
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 2, March-April 2005

Cite this article as follows: Liwu Li: “Implementing the π-Calculus in Java”, in Journal of Object
Technology, vol. 4, no. 2, March-April 2005, pp. 157-177
http://www.jot.fm/issues/issue_2005_03/article5

Implementing the π-Calculus in Java
Liwu Li, University of Windsor, Canada

Abstract
Mobile communicating systems are ubiquitous in the modern world. The π-calculus
proposed by Milner et al [Milner et al. 1992] sets a theoretical foundation for modeling
mobile communicating systems such as the Internet, in which links can be sent from
processes to processes and a process can use a received link to interact with another
process. Here, we present a language named π-language for programming π-calculus
processes and a compiler named pi2j for translating the π-programs to Java code,
which can be compiled with the Java compiler to JVM bytecode and, then, executed on
the Java Virtual Machine. Thus, we implement the π-calculus in the Java language.

1 INTRODUCTION

The π-calculus was introduced by Milner et al. [Milner et al 1992] for modeling the
changing connectivity inside mobile communicating systems, in which links between
concurrently running processes can be passed from processes to processes and a process
can use a received link to communicate with another process. It is similar to the λ-
calculus as a theoretical model of sequential computation, the π-calculus can be used to
model modern concurrent systems [Milner 1999; Sangiorgi and Walker 2001]. The π-
calculus has aroused intensive interests in research to study its applicability, extensibility,
and other properties. For example, it has been shown that the π-calculus is powerful
enough to model various data structures, object-oriented programs, and communicating
systems. The π-calculus is also the basis of several experimental programming languages
such as Pict [Pierce and Turner 2000], Join [Fournet and Maranget 1997], and TyCO
[Vasconcelos and Bastos 1998]. In this paper, we shall denote a π-calculus process expression in
the ASCII directly by denoting Greek letters and typographical notations used in the π-
calculus process expression with ASCII words. Then, we show how to translate the ASCII
code of the π-calculus process expression to the Java language. Thus, we realize the
dynamic communication mechanism of the π-calculus by invoking the Java
multithreading mechanism.

We present an ASCII-based language called π-language for coding π-calculus
process expressions. Using keywords in ASCII to denote the Greek leters and other non-

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_03/article5

Implementing the π-Calculus in Java

158 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

ASCII symbols, the π-language represents π-calculus process expressions faithfully. Its
grammar improves the syntactic rules of the π-calculus by eliminating ambiguities in the
syntax rules of the π-calculus. We can compile the translated π-calculus process
expressions into Java to explore the multithreading and synchronization mechanism of
Java. We describe the Java concurrent classes that we developed to support the
communication mechanism of the π-calculus. Based on the Java classes, we present a
compiler named pi2j to translate the so-called π-programs into the Java language. Then,
we can compile and run the Java code that implements π-calculus process expressions.

This paper is organized as follows. The next section introduces the π-calculus as
specified in [Milner 1999; Sangiorgi and Walker 2001]. In Section 3, we briefly introduce
the multithreading and synchronization constructs of the Java language, which are used to
implement the π-calculus. We present the π-language for coding π-calculus process
expressions in Section 4. We describe the various Java objects that support the dynamic
communication mechanism of the π-calculus in Section 5. The compiler pi2j attached
with the paper is described in Section 6. This paper is concluded in Section 7.

2 THE π-CALCULUS

The π-calculus is founded on three notions: name, (atomic) action, and process [Milner
1999, p. 87; Sangiorgi and Walker 2001, p. 11]. It assumes a countably infinite set Ν of
names, which are denoted by lower case letters x , y , z , … with possible subscripts. A
name can be thought of as the name or label of a communication link. It has no internal
structure. In the π-calculus, a mobile communicating system is represented with a process,
which may be composed of processes recursively and which performs actions. Processes
use names to interact each other and pass names through the interactions.

An (atomic) action π in the π-calculus takes one of the following four forms
[Sangiorgi and Walker 2001, p. 11]:

π ::= ()x y receives name y through name (link) x (parameter y is optional)

 x z sends name z out via name x (argument z is optional)

 τ performs an unobservable internal action

 []x y π= performs action π if names x and y are the same

(Only the first three atomic actions are listed in [Milner 1999, p. 11].) A process P takes
one of the following four forms [Milner 1999, p. 87]:

The π-Calculus

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 159

P ::= .i i
i I

Pπ
∈
∑ chooses one of alternative processes .i iPπ for a finite index set I

 1 2|P P executes processes 1P and 2P concurrently

 new z P declares a private (bound) name z for process P

 !P supplies (an infinite number of) copies of process P

The dot symbol ‘.’ is a process constructor in π-calculus expressions. A process
expression .P Q schedules a sequential execution of the processes P and Q ; i.e., process
Q can proceed only after process P is exercised. For instance, an addend .i iPπ in the

summation
.i i

i I
Pπ

∈
∑

, indicates that action iπ must be completed before process iP can
start. We say that process iP is guarded by action iπ [Milner 1999, p. 87].

