
Vol. 4, No. 3
Special issue: 6th GPCE Young Researchers Workshop 2004

Generative Components for Hybrid Systems
Tools

Jonathan Sprinkle, University of California, Berkeley, CA 94720, USA

Generative techniques, while normally associated with programming languages or code
generation, may also be used to produce non-executable artifacts (e.g., configuration
or toolchain artifacts). Coupled with domain-specific modeling, generative techniques
provide a way to consolidate toolchains and complex domains into a relatively com-
pact space, by providing generators that produce artifacts in the appropriate semantic
domain. This paper describes the motivation and usage of one such environment, in
the domain of hybrid systems, as well as discussion and goals for future research.

1 MOTIVATION

Writer’s block—no written progress due to lack of ideas, or difficulty in express-
ing them properly—is the most infamous affliction for writers of all kinds; poets,
journalists, fictionalists, and computer scientists. Faced with a blank screen in a
programming IDE, even the most seasoned programmer can be overwhelmed with
the design and implementation possibilities of the final system—assuming that the
programmer correctly understands what the final system should do!

While providing a programmer with a general-purpose tool that can be useful
when solving many different types of problems, such power and flexibility also means
that the space of all possible solutions is dramatically increased. This makes design
difficult for programmers without experience, since they lack the knowledge of best
practices; i.e., they may know exactly what they want to say, but have absolutely
no idea how to say it.

When considering the latter problem (difficulty encoding knowledge), the main
issue that of the overwhelming possibilities provided by a 101-key ASCII keyboard.
Domain-specific languages address this issue exactly, by providing a highly-restrictive
programming language that is customized for a particular domain. By using a
domain-specific modeling environment (DSME) it is possible to provide an inte-
grated development environment for a particular domain, for rapid development
and specification of systems. A major advantage of this is that it is possible to ex-
port artifacts from a system specification using one or more generative components
associated with the DSME. This paper describes a DSME (and several components)
for the domain of hybrid systems, and explains how this DSME is useful not only
for system specification, but toolchain construction.

Cite this article as follows: Jonathan Sprinkle: ”Generative Components for Hy-
brid Systems Tools”, in Journal of Object Technology, vol. 4, no. 3, April
2005, Special issue: 6th GPCE Young Researchers Workshop 2004, pp. 35–39,
http://www.jot.fm/issues/issue 2005 04/article5

http://www.jot.fm/issues/issue_2005_04/article5
http://www.jot.fm


GENERATIVE COMPONENTS FOR HYBRID SYSTEMS TOOLS

2 HYBRID SYSTEMS, AND TOOLS

Hybrid systems are systems that may be described using discrete states in which
continuous time dynamics govern the laws of behavior. This combination of discrete
states and continuous dynamics means that traditional systems analysis is infeasible
for large systems. As hybrid systems are becoming more commonplace, determina-
tion of the safety and reliability of such systems is an emerging research opportunity.
Currently, the analysis [?], simulation (common to most tools), verification[?], vali-
dation [?], and code synthesis [?] of controllers for hybrid systems is such a large and
complex problem that no one tool integrates every one of these aspects. Dedicated
researchers have developed applications that evaluate (or generate) hybrid systems
controllers in one (or sometimes, two) of these aspects, but since research has been
ongoing for many years, the specifications for the existence of those hybrid systems
is given in a proprietary format defined by each tool developer.

An interesting aspect of these proprietary formats is that they are usually deriv-
able from some common specification: mathematics. For each well-formed math-
ematical specification of a hybrid system (including the differential equations that
govern the continuous behavior, and the state descriptions of their discrete behavior)
there exists a transformation to one of these tools.

The process is not without problems, however. The “math2tool” transformations
usually exist only in the heads of the tool experts. There is no simple extraction
from a tool specification back to mathematics, that preserves all aspects of the
hybrid system; that is, not all tools use all parts of the mathematical specification.
Also, tools may require tool-specific entries that configure the tool to have a certain
behavior, but have no impact on the specification of the system. Combined with the
undocumented (or ill-documented) syntax and semantics of the tool specifications,
these problems indicate the difficulty of developing a cohesive toolchain.

3 A COMMON FORMAT

In order to address the need for a hybrid systems toolchain, researchers combined to
create the Hybrid Systems Interchange Format (HSIF). This format, defined as part
of the DARPA MoBIES project, and under consideration for OMG standardization,
could then be used as a common repository (or export option) for hybrid systems
models. Tools could either import HSIF models, export HSIF models, or both (if
appropriate), as shown in Fig. 1.

HSIF model specification

HSIF, as a syntax, is not meant to be human readable; rather, it is designed such
that it is an unambiguous specification of the hybrid models. For example, the
equation ẋ = 1

4
e0.1x + x is a simple equation for expressing the derivative of some

36 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3



3 A COMMON FORMAT

Hybrid Systems Interchange Format (HSIF)

Simulink/SflowSimulink/Sflow

CHARONCHARON

SALSAL HyVisualHyVisual CheckmateCheckmate

GME/HSIFGME/HSIF TejaTeja

Export: Import:
Planned:
Partial:

Export: Import:Export: Import:
Planned:
Partial:

Figure 1: Layout of the HSIF toolchain implementation

variable, x, with respect to time. Given that some variable x exists, this is a valid
equation; however, consider a hierarchical model where a variable x may be defined
in some parent of this model. The issue of scope—that is, which x is used for
this specification—becomes important. Different tools, as they have been developed
independently of one another, have not implented this (and other, more complex)
possibly ambiguous specification identically.

