
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No.2, March-April 2005

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 17: Multiple
Inheritance and the Resolution of Inheritance Conflicts”, in Journal of Object Technology, vol. 4,
no. 2, March-April 2005, pp 15-26 http://www.jot.fm/issues/issue_2005_03/column2

The Theory of Classification
Part 17: Multiple Inheritance and the
Resolution of Inheritance Conflicts

Anthony J H Simons, Department of Computer Science, University of
Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

1 INTRODUCTION

This is the seventeenth article in a regular series on object-oriented theory for non-
specialists. Using a second-order λ-calculus model, we have previously modelled the
notion of inheritance as a short-hand mechanism for defining subclasses by extending
superclass definitions. Initially, we considered the inheritance of type [1] and
implementation [2] separately, but later combined both of these in a model of typed
inheritance [3]. By simplifying the short-hand inheritance expressions, we showed how
these are equivalent to canonical class definitions. We also showed how classes derived
by inheritance are type compatible with their superclass. Further aspects of inheritance
have included method combination [4], mixin inheritance [5] and inheritance among
generic classes [6].

Most recently, we re-examined the ⊕ inheritance operator [7], to show how
extending a class definition (the intension of a class) has the effect of restricting the set of
objects that belong to the class (the extension of the class). We also added a type
constraint to the ⊕ operator, to restrict the types of fields that may legally be combined
with a base class to yield a subclass. By varying the form of this constraint, we modelled
the typing of inheritance in Java, Eiffel, C++ and Smalltalk. Object-oriented languages
vary widely in their policies on inheritance. Some, like Smalltalk, Objective C and Java,
only support single inheritance, whereby a class may have at most one parent class.
Others, like Flavors, Eiffel, CLOS and C++, support multiple inheritance, whereby a
class may have possibly many parent classes. In this article, we consider first the
theoretical issues raised by combining multiple implementations. Then, we consider what
it means for an object to belong to multiple parent classes, defining the notion of multiple
classification.

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_03/column2

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

16 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

2 MULTIPLE RECORD COMBINATION

In the Theory of Classification, we model objects as simple records, whose fields map
from labels to functions, representing their methods. Inheritance is modelled as a kind of
record combination, in which extra fields are added to the fields of a parent object to
yield the desired union of fields in the child object:

child = parent ⊕ extra
In the resulting child, fields obtained from the extra extension may replace similarly-
labelled fields obtained from the parent, modelling the notion of method overriding. This
is assured by the right-handed preference of the ⊕ union with override operator [2, 7].

In single inheritance, the child obtains all the fields of its parent, adding the extra
fields to these. Intuitively, in multiple inheritance, the child must somehow obtain all the
fields of multiple parents, adding the extra fields to these. We can think of this initially as
a kind of multiple record combination, in which the operator ⊕ is used many times to
combine the fields of the parents and then combine this result with the extra fields:

child = father ⊕ mother ⊕ extra
However, this establishes a particular kind of multiple inheritance, in which records are
combined in a strict left-to-right order, with fields in the later records overriding
similarly-labelled fields of the earlier records. The above expression is evaluated in the
order:

(father ⊕ mother) ⊕ extra
such that fields from mother will possibly override fields in father; and then fields in
extra will possibly override fields in the result of the first combination. This rule is
similar to the multiple mixin combination of Flavors [8, 5], and is most like the recency-
based superclass ordering rule from LOOPS [9]. The fields that you get in the result of
multiple inheritance expressions using ⊕ are critically dependent on the order in which
you list the parent classes. But, as we shall see below, this is not the only strategy that
could be proposed; nor is it perhaps the best strategy.

3 MULTIPLE INHERITANCE POLICIES

Theoretically, we start from the premise that the child should obtain at least the union of
the fields of its mother and father. If there is no limit on the number of parent classes, this
is a distributed union, of the form:

parent1 ∪ parent2 ∪ parent3
The first design choice in any programming language is whether this should be a simple
union, or a disjoint union of fields. In a simple union, fields with the same labels on both

VOL. 4, NO.2 JOURNAL OF OBJECT TECHNOLOGY 17

sides are merged, so that only one copy of a field is retained. In a disjoint union, fields
with the same labels on both sides are considered distinct, so they are not merged.

