
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol.4, No. 2, March - April 2005

Cite this column as follows: John D. McGregor: “Metrics”, in Journal of Object Technology, vol. 4,
no. 2, March – April 2005, pp. 49-58. http://www.jot.fm/issues/issue_2005_03/column5

Metrics
John D. McGregor, Clemson University and Luminary Software LLC, U.S.A.

Abstract
Strategic goals are of no use if you can’t tell whether they have been accomplished. A
measurement program is an essential element in the strategic arsenal. In this month’s
issue of Strategic Software Engineering, I will explore some issues about measurement
and effective strategic metrics. I will discuss some specific metrics but also how to setup
a measurement program that addresses your needs.

1 INTRODUCTION

I once sat through a presentation of the metrics group for a rather large project. By the
time the report was completed I knew how many lines of code had been written so far,
the number of defects detected, the number of use cases written, and I had mentally
drafted a column (for another journal at that time). I was very grateful when the project
manager looked at the presenter and said, “yes, but how are we doing?” No doubt, the
report had given an accurate description of the project but it had not provided any
information that could be used to afirm the present direction of the project or to make
corrections to that direction.

Descriptive metrics, which simply summarize a set of measurements, are intended to
describe “what is.” Descriptive metrics can be useful to quickly give an overview of the
current situation. They can be made even more useful when used as a basis for
comparison, discovering trends, and summarizing large quantities of more detailed
measures. Descriptive metrics must usually be interpreted in the context of some model
of the ideal domain such as “All variables will be private.”

Prescriptive metrics provide guidance for decision making by producing results
which convey an explicit value judgement. Where a descriptive metric might say “The
current value is 12 lines of code per day”, a prescriptive metric says “Programmer
productivity improved 12%.” Prescriptive metrics are sometimes computed by combining
several measurements of descriptive metrics according to some formula. Programmer
productivity improvement would be computed by comparing current productivity with
some previous value.

One of the frustrations for project managers is the need for historic data –
benchmarks – that can be used to interpret the meaning of descriptive measures or to

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_03/column5

 METRICS

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

compute prescriptive metrics. Industry standard benchmarks have not been widely used
in software engineering due to the complex nature of the context that affects the value
that is produced. However, some models, such as COCOMO [Boehm 00] are
accompanied by default values. There are so many factors that affect the qualities of a
software development process that the most effective metrics are ones that measure your
process now against your process previously. Most metric programs begin by collecting
descriptive measures and eventually use these values to compute metrics that are useful in
decision making.

Having given Metrics 101, I will now focus on the strategic use of metrics in
software product production. I will discuss ways to define effective metrics and to use the
information provided by these measures to improve product production. While I will
specify a few metrics, the most important contribution of this column will be to raise
some questions that lead you to define your own metrics.

2 QM

GQM stands for the Goal-Question-Metric technique developed by Basili [Basili 99] for
defining metrics. Several brief industrial strength examples of the technique are given at
[Informit 05]. At a strategic level, goal satisfaction is a primary driving force. Every
strategic metric begins with the need to track progress toward a specific goal.

Strategic Goals

Strategic is in the eye of the beholder. That is, strategic refers to encompassing some
conceptual whole relative to the definer’s responsibilities. For a CEO, strategic goals are
those that address the entire organization. For a project manager, strategic goals are those
that address an entire project, but these are tactical, narrower in scope, from the
perspective of the CEO.

Strategic by its nature also refers to a relatively longer time period than tactical,
which encompasses some subset of the whole addressed by a strategic view. A time
period that is considered long for the project manager will be viewed as a much shorter
time period for the CEO. Strategic measures are less sensitive to short-term fluctuations
and expose trends rather than incidents.

Tactical objectives often address some implementation of the strategy intended to
satisfy the strategic goals. Since a tactical objective addresses a portion of a strategic goal
it naturally has a much shorter time horizon than the strategic goal. Tactical objectives
provide the short term reaction to longer term directions.

Tactical measures are gathered from a more constrained population and over a
shorter time period than strategic measures. Progress on the reduce time to market goal
can not be measured accurately until several products have been delivered. The tactical
objective reduce time to prductivity can be measured after a few programmers have been

Strategic Metrics

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 51

trained which would usually be a much shorter timeframe than delivering a set of
products.

Every manager should use a blend of long term, wide reaching strategic goals and a
second level of shorter term, more narrowly focused tactical objectives, to guide their
organization. Some of the strategic goals we have presented in previous columns include
reduce time-to-market, improved productivity and improved quality. Likewise, the
manager should use a blend of strategic and tactical metrics to monitor the organization.

