, some still make extensive
use of proprietary Application Programming Interface (API), which explores devices
enhancements, such as advanced graphics manipulation, for instance.

In our scope, we explore the platform variation arising due to use of proprietary
API. In particular, there are three platforms (PA, PB, and PC) on which the same
game GM is run (the actual names are not relevant here). PA relies solely on MIDP
1.0, whereas PB and PC rely on MIDP 1.0 and proprietary API. GM is an actual
game delivered by service carries in South America and Asia. Figure 1 illustrates
its main screen.

Figure 1: Platform variation of the GM game

52 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3



3 APPROACH

Negative Positive
Scattered Local Scattered Local

pointcut and advice inter-type declaration pointcut and advice inter-type declaration defining
with empty code defining empty method defining variation code constant or variant method

Table 1: Mapping variation type to aspect constructs

3 APPROACH

The goal is to structure a product line around GM so that it can be easily configured
for any of the platforms PA, PB, or PC . Indeed, as we discuss in Section 4, such task
could be accomplished solely with object-oriented constructs or other techniques,
but these lack enhanced composability of relevant features in this domain. In order
to accomplish this task, we rely instead on a combination of AOP and general
program transformation.

The outline of our approach is as follows: given GM in PA, we identify variation
points, optionally refactor code to encapsulate these variation points, and extract
the specialized behavior into aspects in AspectJ. The outcome is an aspect for
introducing the specifics of each platform and an abstract GM, which we refer to as
GMAbs. Figure 2 illustrates our approach.

The identification of specific variation points related to platform variation is car-
ried out manually, but this can be improved as Section 4 explains. When refactoring
the original code to extract variation, extensive use is made of Extract Method.
However, no refactoring is performed when the variation is scattered. At this point,
we create an empty aspect to which we map the extracted variation. The precise
mapping depends on the variation type and whether the variation is scattered or
not. Table 1 defines this mapping.

Figure 2: Approach outline

Essentially, if the variation is scattered, we rely on dynamic crosscutting by
using an expressive pointcut and a piece of advice with either some code (positive
variation) or none (negative variation [3]). If the variation is not scattered, we
rely on static crosscutting by using an intertype declaration defining the method
or the constant for the variation (posivite) or defining an empty method (negative
variation).

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 53



IDENTIFYING VARIATIONS IN MOBILE DEVICES

The approach is reactive and incremental: from one game in one platform, we
arrive at a product line infrastructure containing the abstract game GMAbs and two
aspects, one for customizing GMAbs back to the original platform and another for
customizing GMAbs to the new platform. From there, we apply the method once
again to add an aspect for another platform.

4 EVALUATION AND RELATED WORK

The previously described approach was applied in structuring a product line of game
GM in three platforms. We started from PA and applied the method twice in order
to develop the product line infrastructure. The motivation for applying this specific
sequence was that the development team used to develop the products in this order,
for the reason that PA uses no proprietary API, whereas the other platforms do.
However, the method can be used for other sequences as well.

Following the process in this domain, we noticed that most variation points were
considerably fine-grained and consisted of scattered method calls to proprietary API
and of different arguments being specified for drawing method calls. Indeed, only a
few variation points were coarse-grained, such as changing the type hierarchy of the
GM’s main screen class. In addition, the task of finding specific platform variation
points was performed manually. This, however, could be automated partially with
the help of aspect mining tools [6].

When extracting variant code into an aspect, either dynamically or statically
according to Table 1, we noticed that some replicated code remain in the aspects.
This is not surprising because the platforms are similar, despite their API differ-
ences. On the other hand, this suggests that some generic mechanism should be
incorporated into the approach. We might extend ours to use generic aspects [8] or
hybrid frames [10].

Furthermore, the special case of mapping scattered variation into pointcut and
advices may lead to noticeable increase in bytecode size. Since the game products
run on devices with constrained resources, this is an issue which must be addressed.
One way would be to identify more optimized pointcuts. Another possibility would
be to rely on more static approaches to handle crosscutting. To this end, we are
considering integrating the use of more general program transformation engines,
such as JaTS [12].