The simple union policy is usually adopted on the grounds that unique names should
be chosen for fields everywhere, since the same name should always refer to the same
property. It is perhaps the most theoretically challenging option, since it requires an
automatic rule for merging fields. Every time two versions of a field with the same label
are encountered, one must be preferred over the other, usually by determining the order
of precedence among ancestor classes. Object-oriented languages have proposed many
strategies for this, ranging from simple class pre-order [8, 9] to sophisticated topological
sorting algorithms for linearising the multiple inheritance graph [10, 11]. Languages with
automatic inheritance policies include: Flavors [8], LOOPS [9] and CLOS [11].

The disjoint union policy is usually adopted on the grounds that field-names were ill-
chosen and therefore both inherited versions of the field are required in the child. This is
the default policy in C++ [12] and for identically-labelled fields introduced at multiple
points in Eiffel [13]. This policy gives rise to ambiguity when fields are accessed in the
scope of the child. In C++, the two fields must be qualified explicitly by the name of each
parent, to resolve the ambiguity, whereas in Eiffel, the programmer must rename one or
other of the conflicting fields in the child’s inheritance clause. A benefit of the disjoint
union policy is that the fields of a child may always be computed locally from the fields
of its immediate parents, without worrying about the order in which its more distant
ancestors were declared. A disadvantage is that inheritance graphs with fork-join patterns
will give rise to unnecessary duplications of fields that were declared in a common
ancestor.

For this reason, Eiffel distinguishes the “repeated inheritance” of the same field, via
multiple paths from a common ancestor, from the “multiple inheritance” of two distinct
fields with the same names [13]. The default rule is to merge the common “repeatedly
inherited” field. (The same effect can be achieved in C++ by using “virtual base classes”,
although this is a less elegant mechanism, required by the language’s implementation
strategy).

Merging or recombining fields is a complex issue. Over the years, object-oriented
languages have proposed many different kinds of automatic rule for combining multiple
parent classes. We shall consider a few here, to uncover their advantages and
disadvantages.

LOOPS computes a local precedence order for the immediate parent classes. The
child’s fields take priority over the first parent’s fields, which take priority over the
second parent’s fields, etc., on the basis that a child is “more like” its nearer parents than
its distant ones [9]. Similarly, Flavors computes a global order for all classes, by merging
all the local precedence orders (as defined above) and any duplicated classes in this list
are eliminated, retaining the most recent copy nearest to the front. However, if the local
orders are found to be globally inconsistent, for example by requiring class A to precede
class B and, at the same time, class B to precede class A, the definition is rejected [8].
Both of these adopt recency-based criteria for choosing which field to retain, rather like
Touretzky’s “inferential distance” algorithm [14], according to which a class retains the

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

18 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

version of the field that was defined closest to it in the inheritance graph. Where the
graph forks and joins, all paths leading up to the joins are explored before the path
beyond the join is considered.

In CLOS [11], all possible ordered pairs of classes are computed, such that the child
precedes each of its parents separately, and parents precede each other pairwise according
to their local ordering declared in the child. A topological sorting algorithm then
computes a global order for all classes, preserving the pairwise constraints. Again, if no
globally consistent order can be found, the definition is rejected [10]. The aim of this
precedence-based scheme is to preserve, as much as possible, the local ordering of
parents in a class, whether or not the class is included as the ancestor of another class.
However, even this sophisticated algorithm for linearising the multiple inheritance graph
delivers counter-intuitive results for certain lattices [15]. If inheritance is only a local
short-hand for a canonical class definition, the way a child class inherits from its parents
should not depend on unexpected interactions between the ordering of its more distant
ancestors (see arguments in [13], especially pages 246-250).

4 INHERITANCE CONFLICT RESOLUTION

The Theory of Classification adopts a particular “reference model” of multiple
inheritance, which captures aspects of both the automatic and explicitly-specified policies
on multiple inheritance. The compromise is motivated by examining the nature of
inheritance conflicts. An inheritance conflict arises when a class obtains the same named
method from more than one parent – the resolution of this conflict determines which of
these methods (perhaps both) should be incorporated in the child. We distinguish
accidental and recombinant inheritance conflicts.

• An accidental conflict arises from inheriting two semantically distinct methods,
introduced in two places, which accidentally have the same name.

• A recombinant conflict arises from inheriting two semantically related methods,
which were originally introduced at a single point in the multiple inheritance
graph.