The reduce time to market strategic goal could lead a manager to adopt a strategy
such as hire more programmers. Tactical objectives could then be chosen to reduce
time-to-productivity achieved by speeding training and using mentoring programs and to
increase automation, achieved by purchasing or crafting additional software tools.
Corresponding metrics should be defined to measure progress on these goals.

Applying GQM

The fundamental idea behind GQM is to maintain traceability from a goal to the metrics
that are intended to measure progress toward that goal. This results in metrics that are
more relevant, and more accurate. Essentially, the process begins by taking each goal and
identifying questions that, when asked, would reveal what progress is being made toward
accomplishing the goal. Each question is then translated into attributes that, if measured,
would allow the manager to answer those questions. In many cases the results of the
measurements are filtered through a computation resulting in a metric that answers the
question. Figure 1 shows the chain from goal to question to metric for the reduce time-
to-market strategic goal.

goal

reduce
time-to-
market

goal

Is programmer
productivity
improving?

…

Change in original
lines of code
produced per day

Change in
Percentage of
waste code

How many calendar months
elapse between the Inception
and Transition phases?

Average number
of months per
product

Figure 1 - GQM chain of dependency

 METRICS

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Metric Context

As with any measurement, metrics that will be compared must come from a common
context. A personal example, when on a diet you should weigh at the same time of the
day wearing similar clothes in order to compare weight over several days. For a software
development organization the strategic context is defined by several attributes including:

• The development process – When the activities in the development process are
changed, the context changes. Previous measurements that relate to the activities
can no longer be compared to new measurements that are related to a different set
of activities. For example, many of the metrics used to evaluate a traditional
development process are not appropriate for an agile development process. This
affects process metrics.

• The design method – Structured design, object-oriented design, aspectual design
have different objectives. Even some very fundamental notions such as
modularity are viewed differently in these various approaches. This certainly
affects the definition of design metrics and some process metrics.

• The type of system – For example, in developing real-time software a design that
would be rated very highly by the metrics for an interactive data entry system
would be rated very low by the design metrics for real-time software. This affects
at least some product metrics.

• The personnel – Experienced developers produce more lines of code with fewer
defects than novices. Domain-experience is one part of that experience factor.
Loss of several domain experts will, if they are replaced by less domain
experienced personnel, render previous time estimates useless. This affects
process metrics.

The scope of strategic metrics make them vulnerable to very complex and changing
contexts.

Strategic Metrics Do’s and Don’ts

There are various lists of how to define effective metrics [Lermusiaux 05]. I will just
touch on a few points.

Do update the context, and consequently the metrics, periodically. Goals change
and so does the organizational context. Include a review, and, if necessary, a revision of
the metrics with every review of the strategic goals of the organization.

Consider some of the popular metrics about object-oriented software development.
One is depth of the inheritance hierarchy. This metric was born early in the life of object
technology. It is descriptive. For a particular design you get a 4 if there are three levels of
children under an abstract class. In certain design philosophies this was treated as not as
good a design as one with a hierarchy of depth 2.

Some languages did, and maybe still do, impose a performance penalty on deep
hierarchies. However, recent implementations of most languages have eliminated this
penalty and some newer languages never had a penalty at all. As a result we see, in the

Strategic Metrics

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 53

Java libraries for example, very deep hierarchies that work very well. Changes in
language implementation change the need for a particular metric and its interpretaion.

If one of the goals is reuse, the deeper the hierarchy the better. However, if one of
the goals is more flexible and dynamically modifiable software inheritance is not the best
approach and the deeper the hierarchy the less appropriate the design.The design
philosophy is part of the metric context.

Do not rely on a single measure. Strategic issues are complex. There is usually no
single attribute that will give a complete view of progress to the goal. Be certain that the
questions asked cover all facets of the goal and that measures provide complete answers
to questions.

Do recognize the limits of the accuracy of the measurements. Attributes that
describe strategic goals are usually very high level. The accuracy of the measurements
will be affected by the clarity and concreteness of the definition of the quantity to be
measured. Where possible encode the definition of the attribute in a tool that
automatically performs the measurement.

Do account for the variation among measurements. A single value is more
representative of a group of measures if there is little difference among the values.
Simply reporting an average is not useful. Because almost none of the actual
measurements may have been close to that value. Reporting the average and either a
range of values or a variance allows more meaningful interpretation. Strategic attributes
are sufficiently encompassing that large variations in values may be more of an issue than
exactly what the values are.

3 STRATEGIC METRICS

We now have a technique for defining metrics and some idea of what makes them
strategic, so what are some strategic metrics? According to the earlier discussion, a metric
is strategic if it covers the width of a manager’s interest and takes a long term view
relative to the life of the activity. It is effective if it provides unambiguous guidance for
decision making. Since strategic is relative I will address managers and developers
separately. It is not my intention to prescribe a complete set of metrics. Use these as
examples and use GQM to define the precise set that is appropriate for your organization.