The reactive and incremental approach implies that the abstract product line
artifact, GMAbs, evolves whenever a new game is added into the infrastructure,
since GMAbs may have to be refactored to expose some customized behavior for
the new product. Because this happens, there might be a chance that one aspect,
customizing GMAbs for another previously incorporated game, need to be adapted.
This interference can be noticed by tools which show aspects customizing GMAbs

and could be handled semi-automatically by aspect-aware refactorings [5].

54 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3



5 CONCLUSION

Indeed, the product line infrastructure could be developed solely with object-
oriented constructs or with other techniques such as multi-paradigm design [3] or
generative programming [4], but we realized that some extensively used platform
related features, such as flipping, were considerably scattered or tangled with other
concerns in the implementation. To achieve enhanced configurability and compos-
ability, aspect-orientation was more appropriate for modeling them in the solution
space. Nevertheless, as noted previously, aspects need to be combined with param-
eterization mechanisms in order to be generic and thus foster reuse. In fact, such
combination is an instance of multi-paradigm design.

5 CONCLUSION

Structuring a product line requires more than relying on a set of techniques. A
method should be employed for this task and this depends not only on the tech-
niques, but also on the application domain. In this context, this paper has presented
on-going work to define an extractive approach for structuring a product line in the
mobile device domain. By relying on AOP and program transformation, it has
been possible to effectively and modularly factor out platform variation into aspects
and later compose them with the application core. In addition, the approach has
been applied to non-trivial real applications and suggested some points for further
improvement.

REFERENCES

[1] Michalis Anastasopoulos and Cristina Gacek. Implementing product line vari-
abilities. In Symposium on Software Reusability. ACM Press, May 2001.

[2] Paul Clements and Linda M. Northrop. Software Product Lines : Practices and
Patterns. Addison-Wesley, 2001.

[3] James O. Coplien. Multiparadigm Design For C++. Addison-Wesley, 1998.

[4] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, 2000.

[5] Oberschulte C. Hanenberg S. and Unland R. Refactoring of aspect-oriented
software. In 4th Annual International Conference on Object-Oriented and
Internet-based Technologies,Concepts, and Applications for a Networked World
(Net.ObjectDays), Erfurt, Germany, September 2003.

[6] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition
in legacy code. In Workshop on Advanced Separation of Concerns in Software
Engineering at ICSE 2001, Toronto, Canada, May 2001.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 55



IDENTIFYING VARIATIONS IN MOBILE DEVICES

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect–Oriented
Programming. In European Conference on Object–Oriented Programming,
ECOOP’97, LNCS 1241, pages 220–242, Finland, June 1997. Springer–Verlag.

[8] Günter Kniesel and Tobias Rho. Evolvable pattern implementations need
generic aspects. In ECOOP’2004 Workshop on Reflection, AOP and Meta-
Data for Software Evolution, Oslo, Norway, June 2004.

[9] Charles Krueger. Variation management for software production lines. In Pro-
ceedings of the 2nd International Software Product Line Conference, pages 37–
48, San Diego, California, August 2002.

[10] Neil Loughran and Awais Rashid. Framed aspects : Supporting variability
and configurability for aop. In International Conference on Software Reuse
(ICSR-8), Madrid, Spain, July 2004.

[11] Sun Microsystems. JSR-000037 Mobile Informa-
tion Device Profile (MIDP). World Wide Web,
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html, 2000.

[12] Federal University of Pernambuco. JaTS - Java Transformation System. World
Wide Web, http://www.cin.ufpe.br/ jats/, 2001.

ABOUT THE AUTHORS

Vander Alves is a PhD student in Software Engineering at Fed-
eral University of Pernambuco, Brazil. He can be reached at
vra@cin.ufpe.br. See also http://www.cin.ufpe.br/ vra.

56 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html
http://www.cin.ufpe.br/~jats/
mailto:vra@cin.ufpe.br
http://www.cin.ufpe.br/~vra