As discussed above, an object-oriented language may prefer to merge conflicting
definitions (simple union) or preserve both (disjoint union). Disjoint union really exists to
support the resolution of accidental conflicts. We consider it inappropriate for the
fundamental theoretical model to have to rectify poor naming conventions! Instead, we
assume that accidental conflicts can be resolved by renaming one of the conflicting
methods throughout, in the class hierarchy (here, perhaps better called a heterarchy, since
it is a full directed, acyclic graph). By removing accidental conflicts, our model only has
to provide for the resolution of recombinant conflicts, by simple union. But this is harder
than at first it seems. We do not simply want to achieve Eiffel’s “repeated inheritance”,
but also want to recognise that the common field may have been redefined in either, or

VOL. 4, NO.2 JOURNAL OF OBJECT TECHNOLOGY 19

both branches leading to the parents. Semantically, this is still the “same” operation
(albeit in a refined form).

Ideally, a child class should be a deterministic synthesis of the most specific aspects
of its parent classes, without undue prejudice to either parent. This is what is wrong with
existing automatic inheritance schemes: they force the programmer to prioritise one
whole parent class before the other, whereas what we really desire is a scheme that
prioritises individual methods, by recency of their definition. However, we think it is
inappropriate for objects to have to reason about the points at which methods were
introduced in the inheritance graph, since this mitigates against the “locality” of
inheritance expressions. The following cases may therefore be distinguished:

• the father and mother classes may have no fields in common; in which case
multiple inheritance should lead to the straightforward concatenation of their
fields;

• the father and mother classes may have some commonly-labelled fields, which are
pairwise identical, since they are inherited from a common ancestor; in which
case only one copy of each of these should be retained;

• the father and mother classes may have commonly-labelled fields which are not
pariwise identical, due to further specialisation in one or other parent since their
introduction; in which case automatic selection is impossible.

In the last case, even though the desire is to select the most specific redefinition of a
method, a system that only has local knowledge of the immediate parents cannot detect
which of the versions of this method was redefined most recently. Instead, the
programmer must specify explicitly which method should be retained (sometimes a
combination of both).

5 SYMMETRICAL COMBINATION

A variant of the ⊕ operator is defined below to allow the construction of multiple
inheritance expressions. The new symmetrical record combination operator is written ⊗
and its specific character is that it treats both its left- and right-hand operands fairly,
rather than preferring its right-hand operand, like ⊕. It is defined to obey the three
principles described above in section 4. Where it can determine which field to select, it
does so; and where it cannot, it leaves the result of the combination undefined, so that the
programmer may later choose explicitly which field to include in the child class.
The symmetrical operator ⊗ is actually a short-hand for a typed second-order
polymorphic function called merge, designed for merging two parent classes fairly:

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

20 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

merge : ∀Father. ∀(Mother Μ Father). Father → Mother → (Father ∧ Mother)
= λFather. λ(Mother Μ Father). λ(father : Father). λ(mother : Mother).
 { label a value | (label ∈ dom(father) ∪ dom(mother)) ∧
 (label ∈ dom(father) ∧ label ∈ dom(mother) ⇒
 (father(label) = mother(label) ⇒ value = father(label)) ∧
 (father(label) ≠ mother(label) ⇒ value = ⊥)) ∧
 (label ∈ dom(father) ∧ label ∉ dom(mother) ⇒
 value = father(label)) ∧
 (label ∉ dom(father) ∧ label ∈ dom(mother) ⇒
 value = mother(label)) }

This says that “two records father and mother of the respective types Father and Mother
may be merged, if these types satisfy a merging type-constraint Μ. The result of the
merger is a map containing the union of fields from both parents, in which fields unique
to the father or to the mother are inherited unchanged, but fields common to both father
and mother are tested to see if their values are identical. If they are, then one copy is
retained (the father’s), but if they are not, then the result of the merger is undefined.” In
the above definition, ⊥ denotes the undefined value and function-call expressions like:
father(label) denote the value stored opposite the label in the father object, which is a
map from labels to values. This definition uses the type constraint Μ that was introduced
in the previous article [7], which says that two record types may be merged if their
common fields have the same types. This is sufficient for second-order polymorphic
typed inheritance, adopted in the Theory of Classification [7, 1].