In the summation expression
.i i

i I
Pπ

∈
∑

, binary operator ‘+’ is used to connect the
addends .i iPπ for i I∈ . The choice and execution of action prefix iπ of a term .i iPπ in

the summation renders other terms .j jPπ with j i≠ void [Sangiorgi and Walker 2001]. If

the index set I is empty, we denote the summation
.i i

i I
Pπ

∈
∑

 with zero symbol 0 , which
does nothing and is called an inaction [Sangiorgi and Walker 2001, p. 12]. The
expression 0 is also used in the π-calculus to terminate a special sequence of dot-
separated actions [Sangiorgi and Walker 2001].

A composition expression 1 2|P P indicates that the component processes 1P and 2P
can proceed independently. The composition operator ‘ | ’ is commutative and associative
[Sangiorgi and Walker 2001, p. 20]. The component processes 1P and 2P may
communicate via a (channel) name x if one of them has an input action ()x y as prefix

and the other has an output x z as prefix for some names x , y , and z . The
communication inside the process 1 2|P P P= is regarded as an unobservable internal
action in process P . Component processes 1P and 2P can communicate if their action
prefixes are x and x , respectively, for some name x .

For example, process expression (). | . ()x y y z x w w x can be transmitted to a

process { / }| ()y z w y w x by an internal communication via the name x . The substitution
{ / }w y applied to expression y z requires replace the free occurrences of name y in

process y z with name w . The resulting process is congruent to process | ()w z w x ,

Implementing the π-Calculus in Java

160 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

which permits another internal communication action via the name w . Particularly, the

two components in process | ()w z w x can communicate via name w and the process will

proceed to 0 | 0 0= . Thus, the process (). | . ()x y y z x w w x executes.
In the above syntax rule for processes, the new-prefix new z in the process

expression new z P introduces a private (local) bound name z for the process P . By the
syntax rule, all the free occurences of name z in the process expression P refer to the
name z declared by the new-prefix new z . For example, both the third and fourth

occurrences of the name z in process expression ()(). .z y new z x z z v denote the bound
name z declared in the new-prefix inside the expression. They are different from the first
occurrence of the name z , which is a free occurrence of name z in the process
expression. To avoid accidental capture of bound names, α-conversion can be applied to
rename bound names and input parameters [Sangiorgi and Walker 2001, p. 15]. We can
use a new-prefix in the form 1 ... knew z z to abbreviate a series of new prefixes

1 ... knew z new z . The new-prefix introduces multiple bound names 1,..., kz z with k ≥ 1. In
[Sangiorgi and Walker 2001], Greek letter ν is used for the keyword new .

A replication expression !P is composed of the exclamation symbol ‘ ! ’ and a
process expression P . It provides the power of a parametric recursive process [Milner
1999, p. 88]. It is equivalent to the composition |!P P . In the following discussion, we
shall not shrink a process expression |!P P to the expression !P . The expression !P is
expanded to the expression |!P P only when the component P may communicate with
another process.

In the π-calculus [Sangiorgi and Walker 2001, p. 15], prefixing operator ‘ . ’,
operator new , condition []x y= , and replication operator ‘ ! ’ bind more tightly than
composition ‘ | ’, and prefixing binds more tightly than the summation operator ‘+ ’. A
pair of parentheses can be used to enclose a process expression P for creating a scope.

For example, we can represent process expression (). | . ()x y y z x w w x equivalently as
(().) | (. ())x y y z x w w x .

3 MULTITHREADING IN JAVA

A thread of execution is denoted in a Java program with a thread object, which is an
instance of the standard class Thread. The Java Virtual Machine allows a program to
spawn multiple threads, which run concurrently. The Java language defines a
synchronization mechanism for programmers to prevent concurrent threads from
interfering with each other [Arnold et al 2000]. In addition to synchronization, Java
provides methods wait, notify, and notifyAll in the standard class Object to
support communication between threads [Arnold et al 2000, p. 244]. For self-containment,

MultiThreading in Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 161

we briefly introduce thread creation, synchronization, and communication. More details
on thread can be found in [Arnold et al 2000, Chapter 10].

Thread Creation
There are two ways to create a thread in a Java program. First, a subclass of the class
Thread can be instantiated to create threads. In the subclass, we override method run
of class Thread with specific functionality for the threads, which run concurrently with
other threads.

For example, we shall use an object p of class Process to implement a π-calculus
process. The class Process inherits class Thread. In subclass Process, we override method
run of class Thread with operations that realize the atomic actions specified in the π-
calculus process. The following Java statement can be used to start the running method
run of object p:

p.start();

The other way to create a thread is to declare a class that implements the standard
interface Runnable. The class should implement method run to specify functionality.
We can instantiate the class to create an instance r, instantiate the class Thread with the
Runnable object r as the constructor argument, and start to run the created Thread
object. Thus, method run of object r is executed and the specified functionality is
realized. For example, since class Thread implements interface Runnable, the above
Java statement can be replaced with Java statement

new Thread(p).start();

Thread Synchronization
Java keyword synchronized can be used to qualify a method or statement. Each
object has a lock, which is acquired implicitly through the call of a synchronized
method of the object and explicitly through the execution of a synchronized
statement [Arnold et al 2000, p. 235]. In a Java program, we can synchronize a set of
threads by following the protocol that before operating on an object, each of the threads
acquires the object’s lock. Thus, only one of the threads can hold the lock and proceed;
others are blocked by the lock. The thread holding the object’s lock can complete an
atomic transaction before it releases the lock.