The goal of HSIF then is to provide the specification of the mathematical def-
inition of these hybrid models—even at the cost of readability—and thus provide
a model-based representation of the mathematics, suitable for input to generators
that can provide tool-specific versions of the models. This obviously required a
well-defined syntax for HSIF [?], and (less obviously, but intuitively upon further
reflection) required a well-defined semantics for HSIF.

HSIF Modeling Environment (HSIF-ME)

The reader may have two questions at this point. “Why is readability is sacrificed,
especially if the models need to be visualized (presumably to check correctness of
entry)?” and “If readability is sacrificed, what does that say about writability?”
The answer to each of these questions is that HSIF models are toolchain artifacts,
which does not necessarily mean that they must be written (or read) by humans.

Rather, a convenient entry format which is as similar to the mathematical def-
inition of a hybrid system as possible is provided through a DSME customized for
the hybrid systems domain. Using the HSIF-ME, it is possible to create a hybrid
system model of average size (2 hybrid automata, each with 4 discrete states and
2 variables, connecting with signals) in about 30–60 minutes (depending on famil-
iarity with hybrid systems and computer efficiency). The DSME is implemented
using the GME toolsuite [?], and provides three components: to generate an HSIF
artifact, to directly generate an artifact for CheckMate (using the HSIF artifact as
an intermediary), and to import and HSIF artifact.

The last component allows HSIF artifacts generated from other tools to be im-
ported into the HSIF-ME for visualization. This provides a means through which to
check some correctness metrics for the models, to ensure that no syntactic or static
semantics errors have been made1.

1The HSIF storage format is XML, which implicitly has a syntax checker in the XML parser

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 37



GENERATIVE COMPONENTS FOR HYBRID SYSTEMS TOOLS

4 LOOKING FORWARD

HSIF—as an interchange format—suffered from the famous “design by committee”
problem, with a swelling syntax and some tool-specific enhancements. In short,
HSIF emerged from existing formats, not all of which were well designed (to put it
politely). As such, it was acceptable as a first cut, but is more useful as a “lessons
learnt” artifact than a basis for future designs. The next stage is to explore the realm
of an optimal (or usefully optimal) format for the specification of hybrid systems,
which will drive the formats of tools that will be developed in the future.

Research and state-of-the-art exploration is currently underway to design a frame-
work for hybrid systems tool development. This framework will provide a visual
shell, and leverage generative components to implement simulators, validators, de-
sign environments, and code generators. The framework will be something like a
cross between Matlab and Eclipse. The emphasis will be on a domain-specific en-
vironment with multiple backends for processing, rather than a textual IDE with
associated compilers. An early sketch of this design is presented in Fig. 2.

BASE Package

CORE

model
database

Extraction

Manipulation

Visualization Editor

SimulatorSimulator

Verification EngineVerification Engine

TransformerTransformer

Figure 2: The future designs involve not only a core model of the hybrid system, but
also a componentized view of the manipulation, editing, extraction, and visualization
of those models, which may be arbitrarily extended by tool designers (components
shown in dark), and improved upon in future releases while insulating the models
themselves.

This research is expected to continue for years to come, with incremental releases,
and the cooperation and integration of tools and algorithms as developed by hybrid
systems researchers all over the world.

5 CONCLUSIONS

What makes the HSIF-ME an interesting player as it currently exists is its lightweight
presence (no hybrid systems tools are necessary to create hybrid systems models)

used to read the file. However, not all XML generation engines guarantee correctness of output to
the HSIF schema, nor do they guarantee the correctness of the model to certain static semantics,
which check the models to ensure that all variables are correctly declared, no cyclical dependencies
are specified, etc.

38 JOURNAL OF OBJECT TECHNOLOGY VOL 4, NO. 3



5 CONCLUSIONS

and its ability to both import and export hybrid models. HSIF-ME’s proximity to
the mathematical specifications of a hybrid system also makes it an excellent model-
ing environment, especially for students familiar with hybrid systems, but unfamiliar
with tools that evaluate them.

In our future work, we hope to preserve the lightweight presence by developing
the tool framework as a core with associated components. Using just the basic facil-
ities, it would be possible to design just the hybrid system, which could be shipped
to more complete implementations of the framework, or to independent tools for
conversion. In the meantime, we plan to maintain the concept of a domain-specific
interface as the primary human input mechanism, and to continue to investigate the
best ways to encode the designs for portability.

ACKNOWLEDGEMENTS

The author would like to thank Gábor Karsai (whose figure appeared as Fig. 1), and
Oleg Sokolsky, for their contributions to the development of the HSIF semantics and
syntax. Additional thanks to S. Shankar Sastry, Edward A. Lee, and Aaron Ames
for their work and comments regarding the future work.

Portions of this research were funded by the Defense Advanced Research Projects
Administration Information Exploitation Office under contract #F30602-00-1-0580
(MoBIES), the NSF ITR Center for Hybrid and Embedded Software Systems, and
also under subcontract to Northrop Grumman Corporation in association with the
DARPA SEC project.

ABOUT THE AUTHORS

Jonathan Sprinkle Dr. Jonathan Sprinkle is a postdoc-
toral researcher at the University of California, Berkeley since
2003. His research interests and experience are in systems con-
trol and engineering, through modeling and metamodeling. He
may be reached at sprinkle@EECS.Berkeley.Edu, or on the web at
http://www.eecs.berkeley.edu/ sprinkle/.

VOL 4, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 39

mailto:sprinkle@EECS.Berkeley.Edu
http://www.eecs.berkeley.edu/~sprinkle/