We can now define the symmetrical operator ⊗ in terms of merge:
∀β. ∀ε. ⊗ β, ε = merge [β,ε]

This creates a simply-typed version of ⊗ for each pair of records we wish to combine.
Really, ⊗ is just a short-hand for merge with two types already supplied. To see how ⊗
works, we will seek to construct a point3D object by combining a two-dimensional point
object with zcoord, a mixin object representing the third dimensional coordinate. Initially,
we shall just observe the operation of ⊗ in isolation:

point = µself.{x a 2, y a 3, equal a λp.(self.x = p.x ∧ self.y = p.y}
zcoord = µthis.{z a 5, equal a λq.(this.z = q.z)}
point3D = point ⊗ zcoord ⇒ {x a 2, y a 3, z a 5, equal a ⊥}

In this initial example, point3D is constructed by merging the definitions of the two
parent objects, point and zcoord. The result contains copies of the unique methods
inherited from both parents, but the equal method was defined in both point and zcoord,
so by the definition of ⊗, the body of equal is undefined. This is because we cannot
automatically determine which version of the method we should inherit (we assume by
convention that equal was declared at a single point in the inheritance graph, and is

VOL. 4, NO.2 JOURNAL OF OBJECT TECHNOLOGY 21

intended to stand everywhere for the same semantic operation; although the calculus
cannot determine this).

Now, the example was deliberately chosen to illustrate a further aspect of automatic
multiple inheritance that is not usually considered in object-oriented languages. It would
in fact be a mistake to prefer one version of the equal method over the other; what we
really desire is to inherit both parent methods, suitably combined. We may use method
combination [4], of the kind used to explain super-method invocation, to achieve this:

genPoint = λself.{x a 2, y a 3, equal a λp.(self.x = p.x ∧ self.y = p.y}

genZcoord = λthis.{z a 5, equal a λq.(this.z = q.z)}

genPoint3D = λme.(λfather. λmother.(father ⊗ mother
 ⊕ {equal a λr.(father.equal(r) ∧ mother.equal(r)) })
 genPoint(me) genZcoord(me))
 ⇒ λme.{x a 2, y a 3, z a 5,
 equal a λr.(me.x = r.x ∧ me.y = r.y ∧ me.z = r.z)}

The revised example uses generators instead of objects, because we wish to unify self-
reference in the manner explained in the earlier article [2]. The two parent objects are
created using genPoint(me) and genZcoord(me), where me is the self-reference
introduced by genPoint3D. These parent objects are bound internally to the variables
father and mother, in exactly the same way that we bound an inherited object to super in
[2]. There is no reason why we should not have many super-objects in multiple
inheritance; and this is what opens the way to novel kinds of method combination. The
multiple inheritance expression is resolved by first combining father ⊗ mother. Since this
yields an undefined body for the equal method, the child object now specifies explicitly
how to combine the two inherited versions: it is the logical-and of the father’s and
mother’s implementations for equal. The new version of equal is given in a record of
additional methods, to be added to the merger of the parents, using the usual ⊕ operator.
After combination, it will override the undefined placeholder for equal, yielding the
desired version of equal for a 3D point.

The notion of multiple super-objects has not been used before in any mainstream
object-oriented language. It is powerful enough to model any kind of explicit method
recombination, whether preferring the left-hand or right-hand version, or, as in this case,
creating a fusion of both. In C++, you can get a similar effect by defining a method which
explicitly calls both parent methods, qualifying these by their owning classes. In Eiffel,
the same effect may be achieved by a combination of renaming and redefining. There is
no limit on the number of super-objects, since ⊗ may be used to combine any number of
parents fairly, whose common methods may be accepted, refused or combined in all
possible ways in the child.

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

22 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

6 MULTIPLE CLASSIFICATION

Turning now to the issue of types, intuitively the type of the child object must be
compatible with the types of each of its parents. In the first-order subtyping model (c.f.
Java, C++), we may express this as a dual subtyping condition, which yields an
interesting result in terms of type intersections:

(Child <: Father) ∧ (Child <: Mother) ⇒ Child <: (Father ∧ Mother)
“If the Child is a subtype of the Father and also of the Mother, then the Child is a subtype
of the intersection1 of the Father and Mother types.” Type intersections were introduced
in the previous article [7]. We showed how merging two object types results in a new
type whose extension-set is the intersection of the extension-sets of the original two
types. The extension of the Child type is a subset of each of its parents’ extensions, which
fits nicely with the idea that all the Child’s instances should also be considered as
belonging to the Father’s and Mother’s types.

