
Vol. 4, No. 3
Special issue: 6th GPCE Young Researchers Workshop 2004

Code Generation From Architectural Multi-
views Description

Abdelaziz Gacemi, Département GIP, Ecole des Mines de Douai, France
Abdelhak Seriai, Département GIP, Ecole des Mines de Douai, France
Mourad Chabane Oussalah , LINA, Université de Nantes, France

The software architecture of a system defines its high-level structure, exposing its gross
organization as a collection of interacting components. It typically plays a key role as a
bridge between requirements and code. Practitioners have come to realize that having
a good architectural design is a critical success factor for complex system development.
To improve design at architectural level, we have proposed a description model based
on the view notion. Through this model, it is possible to describe both components and
connectors according to several views. In this paper, we deal with the code generation
from architectural specification obtained via our multiviews description model.

1 INTRODUCTION

To describe the software architecture of complex software systems, formal and ex-
pressive notations are needed. Architectural description languages (ADLs) have
been proposed as the answer. They provide a formal modeling notation for repre-
senting and analyzing architectural designs.

To improve architectural design, we have proposed in [2] a multiviews description
model which aims to allow the separation of concerns at software architecture level.
This separation is based on the view concept [6].

As any other modeling approach, the ultimate goal of an architectural design is to
produce the implementation from architectural description. This mapping between
the architecture and its implementation becomes more useful if the architecture de-
scription model supports advanced aspects of description like separation of concerns
in our model. In this paper, we deal with the code generation from architectural
specification obtained from our multiviews description model.

The remainder of this paper is organized as follows. Section 2 present some
related works. Section 3 gives an overview of our multiviews description model. Sec-
tion 4 demonstrates how to produce implementation-level description from architectural-
level one. Conclusions round out this paper.

Cite this article as follows: Abdelaziz Gacemi, Abdelhak Seriai, Mourad Chabane Oussalah:
”Code Generation From Architectural Multiviews Description”, in Journal of Object Technol-
ogy, vol. 4, no. 3, April 2005, Special issue: 6th GPCE Young Researchers Workshop 2004,
pp. 41–49, http://www.jot.fm/issues/issue 2005 04/article6

http://www.jot.fm/issues/issue_2005_04/article6
http://www.jot.fm

CODE GENERATION FROM ARCHITECTURAL MULTIVIEWS DESCRIPTION

2 RELATED WORK

There are three areas of related work : Architectural description, separation of
concerns, and code generation.

• Architectural description languages (ADLs) : In the past few years, ADLs
have become an area of intense research in the software architecture. A number
of ADLs have been proposed. Among the most representative ADLs, we can
enumerate Unicon [8], Wright [1].

• Separation of concerns : is a concept that is at the core of software engineer-
ing. It refers to the ability to identify, encapsulate, and manipulate those parts
of software that are relevant to a particular concern [7]. The view concept is
a very widespread form to reach the separation of concerns [6]. It appears in
various forms. Among them, we can quote Subjects Oriented Programming
(SOP) [4] and Aspects Oriented Programming (AOP)[5].

• Code generation from architectural-level specification : There are two ap-
proaches. The first one consists of a direct code generation. The ADL Unicon
[8] adopts this approach. Its compiler allow code generation from connector
abstractions. However, only set of predefined connectors are supported. The
second one consists of the use of intermediate notation, like object notation,
which is close to implementation. In [3], Garlan and al. describe principal
strategies to map architectural description into the object modeling notation
UML.

3 AN OVERVIEW OF THE MULTIVIEWS DESCRIPTION MODEL

The key concept of our description model[2] is the view concept which permit to
address only concerns that are of interest, ignoring others that are unrelated. Our
model defines a style of description organized in two stages. The first one consists
of describing, in an independent manner, the various architectural element views1.
This yields several descriptions. Each description belongs to an architectural element
view according to a given viewpoint. The second consists of describing the assembly
of the resulting views defined in the first stage. Like Wright [1], our description
model allows behavior description of architectural elements. Thus, the assembly
of the views consists of coordinating various views behaviors defined on a given
architectural element. This task of coordination is ensured by a coordinator. So,
the structure of multiviews description for components and connectors is defined by
two kinds of sections: one to describe the views and another section to describe the
coordinator.

1We employ the term ”architectural element” to indicate both components and connectors

42 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

3 AN OVERVIEW OF THE MULTIVIEWS DESCRIPTION MODEL

Views description

In the case of a component, each view is defined, on the one hand, by a set of ports
representing its interface according to a given viewpoint and on the other hand, by a
computation which provides a more complete description of what is done according
to this viewpoint.

As for a connectors, there is a difference to take into account. Indeed, a connector
has a view where it is seen as an architectural element modeling interactions between
a set of components. This view is defined, on the one hand, by a set of roles
representing its interface according to a given viewpoint. Each role defines the
behavior of one participant in the interaction. On the other hand, the view is
defined by a glue defining how the participants collaborate together to create an
interaction. However, in other views, this same connector is seen as a component
interacting with other components in order to carry out a given functionality. In
this case, a view is defined by ports and a computation.