When a thread invokes a synchronized method on an object, the thread acquires
the object’s lock. If the thread already possesses the lock, it will not be blocked and the
method execution proceeds. If the acquired lock is being held by a different thread, the
thread is blocked until the lock is released by the other thread. When an object’s lock is
released, there may be several threads blocked by the lock. An object’s lock is released
by a thread automatically when method run of the thread returns. A static
synchronized method of a class acquires the class object’s lock when it is invoked.
For example, in the implementation of the compiler pi2j, we define the following
static method newPrefix() in class Blackboard for handling new-prefixes,

Implementing the π-Calculus in Java

162 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

which are denoted by the parameter np. An invocation of the method newPrefix
acquires the lock of the class Blackboard.

public static synchronized void newPrefix(NewPrefix np)
{
 RepeatedSequence rseq = np.seq0.parent;
 rseq.addBoundVars(np.names);
 np.removeFlag();
}

A synchronized statement explicitly specifies an object for acquiring the object’s
lock. The object to be locked may be different from the current object [Arnold et al 2000,
p. 238]. It is locked before the synchronized statement is executed and is released
after the statement execution is over. For example, we can remove the synchronized
keyword from the above method signature and turn the method body into a
synchronized statement that acquires locking the class Blackboard. That is, we
can translate the above method to the equivalent method definition:

public static void newPrefix(NewPrefix np)
{
 synchronized(Blackboard.class)
 {
 RepeatedSequence rseq = np.seq0.parent;
 rseq.addBoundVars(np.names);
 np.removeFlag();
 }
}

The standard class Thread defines methods interrupt and interrupted, which
are inherited by subclasses of class Thread. In one part of a Java program, we can call
method interrupt for a running thread to request cancelling the thread; in another part,
we can invoke method interrupted to detect the cancellation request. The execution
of method interrupt does not halt the running thread. If the running thread is
executing method sleep or wait for some object when it is interrupted by the method
interrupt, the sleep or wait method throws an InterruptedException
[Arnold et al 2000, p. 256].

Thread Communication
Java threads may communicate by invoking the methods wait, notify, and
notifyAll of objects. The methods, defined in the standard class Object, are
available in each object. The parameterless wait method has signature

public final void wait() throws InterruptedException

It causes the current thread to wait until another thread invokes the notify or
notifyAll method for the object. For the current thread to execute the method for an
object, it must own the object’s lock (monitor). By executing the wait method, the
thread releases the monitor and waits until another thread notifies threads waiting on the
object’s monitor by calling the notify or notifyAll method of the object. The other

MultiThreading in Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 163

thread that executes the notify or notifyAll method may need to wait until it
regains the monitor.

The notifyAll method has signature
public final void notifyAll()

for waking up all the threads that are waiting on this object’s monitor. The awakened
threads compete in the same way with other threads that compete to lock this object. The
notify method has signature

public final void notify()

After the method is executed for an object, arbitrary one of the threads waiting on the
object’s monitor is awakened. The awakened thread competes with other threads that
actively compete to synchronize on this object. Like the method wait, the current thread
must own an object’s monitor before it can invoke the notifyAll or notify method
for the object.

For example, in the implementation of the compiler pi2j, we represent a sequence
of dot-separated actions with an object of class Sequence. In the run method of the
Sequence object, the following Java code is used to realize a parameterless atomic
input action x . The synchronized statement is used for the current thread to acquire
the lock of object inputAgent, which is an instance of class InputAgent. After
locking the object, the current thread executes the wait method for the object
inputAgent to wait until the flag in object inputAgent is removed.

inputAgent = new InputAgent(this, "x");
inputAgent.setupFlag();
Blackboard.communicateInput(inputAgent);
synchronized(inputAgent) {
 try {
 while (inputAgent.flag) inputAgent.wait();
 } catch(InterruptedException ie) { return; }
}

4 A LANGUAGE FOR CODING π-CALCULUS EXPRESSIONS

We now present the ASCII-based π-language for coding π-calculus expressions. We
follow [Milner 1999, p. 89] to encode input and output atomic actions in the π-language.
ASCII text editors can be used to program in the π-language.