child type

parent type

parent class

child class

multiple inheritance describes
intersecting volumes in the
space of types, with fixpoint
types at each apex

Figure 1: Multiple inheritance describes intersecting volumes

In the more sophisticated second-order parametric typing model [1, 3] (c.f. Eiffel,
Smalltalk) there is a similar result which we can express using type generators:

∀τ . (τ <: GenFather[τ]) ∧ (τ <: GenMother[τ]) ⇒
 τ <: (GenFather[τ] ∧ GenMother[τ])

“If the self-type τ is a pointwise subtype of all types created using the GenFather
generator and also of all types created using the GenMother generator, then it is a
pointwise subtype of all intersection types created simultaneously from both generators.”

1 The symbol ∧ is overloaded here to mean logical-and and type intersection. An intersection type contains
the union of the fields of the two record type arguments.

VOL. 4, NO.2 JOURNAL OF OBJECT TECHNOLOGY 23

The intersection type in the result is basically like the merger of two record types, in
which τ has been replaced in turn by each self-type that satisfies the F-bound of both
parents’ generators. The constrained type expression: ∀τ <: GenFather[τ] ∧
GenMother[τ] is a new kind of F-bound, describing a family of types that occupy the
intersection of the volumes described separately by each of the parent generators. Regular
readers will recall that such a “space of types” is equivalent to the notion of a class in the
Theory of Classification.

We can visualise this in figure 1. Here, the two parent classes are illustrated as
intersecting cones. The volume where they intersect is the resulting child class you obtain
by merging the two parents by multiple inheritance. (If the child were to add further
methods, it would form a slightly smaller cone nesting inside the intersection volume).
While polymorphic classes are represented by volumes, exact simple types are
represented by points. If we recall that a class is a family of structurally-similar types,
then all the exact types within a given volume satisfy the F-bound of the related generator
and so possess at least the set of methods described in the generator’s body. A type which
resides inside the intersection volume therefore possesses at least the methods of both
generators.

In figure 1, the point at the apex of a cone represents the least type that is still a
member of that class. Mathematically, this simple type is the fixpoint of the generator
used to describe the class. For multiple parent classes, we may describe this as:

Father = Y GenFather, Mother = Y GenMother
but what is the least type that sits just inside the intersection volume (see figure 1)? This
is the least type of the child class. Mathematically, we may create this Child type by
merging the generators of the two parents and then taking the fixpoint of the result:

Child = Y λτ.(GenFather[τ] ∧ GenMother[τ])
The least Child type is exactly the fixpoint of the type generator intersections (extensional
definition). In other words, this is the fixpoint of the generator obtained by taking the
union of the fields of both parent generators (intensional definition), after unifying the
self-type τ. The Child type satisfies the F-bounds for each of its parent classes:

Child <: GenFather[Child], Child <: GenMother[Child]
and the least Child is exactly equivalent to the type intersection:

Child = GenFather[Child] ∧ GenMother[Child]
by the fixpoint theorem. So, all the formal properties that were established in earlier
articles for classes nesting in a single classification hierarchy [1, 3] also apply in a
uniform way to overlapping classes created by multiple inheritance. It is pertinent to
describe this notion as multiple classification, the idea that an object may have a type
belonging simultaneously to more than one overlapping class.

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

7 CONCLUSION

In this article, we have developed a flexible formal model for multiple inheritance. By
comparing existing programming language models for resolving inheritance conflicts
automatically and then contrasting these with models that rely on explicit resolution by
the programmer, we came up with a compromise that resolves fork-join “repeated
inheritance” automatically, but relies on a form of explicit super-method combination to
resolve other cases where the methods to be recombined have been redefined at some
point in the inheritance graph. Reasoning globally about the points at which methods are
introduced could also resolve this automatically, but we considered this inappropriate,
since it conflicts with the view that inheritance should be a local short-hand for defining
classes incrementally by extension from its immediate parents. We excluded accidental
name conflicts from the formal model, on the grounds that these could be solved simply
by renaming one or other method systematically in the inheritance graph.