Managers

Managers are usually interested in the two traditional categories of metrics: process and
product. I have already mentioned some goals that managers have. Lets consider two:
improve product quality and make product production more efficient.

In order to evaluate improve product quality, I will use the definition that quality is
satisfaction of the requirements, but with the caveat that those requirements include non-
functional quality attributes [Bass 03].

 METRICS

54 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Make product production more efficient is very much dependent upon the software
development process used by the organization. The Software Engineering Institute (SEI)
has provided a strategic model for this in the Capability Maturity Model (CMM) [SEI
05]. I will defer to the large body of literature in this area.

I will describe one type of strategic metric that actually addresses both these areas.
In this case the goal under consideration is improve the quality process. A strategic
metric in this area would be the defect live range. This metric is not an easy one to
compute but it certainly has strategic importance.

This metric measures the length of time, in terms of the product development life
cycle, from a defect being injected into the product to the time it is detected and repaired.
Where the defect is detected can usually be determined very accurately. It is sometimes
less clear where the defect was injected. Typically some level of analysis will be required
to determine this. Table 1 shows a matrix in which the row signifies when a defect was
injected and the column indictaes when the defect was detected and repaired. Figure 2
shows a graphical representation of the same information.

These values can be reduced to ranges by subtracting the index of the row from that
for the column. So the 20 defects injected in phase p1 and detected in phase p1 have a live
range of zero phases because they did not escape the phase where they were injected. We
can then multiply by the number in the cell. In this way we could produce the average
defect live range for design defects or requirements defects. For p1 the computation is:

67.
30
20

1103520
1*)16(1*)15(0*)14(3*)13(5*)12(20*)11(

==
+++++

−+−+−+−+−+−

So the average requirements defect lives into the next phase, but most are detected in the
requirements phase. The assumption is that the smaller this number, with a lower limit of
zero, the better the quality assurance process since the longer a defect lives the more
costly it is to repair.

Table 1 - Inject to Detect Defect Ranges

 P1 P2 P3 … … Pn
P1 20 5 3 0 1 1
P2 30 5 2 0 2
P3 10 4 1 0
… 5 1 1
… 1 0
Pn 0

Strategic Metrics

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 55

1 2 3 4 5 6
S1

S5
0
5

10
15
20
25
30

 phase detected

phase
injected

Defect Live Range

Series1
Series2
Series3
Series4
Series5
Series6

Figure 2 Defect Live Range

A second type of strategic metric for managers tracks actuals to predictions. For example,
the manager may have used some cost-benefit prediction such as the SIMPLE model
[Boeckle 04]. At specific milestones the actual costs and benefits to date are computed.
These values are easy to compare if the milestones represent either a percentage of the
time available for the project or an assumed percentage of the product is completed.
Some measures such as return on investment can not be computed at milestones so stay
with those measures that can be, such as costs.

Developers

For developers there are two types of strategic metrics. The first addresses the products
they produce and their responsibility to their employer. The second addresses their
professional growth and their responsibility to themselves.

I assume that over a strategic horizon every developer has a goal of improving their
productivity and quality. The Personal Software Process (PSP) provides the developer
with a forest of values that can be measured, see Table 2 [Humphrey 95]. Many of these
are very detailed and address very specific actions taken by the developer. These tactical
metrics allow the developer to identify specific improvements to make. I suggest that a
strategic measure for a developer is a more encompassing, less specific metric: iterations
required to achieve a build. This is similar to the process yield metric of PSP but I
measure through to product build while PSP stops at compilation and PSP measures
number of defects while I simply care about iterations. That is, how many cycles does it
take to get a finished piece of code? And is that number decreasing over time?

 METRICS

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Table 2 – Sample of PSP metrics

Defect density Time per phase

Review rate Size of base code

Development time ratios Size of added code

Yield Size of deleted code

Defect removal leverage Size of new code intended for reuse

My second assumption is that every developer has the long term goal of remaining
professionally current. GQM applies here as well. Most developers at least set yearly
goals as part of the company evaluation scheme. Some of us set even longer term goals
than that. When a developer sets their strategic professional goals, they should apply
GQM to define metrics that will measure satisfaction of those goals.

Learn a new technology or attain a new certification are typical strategic goals for
personal growth. Lets consider learn a new technology. One possible question is “How
many examples have you studied?” This leads to a descriptive metric which is indicative
but not definitive. A more productive question might be “Can I develop a product using
the same number of iterations to build as with the existing technology?” When the
answer is yes, I feel that I have fully learned the new technology.