Atomic Actions
The π-calculus expression .x y P uses output prefix x y to send name y via (channel)
name x . We replace the typographical symbol x with ASCII expression out x and code
the action expression x y with expression out x<y> in the π-language. We regard the

Implementing the π-Calculus in Java

164 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

name y as an argument of the output action out x. The π-language allows using capital
letters in keywords. For example, all the following three expressions in the π-language
denote the output atomic action x y . They are equivalent.

 out x<y>
 Out x<y>
 OUT x<y>

The following three equivalent expressions represent argumentless output action x .
 out x<>
 Out x
 OUT x<>

The π-calculus process expression ().x z Q uses an action prefix ()x z to input a name
from name x and assigns the inputted name to the bound name (parameter) z . We shalll
denote the “input operator” with ASCII expression in x and code atomic action
expression ()x z with expression in x(z) in the π-language. We regard the name z as the
parameter of the input action in x. For example, all the following three π-language
expressions denote the same input action ()x z .

 in x(z)
 In x(z)
 IN x(z)

The following three expressions represent the same parameterless input action x .
 in x()
 In x
 IN x()

In the π-calculus, process expression .Rτ using Greek letter τ denotes an action that is
invisible to the environment outside the agent that executes the action. Following the Pict
language and other applications [Pierce and Turner 2000; Canal et al 2003], we denote
the atomic action τ with keyword tao in the π-language. For example, the π-language
expression

tao.in x(z).out z<y>

denotes a process. It schedules an internal action τ , an input action ()x z , and an output
action z y , which sends name y via the name received by the input action ()x z . The
keyword tao is also caseless. For example, the following π-language expression denotes
the same π-calculus process as the above π-language expression.

TAO.IN x(z).OUT z<y>

Other than the keywords such as in, out, and tao, names in the π-language are case
sensitive. For example, the following π-language expression is different from the above
π-language expression.

TAO.IN X(Z).OUT Z(Y)

A Language for Coding π-Calculus Expressions

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 165

In the π-calculus [Milner 1999], keyword new is used in the prefix new wr in a process
expression to declare a series of private bound names 1... mw w w=

r with 0m > . We keep the
keyword new and denote the π-calculus prefix 1... mnew w w with π-language prefix

new w1 … wm

The keyword new is caseless. For example, the π-language expression new x y new z
out w<x>.out w<y>.out w<z> denotes π-calculus process

. .new x y new z w x w y w z . It uses two new-prefixes to introduce names x, y, and z. It
sends the private names out through the name w. The expression is equivalent to new x y
z out w<x>.out w<y>.out w<z>.

Syntactic Rules
The grammar of the π-language consists of the following production rules, in which
terminal symbols are printed in color blue. A pair of curl braces { and } followed by an
asterisk ‘*’ is used to enclose a grammar component that may be repeated zero or more
times. A pair of curl braces followed by the plus symbol ‘+’ encloses a component that is
repeated at least once. A pair of square brackets [and] encloses an optional component.
A Java identifier denoted with nonterminal id consists of letters, digits, and underscore
‘_’ and can be started only with a letter.

<process> ::= <summation> { | <summation> }*
<summation> ::= <repeatedSequence> { + <repeatedSequence> }*
<repeatedSequence> ::= [<actionSequence>] { ! <actionSequence> }*
<actionSequence> ::= { <restriction> }* <atomicAction>

{ . { <restriction> }* <atomicAction> }*
<atomicAction> ::= <outAction> | <inAction> | <silentAction> | (<process>)
<restriction> ::= < newPrefix > | <condition>
<newPrefix> ::= new { <id> }+
<condition> ::= [<id> = <id>]
<outAction> ::= out <id> [< [<id>] >]
<inAction> ::= in <id> [([<id>])]
<silentAction> ::= tao

In the above grammar, operators introduced at lower levels bind more tightly than the
ones at a higher level. Hence, the grammar is compatible with operator precedence
ordering:
 |
 +
 !, ., new, in, out, tao, [, =,], <, > , (,)

A difference between the above grammar and the π-calculus [Milner et al. 1989] is about
the precedence ordering of operators ‘|’ and ‘+’. In the above grammar, the composition
operator ‘|’ is assigned the lowest precedence because in system modeling for, say, the
jobshop [Milner 1999, p. 62] or the storage system [Sangiorgi and Walker, p. 32], a
system usually consists of indepednent, concurrent agents (components), which are

Implementing the π-Calculus in Java

166 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

bound together using the operator ‘|’. Choice decisions supported by the operator ‘+’ are
lower-level decisions made by indivisual agents.

The above grammar makes a syntactic simplification for the π-calculus. In the π-
calculus, the repetition operator ‘!’ is prefixed to an atomic action expression π and the
dot operator ‘.’ can connect an action 1π and a repeated action !π in the π-calculus
expression 1.!π π . Here, we omit the connector ‘.’ inside the process expression 1.! .π π For
example, the π-calculus expression ! ().! .0x z y z shown in [Sangiorgi and Walker 2001, p.
13] will be coded with expression ! in x(z) ! out y<z> in the above grammar. An
advantage of replacing the two-symbol operator “.!” in the π-calculus with the single-
symbol operator ‘!’ is simplification of parser construction. Logically, occurrences of the
repetition operator ‘!’ in a sequence of actions separate the sequence into maximal
sequences that do not contain operator ‘!’.