The specification of view behavior is based on process algebras to have a formal
definition of the behavior. The behavior description of the entities constituting a
view, namely computation, port, glue and role, is similar to Wright. These entities
are first class concepts that are represented by processes. A process is, indeed, an
behavior pattern. The basic unit to specify this behavior is the event . It could either
be initied by the process, in this case the name of the event will be written with
overbar ”initiatedevent”, or observed, therefore initiated by other processes, and in
this case, the name of the event will be written without overbar ”observedEvent”.

Coordination description

In our approach, views are described in independent manner. Nevertheless, it could
exist between these views some dependencies which are not described. Those are,
in our case, of behavioral nature i.e. dependencies which relate to the behaviors
evolution of different views. This is why, we proposed to express, explicitly, these
dependencies in term of coordination. The coordination description introduces, in
our case, constraints which define a temporal order between the execution of the
various views. The coordinator behavior is specified, in our model, in term of a set
of coordination rules. Each rule specifies the two following aspects):

1. event name that is responsible for starting coordination. This event is observed
by the coordinator on observable points which are, in our case, the ports, the
roles, computations and glues.

2. coordination actions that the coordinator engages as soon as it observes this
event.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 43

CODE GENERATION FROM ARCHITECTURAL MULTIVIEWS DESCRIPTION

Example

Our example consists of “synchronous procedural call” connector, noted SPC (see
Figure 1). This connector allows a component to call a service provided by an
another component while it is charged to ensure the synchronization of this call
with other ones. One of applications of this type of connectors is to allow two
components to exclusively interact with a shared resource.

Connector SPC{

As ProcedureCallV iew :

Role Caller = call → return → Caller;
Role Definer = call → return → Definer;

Glue = caller.call → definer.call →
definer.return → caller.return → Glue;

As SynchronisationV iew :

Port Token = acquire → Token | release → Token;

Computation = token.acquire → token.release → Computation

Coordinator:

On ProcedureCallV iew.caller.call Do

SynchronisationV iew.computation.token.acquire →
ProcedureCallV iew.glue.caller.call → Coordinator

On ProcedureCallV iew.glue.caller.return Do

SynchronisationV iew.computation.token.release →
ProcedureCallV iew.caller.return → Coordinator

}

Figure 1: Communication connector with synchronization

The SPC connector can be described according to two views. The first one,
noted “ProcedureCallView” describes a basic interaction protocol (a basic method
call). According to this view, the connector has two roles, “caller” and “definer”.
The second one, noted “SynchronisationView”, shows how this connector achieves
the interaction synchronization. According to this view, this connector is seen as a
component which has a port named “Token”. Via this port, the connector acquires
a token if it is not already held by another connector and releases it afterward. Of
course, the connector remains blocked if the token is not released.

As we have mentioned it before, the description of the second view is completely
independent of the first one. It is described according to a reasoning which is
independent of that of the first view. It remains now to define coordination rules.
For this case, two rules are necessary to describe the following behavior:

As soon as the event “call” appears on the role “Caller”, the coordinator redirects
the flow of execution toward the view “SynchronisationView” in order to acquire a
token. This procedure of token acquisition involves interaction blocking as long

44 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

4 CODE GENERATION FROM MULTIVIEWS DESCRIPTION

as the token is not acquired. Once the token is acquired, the coordinator starts
again the protocol of procedural call. As soon as the coordinator intercepts the
event “return” on the “glue”, which means that the protocol ended, the coordinator
redirects execution flow toward the view “SynchronisationView” in order to release
the token. Once released, the coordinator emits the event “return” to the role
“Caller” to return result to the component connected to this role.

4 CODE GENERATION FROM MULTIVIEWS DESCRIPTION

We now define rules to produce code from a given multiviews description. We present
at first the mapping between views description and their implementations. Then,
we show how coordination can be interpreted at implementation-level.

Mapping of view description

Regarding structural aspects of description, we defined general rules to achieve the
mapping. Indeed, all design elements that are first-class entities at architectural are
also first-class entities at implementations-level. So, ports, roles, computation and
glue are mapped into classes.

In addition, a view is mapped into a composite class in order to assure that concepts
which form this view will share the same identity at implementation. The table 1
illustrates code that corresponds to the two views of the connector SPC, described
above.

As for behavioral aspects of description, the mapping strongly depends on the
behavior description semantic. As illustrates table 1, some events are mapped into
class method, e.g the event ”call”. Others are mapped into a line code, e.g ”return”.
However, the general behavior pattern for each element design is correctly mapped.

Mapping of coordination description

As we noted above, coordination is an abstract composition description. It does
not precise which mechanisms are used to compose views but it describes how to
compose views. Then, the coordination may be mapped and applied in several ways.
For example, through :

1. The use of oriented-object composition operators like composition or delega-
tion, etc.

2. The use of solution based on code weaving. This consists of the fusion of the
views code according to the coordination description. Another elegant way to
reach this goal is to map coordination rules into Subject oriented programming

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 45

CODE GENERATION FROM ARCHITECTURAL MULTIVIEWS DESCRIPTION

// The first view
class PCV{
PCV_caller caller ;
PCV_caller definer ;
PCV_caller glue;
...