Multiple inheritance is different from ordinary inheritance, because it involves
symmetrical merging as well as asymmetric extension. To merge multiple parent classes
fairly, a different combination operator ⊗ was defined, which treats both of its operands
symmetrically. It constructs records containing the union of distinctly-labelled fields,
merges identically-labelled fields that map to identical values, and declares the result of
the merger to be undefined otherwise. This is the only sensible automatic choice, given
that the programmer might wish to retain the left-hand, right-hand, or possibly a fusion of
both versions of the method in the resulting child. The latter option has not been treated
before in conflict-resolution schemes. The operator ⊗ was defined as a set of simply-
typed operators created by instantiating a polymorphic typed function merge, in the same
way that ⊕ was defined out of extend in the previous article [7].

Finally, it was shown that objects created by simultaneous extension from several
parents have types which belong to multiple classes, in the Theory of Classification. The
notion of multiple classification was visualised as creating intersections in the space of
types, satisfying natural intuitions about belonging to more than one class.

VOL. 4, NO.2 JOURNAL OF OBJECT TECHNOLOGY 25

REFERENCES

[1] A J H Simons, “The theory of classification, part 8: Classification and
inheritance”, in Journal of Object Technology, vol. 2, no. 4, July-August
2003, pp. 55-64. http://www.jot.fm/issues/issue_2003_07/column4

[2] A J H Simons, “The theory of classification, part 9: Inheritance and self-
reference”, in Journal of Object Technology, vo. 2, no. 6, November-
December 2003, pp. 25-34. http://www.jot.fm/issues/issue_2003_11/column2

[3] A J H Simons, “The theory of classification, part 11: Adding class types to
object implementations”, in Journal of Object Technology, vol. 3, no. 3,
March-April 2004, pp. 7-19.
http://www.jot.fm/issues/issue_2004_03/column1

[4] A J H Simons, “The theory of classification, part 10: Method combination
and super-reference”, in Journal of Object Technology, vol. 3, no. 1, January-
February 2004, pp. 43-53. http://www.jot.fm/issues/issue_2004_01/column4

[5] A J H Simons, “The theory of classification, Part 15: Mixins and the
superclass interface”, in Journal of Object Technology, vol. 3, no. 10,
November-December 2004, pp. 7-18.
http://www.jot.fm/issues/issue_2004_11/column1

[6] A J H Simons, “The theory of classification, part 13: Template classes and
genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August 2004,
pp. 15-25. http://www.jot.fm/issues/issue_2004_07/column2

[7] A J H Simons, “The theory of classification, part 16: Rules of extension and
the typing of inheritance”, in Journal of Object Technology, vol. 4, no. 1,
January-February 2005, pp. 13-25.
http://www.jot.fm/issues/issue_2005_01/column2

[8] D A Moon, “Object-oriented programming with Flavors”, Proc. 1st ACM
Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub. ACM Sigplan
Notices, 21(11), (ACM Sigplan, 1986), 1-6.

[9] D Bobrow and M Stefik, The LOOPS Manual (Palo Alto: Xerox PARC,
1983).

[10] D Bobrow, L DeMichiel, R Gabriel, S Keene, G Kiczales and D Moon,
Common Lisp Object System Specification, X3J13 Document 88-002R, June,
1988.

[11] S E Keene, Object-Oriented Programming in Common Lisp: a Programmer’s
Guide to CLOS (Reading MA: Addison-Wesley and Symbolics Press, 1989).

http://www.jot.fm/issues/issue_2003_07/column4
34. http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2004_01/column4
http://www.jot.fm/issues/issue_2004_11/column1
http://www.jot.fm/issues/issue_2004_07/column2
http://www.jot.fm/issues/issue_2005_01/column2

THE THEORY OF CLASSIFICATION, PART 17: MULTIPLE INHERITANCE AND THE

RESOLUTION OF INHERITANCE CONFLICTS

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

[12] B Stroustrup, “Multiple inheritance for C++”, Proc. European Users’ Group
Conf., (Helsinki, 1987).

[13] B Meyer, Object-Oriented Software Construction, 1st ed., (Wokingham:
Prentice-Hall, 1988). Note – cited page numbers refer to this earlier edition,
rather than the later, greatly enlarged edition.

[14] D Touretzky, The Mathematics of Inheritance Systems (Palo Alto: Morgan
Kaufmann, 1986).

About the author
Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Science, University of Sheffield, where he
leads object-oriented research in verification and testing, type theory
and language design, development methods and precise notations. He
can be reached at a.simons@dcs.shef.ac.uk.

mailto:a.simons@dcs.shef.ac.uk