In the above grammar, nonterminal <atomicAction> denotes an input x(y), an output
x z , a silent action τ, or a process expression enclosed within a pair of parentheses
(and). The nonterminal <restriction> denotes either a prefix 1... mnew w w or a condition
[]x y= . Multiple restrictions denoted by the nonterminal <restriction> may be prefixed to
the atomic actions in an action sequence, which is denoted with the nonterminal
<actionSequence> and which does not include any of the operators ‘!’, ‘+’ and ‘!’. The
action sequences, denoted by nonterminal <actionSequence>, can be connected with
operator ‘!’ to form a repeated sequence, which is denoted with nonterminal
<repeatedSequence> and which may be prefixed with the operator ‘!’. Several repeated
sequences, denoted with nonterminal <repeatedSequence>, can be connected with
operator ‘+’ to form a summation, which is denoted with <summation>. Several
summations , denoted with the nonterminal <summation>, can be connected into a
process expression denoted with nonterminal <process>. Since a process expression
enclosed within a pair of parentheses (and) is an atomic action, the above grammar
defines process expressions recursively.

The π-language can be used to encode an empty process, which amounts to the
inaction process 0 . The empty process denoted as 0 can be deduced as follows:

<process> ⇒ <summation>
⇒ <repeatedSequence>
⇒ [<actionSequence>]
⇒ ε

We can represent the empty process ε with a pair of parentheses () in the π-language. In
fact, the process () is an instance of the nonterminal <atomicAction> of the above
grammar. Similarly, expression ().() is also a π-language process expression. By the
above discussion, we omit the inaction symbol 0 in the π-language.

Translating π-Programs to Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 167

5 TRANSLATING π-PROGRAMS TO JAVA

Process Decomposition
We follow the syntactic structure of the π-language grammar to compile a π-calculus
process expression into Java objects. Specifically speaking, we use the objects of the
following Java classes to organize the grammar components identified in a π-language
process expression. The following table shows that the Java classes correspond to
nonterminal symbols in the π-language grammar. We ascribe responsibilities to the Java
objects in the following discussion.

Nonterminal Symbol Java class

process Process

summation Summation

repeatedSequence RepeatedSequence

actionSequence Sequence

newPrefix NewPrefix

condition Condition

outAction OutputAgent

inAction InputAgent

silentAction SilentAgent

Table 1: Nonterminals in the π-language grammar and their Java incarnations

Each of the classes Process, Summation, RepeatedSequence, and Sequence
inherits the standard class Thread. Therefore, the run method of an object of any of the
classes can be started as a new thread. We enclose the object’s responsibility in the
objects’ run method.

We use an object of class Process to represent a π-language process expression.
Its run method encloses the translations of all the summation components of the π-
language process and, thus, all the actions specified in the process.

An object of class Summation is used to represent a π-calculus summation
expression .i i

i I
Pπ

∈
∑ . An addend or term .i iPπ in the summation is parsed as

Implementing the π-Calculus in Java

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

repeatedSequence component. The run method of the Summation object encloses
translations of all the repeatedSequence components in the summation and, thus, encloses
all the actions specified for the summation.

We use a RepeatedSequence object to realize a maximal sequence of atomic
actions that are connected with either the dot operator ‘.’ or the repetition operator ‘!’.
Each of the atomic actions in the sequence can be qualified with conditions and new-
prefixes, which are represented with objects of classes Condition and NewPrefix,
respectively. The sequence corresponds to an addend .i iPπ of the summation .i i

i I
Pπ

∈
∑ .

The run method defined in the RepeatedSequence object is explained as follows.
A RepeatedSequence object is responsible to keep the current value w for each

name y declared locally in the repeated sequence. The value w is assigned to the name y
by an input action such as in x(y). It is represented as a substitution { / }w y applied to
the repeated sequence in a π-calculus process expression. We use a dictionary named
substitution in the RepeatedSequence object to keep the current values w of
names y . In addition to the name w, we also keep an object sequ of the
RepeatedSequence class in which the name w is declared. The name w and the object
sequ are encapsulated in an object, which is the value of key y in dictionary
substitution.

In the root process object of a Java program that represents a π-program, we use an
instance variable root to hold an object of class RepeatedSequence. The object
root keeps all the free variables of the π-calculus process expression and the current
values of those free variables that have been changed by input actions.

The action sequence represented by the RepeatedSequence object is divided by
the repetition operator ‘!’ into maximal sequences of atomic actions that do not include
the repetition operator. We represent each of the atomic action sequences with an object
of class Sequence. The run method of the Sequence object encodes the π-language
translations of all the actions in the action sequence. We represent the actions with
objects of classes OutputAgent, InputAgent, and SilentAgent. The conditions
and new-prefixes in front of the action expressions are represented with objects of classes
Condition and NewPrefix.