4 MEASUREMENT PROGRAMS

A measurement program collects and disseminates quantitative data for decision making.
An organization that operates a measurement program develops a culture that expects
decision making to be based on data. The program should produce a suite of metrics that
addresses all of the goals, processes and organizational structures. Some of the metrics
contribute to the computation of wider-ranging metrics at higher levels of the
organization and some are intended for immediate consumption.

Why does CMM not include quantitative process management until Level 4?
Because it takes a certain maturity to consistently take best advantage of this type of
specific input. But that does not mean that organizations should not begin to collect,
review and react to quantitative data until then. By the time you reach level 4 you should
have sufficient historic data to understand its importance and to be able to do historic
comparisons.

When do I measure? Measures should be collected periodically. There is no one
period that makes sense in all cases. I will give two answers.

• Some measures are applied at project milestones such as the end of the first
iteration or increment. Certain product-based measures only make sense at times

Measurement Programs

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 57

when a certain point in development is reached. Development process-oriented
measures also are applied at milestone.

• Some management process-based measures are applied at regular calendar
intervals such as every quarter. Measures that are to be contrasted to annual
budgets or stockholder meetings are applied at these intervals.

How do I measure? Measurements need to be made in a structured manner that ensures
that the measures are giving correct answers and consistent answers.

• Take measurements at regular intervals but avoid periods of chaos. I once asked
an industrial training class, “How is it going?”, as a casual opening remark. It
turns out many of them had been given 30 days notice the previous day.
Measuring their productivity that day would not have been a good idea. (Nor was
asking how things were going!)

• Use a standard measuring instrument. At one time the yard was defined as the
distance from the nose to the tip of the finger of a member of British royalty.
Rather, use standardized questionnaires, formulas, or industry standard data
definitions so that the measures are repeatable.

Do I need a metrics program if I am doing agile development? I think every organization
should have a metrics program even if the organization is currently happy with their
processes and products. Obviously an agile development project needs an agile metrics
program. It needs metrics that are oriented toward individuals and that have a short time
horizon. GQM provides a natural progression to determine what should be measured
regardless of the process model being used.

5 SUMMARY

The most important, and most difficult, issue regarding a measurement program is
establishing a culture that respects and utilizes data in decision making. The most
relevant metrics will not provide any value if they are not consulted. Ironically, the best
way to establish this culture is to define relevant, effective metrics that provide useful
information. In my view this means carefully choosing a small set of strategic metrics
that can summarize information that is too distributed for one person to experience
personally. Periodically measurements should be used to measure the costs and benefits
of the measurement program.

A Project DashBoard is a summary of current values for an essential set of metrics
the manager should be watching to understand the health of their organization. This
device works because it limits the manager to a small set of metrics. It is effective
because it makes it easy for the manager to scan the values. And, since it is easy the
manager might actually use it. The DashBoard should contain strategic and tactical
metrics and both descriptive and prescriptive metrics. This blend provides comprehensive
coverage that provides useful information for decision making.

 METRICS

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

REFERENCES

[Basili 99] V. R. Basili, L.C. Briand, and W. L. Melo. “A Unified Framework for
Coupling Measurement in Object-Oriented Systems”, IEEE Trans. on
Software Engineering, vol. 25, No. 1, (1999) 91-121.

[Bass 03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice, Second Edition, Addison-Wesley, 2003.

[Boeckle 04] Guenter Boeckle, Paul Clements, John D. McGregor, Dirk Muthig and
Klaus Schmid. “Computing Return on Investment for Software Product
Lines”, IEEE Software, vol. 21, No. 3, May/June 2004.

[Boehm 00] Barry W. Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer,
Bradford K. Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and
Chris Abts. Software Cost Estimation with COCOMO II, Prentice-Hall,
2000.

[Humphrey 95] Watts S. Humphrey. A Discipline for Software Engineering. Addison-
Wesley, 1995.

[Informit 05] http://www.informit.com/articles/article.asp?p=30306&seqNum=4

[Lermusiaux 05] Yves Lermusiaux. Characteristics of a Good Metric.
http://www.ilogos.com/en/expertviews/articles/strategic/20030709_YL.h
tml.

[SEI 05] Capability Maturity Model, http://www.sei.cmu.edu/cmm/.

About the author
Dr. John D. McGregor is an associate professor of computer science at Clemson
University and a partner in Luminary Software, a software engineering consulting firm.
His research interests include software product lines and component-base software
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com.

http://www.informit.com/articles/article.asp?p=30306&seqNum=4
http://www.ilogos.com/en/expertviews/articles/strategic/20030709_YL.html
http://www.sei.cmu.edu/cmm/
mailto:johnmc@lumsoft.com