}
/*--------------------------------*/
class PCV_caller{
call(){
glue = getGlue();
return (glue.call())

}
}
/*--------------------------------*/
class PCV_glue{
call(){
definer = getDefiner();
return (definer.call);
}

}
/*--------------------------------*/
class PCV_definer{
call(){
Ref = refPortConnectedToThisRole();
return (Ref.method());
}

}
/*--------------------------------*/

// The second view
class SV{
SV_token token ;
SV_computation computation
...

}
/*--------------------------------*/
class SV_token {

int acquire(){
Ref = refRoleConnectedToThisPort();
Ref.acquire();
};

int release(){
Ref = refRoleConnectedToThisPort();
Ref.release();
};

}
/*--------------------------------*/
class SV_computation {

void computation {
token = getToken();
token.acquire()
token.release()
}

}
/*--------------------------------*/

Table 1: Views at implementation-level

46 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

5 CONCLUSION

composition rules(much, override, ..) or into Aspect oriented programming
composition mechanisms (before, after, ..).

3. The use of event-based composition framework. This solution has the advan-
tage of being very close to architectural description.

Our approach is based on a code weaving. According to coordination scenario,
the producted code for the connector SPC can be written as follows:

// The SPC code
class SPC{
// all ports and roles
// declarations
...

SV_computation_glue SPC_behavior;
...

}
/*--------------------------------*/
class SV_computation_glue {
// glue after weaving with the 2nd
// view computation

// ...
void glue {
// firstly acquire the token
token = getToken();
token.acquire()
definer = getDefiner();
result = definer.call ;
// release the token
token.release()
// and return the result
return (result);
}

}
/*--------------------------------*/

Table 2: SPC at implementation-level

It is necessary that, for any mapping approach we must be able to map any coor-
dination action into implementation. Nevertheless, the mapping of view description
must not lose any information inherent in coordination description. For this reason,
we opted for direct mapping between architectural-level and implementation one.

5 CONCLUSION

In this paper, we have dealt with the mapping between multiviews description of
a given architecture and implementation. Our mapping approach is based on code
weaving and fusion. At present, we generate code in manual fashion. However, to
enable correct and consistent mapping, code generation tool is needed. This will be
developed in our future works.

REFERENCES

[1] Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon, School of Computer Science, January 1997. Issued as CMU Technical
Report CMU-CS-97-144.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 47

CODE GENERATION FROM ARCHITECTURAL MULTIVIEWS DESCRIPTION

[2] Abdelaziz Gacemi, Abdelhak Seriai, and Mourad Chabane Oussalah. Separation
of concerns at software architecture level via multiviews description. In The
2004 IEEE International Conference on Information Reuse and Integration (IRI-
2004), 2004.

[3] David Garlan, Shang-Wen Cheng, and Andrew J. Kompanek. Reconciling the
needs of architectural description with object-modeling notations. In Andy
Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified Mod-
eling Language. Advancing the Standard. Third International Conference, York,
UK, October 2000, Proceedings, volume 1939 of LNCS, pages 498–512. Springer,
2000.

[4] William Harrison and Harold Ossher. Subject-oriented programming: a critique
of pure objects. In Proceedings of the eighth annual conference on Object-oriented
programming systems, languages, and applications, pages 411–428. ACM Press,
1993.

[5] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[6] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements specification.
IEEE Trans. Softw. Eng., 20(10):760–773, 1994.

[7] H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Proceedings of the Symposium on Software Architectures and
Component Technology: The State of the Art in Software Development. Kluwer,
2000.

[8] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young,
and Gregory Zelesnik. Abstractions for software architecture and tools to support
them. Software Engineering, 21(4):314–335, 1995.

ABOUT THE AUTHORS

Abdelaziz Gacemi is a PhD student at the department of Com-
puter Science of the Ecole des Mines de Douai. His research inter-
ests are in software architecture, architectural description languages,
viewpoint-oriented description and component-based software engi-
neering. He can be reached at gacemi@ensm-douai.fr.

48 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3

mailto:gacemi@ensm-douai.fr

5 CONCLUSION

Abdelhak Seriai is currently an assistant professor in the com-
puter science department of the Ecole des Mines de Douai (France).
He obtained an engineering degree in computer science in 1994 from
Annaba university (Algeria) and a PhD in computer science in 2001
from Nantes university (France). His research interests concern
object-oriented and software component technologies. Contact him
at seriai@ensm-douai.fr.

Mourad Chabane Oussalah is a professor at Nantes University
(France) and head of the OCM group in the LINA laboratory. His
research interests are in object-oriented software engineering, soft-
ware components and software architectures. Hi is the co-author of
three books on object oriented and software component technologies.
He can be reached at oussalah@lina.univ-nantes.fr.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 49

mailto:seriai@ensm-douai.fr
mailto:oussalah@lina.univ-nantes.fr