While translating a π-language process expression, we create anonymous subclasses
of the classes Process, Summation, RepeatedSequence, and Sequence. In the
run methods of the unique objects of the anonymous classes, we enclose the Java
translations of components of the π-language process expression. For example, the π-
language process in x.out x<y> + out x | out y consists of two summations in
x.out x<y> + out x and out y. The first summation consists of two repeated
sequences in x.out x<y> and out x. The second summation consists of only one
repeated sequence, which is an action sequence of length one. The repeated sequence in
x.out x<y> contains no replication operator ‘!’ and, therefore, is composed of an

Translating π-Programs to Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 169

action sequence. Thus, the given π-language process consists of three action sequences.
The π-language process expression is compiled to the following Java program, in which
three Sequence objects are created.
 import java.util.*;
 public class PiProgram {
 public static void main(String args[]) {

 new Process(2) {
 public void run() {

 new Summation(this) {
 public void run() {

 new RepeatedSequence(this) {
 { seqs = new Sequence[1]; }
 public void run() {
 seqs[0] = new Sequence(this) {
 public void run() {

 inputAgent = new InputAgent(this, "x");
 inputAgent.setupFlag();
 Blackboard.communicateInput(inputAgent);
 synchronized(inputAgent) {
 try {
 while (inputAgent.flag) inputAgent.wait();
 } catch(InterruptedException ie) { return; }
 }
 if (dead()) return;

 outputAgent = new OutputAgent(this, "x", "y");
 outputAgent.setupFlag();
 Blackboard.communicateOutput(outputAgent);
 synchronized(outputAgent) {
 try {
 while (outputAgent.flag) outputAgent.wait();
 } catch(InterruptedException ie) { return; }
 }
 if (dead()) return;
 }
 };
 new Thread(seqs[0]).start();
 }
 }.start();
 new RepeatedSequence(this) {
 { seqs = new Sequence[1]; }
 public void run() {
 seqs[0] = new Sequence(this) {
 public void run() {
 outputAgent = new OutputAgent(this, "x");
 outputAgent.setupFlag();
 Blackboard.communicateOutput(outputAgent);

Implementing the π-Calculus in Java

170 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

 synchronized(outputAgent) {
 try {
 while (outputAgent.flag) outputAgent.wait();
 } catch(InterruptedException ie) { return; }
 }
 if (dead()) return;

 }
 };
 new Thread(seqs[0]).start();
 }
 }.start();
 }
 }.start();
 new Summation(this) {
 public void run() {
 new RepeatedSequence(this) {
 { seqs = new Sequence[1]; }
 public void run() {
 seqs[0] = new Sequence(this) {
 public void run() {
 outputAgent = new OutputAgent(this, "y");
 outputAgent.setupFlag();
 Blackboard.communicateOutput(outputAgent);
 synchronized(outputAgent) {
 try {
 while (outputAgent.flag) outputAgent.wait();
 } catch(InterruptedException ie) { return; }
 }
 if (dead()) return;

 }
 };
 new Thread(seqs[0]).start();
 }
 }.start();
 }
 }.start();
 }
 }.start(); // root process
 } // main
 } // PiProgram

Action Realization
Inside the run method of a Sequence object, we create objects to perform atomic
actions. For example, the input action in x presented in the π-language process in
x.out x<y> + out x | out y is realized with the following Java code, which
instantiates class InputAgent to create an object inputAgent that encapsulates the

Translating π-Programs to Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 171

name x . It sets the flag value in the object inputAgent. The method
communicateInput of class Blackboard is invoked to handle the input action. If
the input action can be communicated with an existing output action, the communication
takes place; otherwise, the static method communicateInput enters the object
inputAgent into a queue. The flag value in object inputAgent is removed by the
method communicateInput after the input action is communicated with an output
action x presented in a different summation.

inputAgent = new InputAgent(this, "x");
inputAgent.setupFlag();
Blackboard.communicateInput(inputAgent);
synchronized(inputAgent) {

try {
while (inputAgent.flag) inputAgent.wait();

} catch(InterruptedException ie) { return; }
}
if (dead()) return;

As shown in the above Java code, before the input action is communicated, the running
Sequence thread that has the input action as prefix waits by invoking the wait method
of the object inputAgent. While the Sequence thread is waiting, if the class
Blackboard finds an output action to communicate with the object inputAgent, the
flag value of the object inputAgent is removed so that the thread will continue its
operation. As described in Section 2, the class Blackboard may need to render the
Sequence thread void. In the latter case, the Sequence thread invokes method dead
to detect whether it is void. If the test results true, the Sequence thread terminates
with a return statement.

Parent Relation
In the above Java program, a thread object is created with the keyword this as
constructor argument. The constructor relates the created thread object and the current
object with a parent relation. In the classes Process, Summation,
RepeatedSequence, and Sequence, an instance variable parent of type
Sequence, Process, Summation, or Repeated-Sequence is used to hold the
parent of an object. The parent relation at the class level is shown in the UML class
diagram in Fig. 1. As indicated in the above Java program, the parent relation in a Java
program that realizes a π-calculus process expression has a hierarchical structure, the root
of which is an object of the class Process.

Implementing the π-Calculus in Java

172 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

Figure 1 The parent relation for π-programs

For example, a process is composed of summations. A reference of the corresponding
Process object is assigned to the parent attributes of the Summation objects. In the
above Java program, the constructor invocation of each anonymous class uses keyword
this to relate the created object and its parent.

Action Synchronization
Running threads may interfere each other. We realize an action, new-prefix, or condition
with a static synchronized method of class Blackboard. The static
methods acquire the lock of the class object of the class Blackboard and are, thus,
synchronized. We use the static method communicateInput of class
Blackboard to illustrate the synchronization mechanism. The method signature is

public static synchronized void communicateInput(InputAgent ia)

Assume the argument object ia of the communicateInput method represents input
action in x(z). The object ia initially records only the Sequence object seq0 of
which the input action is the current prefix and the names x and z. Note that the names x
and z may have been replaced with other bound names declared in the same or different
repeated sequence. The current values of the names x and z can be found in the
RepeatedSequence objects that are ancesters of object seq0. An instance method
named setup of class InputAgent is invoked by the communicateInput method
to find the current values arg0 and arg1 of the names x and z recorded in object ia.

The communicateInput method looks for a queued object oa of class
OutputAgent such that

Translating π-Programs to Java

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 173

• The object oa represents an atomic action out y<w>,
• The current values of names y and w recorded in object oa are denoted with arg0

and arg1, respectively, and
• The value arg0 in ia and value arg0 in oa are the equal.
If the search for a queued object oa succeeds, the communicateInput method
performs a communication between the threads that have ia and oa as prefix actions,
respectively. Then, the threads can continue their respective run methods. Otherwise, the
object ia is entered into a queue to wait for an output action to which it can
communicate. The communication process consists of the following activities:
• If the name z is declared in RepeatedSequence object sequ, the value of the

key z in the dictionary substitution in object sequ will be replaced with the
value arg1 in the object oa. Thus, the output argument is assigned to the input
parameter.

• If any queued input or output action that stores an arg0 or arg1 value for the name
z declared in RepeatedSequence sequ, the arg0 or arg1 value is replaced by
the value arg1 in object oa.

• Remove the flag values in the objects ia and oa. The flag removals permit the
threads waiting for the flags to continue their executions.

6 COMPILER PI2J

Usage of the Compiler

Compiler pi2j is pronounced as “π to J(ava)”, which means translating π-language
process expressions to Java programs. It is a Java application generated with JavaCC
[JavaCC 2003]. Suppose the π-language program of a π-calculus process is in the file pi-
program.txt. We can use command

java pi2j pi-program.txt
to invoke the Java application pi2j for translating the file pi-program.txt to a Java
program, which has default name PiProgram.java. If a class name MyClass is placed
in the command

java pi2j pi-program.txt MyClass
The above command will define a class MyClass in Java file MyClass.java. The Java
file PiProgram.java and MyClass.java can be compiled with the Java compiler by
issuing one of the commands

javac PiProgram.java
javac MyClass.java

The resulting JVM bytecode file can be executed with one of the commands
java PiProgram

Implementing the π-Calculus in Java

174 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

java MyClass
The java application is compressed into the jar file pi2j.jar with the command

jar -cmf pi2j.jar *.class
The compiler pi2j can be applied to translate the file pi-program.txt to the JVM bytecode
file PiProgram.java with the command

java -jar pi2j.jar pi-program.txt

Action Queue
In the execution of a π-language process expression, if an input or output action π cannot
be communicated with a waiting output or input action, the action π is entered into a
queue to wait for a new output or input action for the purpose of communication. We now
use the π-calculus process expression . .new x y new z w x w y w z discussed in Section 4
to illustrate the queuing functionality of the compiler pi2j.

Assume the file pi-program.txt consists of the π-language code new x y new z out
w<x>.out w<y>.out w<z>. We compile the π-program pi-program.txt into the Java
program PiProgram.java with compiler pi2j and compile PiProgram.java to
bytecode file PiProgram.class. An execution of the bytecode file PiProgram.class
displays the following information on the standard output.

Keep into queue output action:
 An out action in sequence: Thread[Thread-5,5,main]
 the parameters are w and x
 the parameter values are "Thread[Thread-1,5,main] + w"
 and "Thread[Thread-4,5,] + x".

The above output indicates that output action prefix out w<x> is placed into a queue by
the class Blackboard. It also indicates that the output action belongs to a thread object
denoted by expression Thread[Thread-5,5,main], the arg0 value for the free
name w is an encapsulation of thread object Thread[Thread-1,5,main] and name
w, and the arg1 value for name x is an encapsulation of thread object
Thread[Thread-4,5,] and name x. Note that the bound name x is declared in
thread Thread[Thread-4,5,]. The execution of the bytecode file will not terminate
naturally since the Sequence thread Thread[Thread-5,5,main] has action out
w<x> waiting for communication.

Similarly, if the file pi-program.txt consists of the π-language code in x.out
x<y> + out x | out y, an execution of the JVM byte code that is compiled from the π-
program places objects that represent the action prefixes in x, out x, and out y into
queues by the class Blackboard. The execution will not terminate due to three waiting
sequence threads.

Compiler PI2J

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 175

I/O Communication
We use a π-calculus process (). | ()w x x z w y w r+ to illustrate action communication
supported by the compiler pi2j. Assume file pi-program.txt consists of π-language code
out w<x> + in x(z).out w<y> | in w(r), which encodes the π-calculus
process. An execution of the JVM bytecode compiled from the file pi-program.txt
displays the following information on the standard output. The first operation displayed
on the standard output queues the output action w x , which is the action prefix of the
first repeated sequence in the process expression. The second operation queues the input
action ()x z , which is the prefix of the second repeated sequence. The prefix action ()w r
of the second summation can communicate with the waiting output action w x . The
following information uses word Communicate and a pair of curl braces to show the
action communication. Since the performance of the prefix of the first repeated sequence
renders the second repeated sequence void, there will be no active Sequence thread left
in the queue after the communication. Thus, the execution of the JVM bytecode compiled
from the π-program out w<x> + in x(z).out w<y> | in w(r) terminates.

Keep into queue output action:
 An out action in sequence: Thread[Thread-8,5,main]
 the parameters are w and x
 the parameter values are "Thread[Thread-1,5,main] + w"
 and "Thread[Thread-1,5,main] + x"
Keep into queue input action:
 An in action in sequence: Thread[Thread-10,5,main]
 the parameters are x and z
 the parameter values are "Thread[Thread-1,5,main] + x"
 and "Thread[Thread-1,5,main] + z"
Communicate {
 input action:
 An in action in sequence: Thread[Thread-12,5,main]
 the parameters are w and r
 the parameter values are "Thread[Thread-1,5,main] + w"
 and "Thread[Thread-1,5,main] + r"
output action:
 An out action in sequence: Thread[Thread-8,5,main]
 the parameters are w and x
 the parameter values are "Thread[Thread-1,5,main] + w"
 and "Thread[Thread-1,5,main] + x"

7 CONCLUSION

The π-calculus proposed by Milner et al [Milner et al 1992] is a theoretical model of
mobile communicating systems. Here, we present an implementation of the π-calculus in
the Java language by exploiting the Java multithreading and thread communication

Implementing the π-Calculus in Java

176 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2

mechanism. We decompose a π-calculus process into different components and
implement the components with classes Process, Summation,
RepeatedSequence, and Sequence. The Sequence objects are execution threads,
which enclose the actions specified in π-calculus processes and which can run
concurrently.

 The Java implementation of the π-calculus makes it possible for using the π-
calculus to control and simulate real-world mobile communicating systems. The Java
implementation of the π-calculus handles only the communication actions but no control
actions or other operations. A research topic is to incorporate controlled operations into
the π-processes.

REFERENCES

[Arnold00] K. Arnold, J. Gosling, and D. Holmes, The Java Programming
Language – Third Edition, Addison-Wesley, Boston 2000.

[Canal03] C. Canal, L. Fuentes, E. Pimentel, J.M. Troya, and A. Vallecillo,
Adding roles to CORBA objects, IEEE Transactions on Software
Engineering, Vol. 29, No. 3, March 2003, 242-260.

[Fournet97] C. Fournet and L. Maranget, The Join-Calculus Language (release
1.05), Institut National de Recherche en Informatique et Automatique,
http://pauillac.inria.fr/join/manual/index.html.

[JavaCC03] JavaCC developers community, Java Compiler Compiler (JavaCC) –
The Java Parser Generator, Version 3.2, Sun Microsystems Inc.,
2003, https://javacc.dev.java.net/.

[Vasconcelos98] V. Vasconcelos and R. Bastos. The TyCO Programming Language,
http://www.ncc.up.pt/~lblopes/tyco/.

[Milner92] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes
(Parts I and II), Information and Computation, Vol. 100, No. 1, pp. 1-
77, 1992.

[Milner99] R. Milner, Communication and Mobile Systems: The π-Calculus,
Cambridge University Press, Cambridge, UK 1999.

[Pierce00] B. Pierce and D. Turner, Pict: A programming language based on the
Pi-calculus, In Proof, Language and Interaction, MIT Press 2000. The
Pict compiler is available at
http://www.cis.upenn.edu/~bcpierce/papers/pict/.

[Sangiorgi01] D. Sangiorgi and D. Walker, The π-calculus: A Theory of Mobile
Processes, Cambridge University Press, Cambridge UK 2001.

http://pauillac.inria.fr/join/manual/index.html
https://javacc.dev.java.net/
http://www.ncc.up.pt/~lblopes/tyco/
http://www.cis.upenn.edu/~bcpierce/papers/pict/

Conclusion

VOL. 4, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 177

[Smolka95] G. Smolka, The Oz programming model, in Current Trends in
Computer Science, Jan van Leeuwen (editor), Lecture Notes in
Computer Science, Volume 1000, Springer-Verlag, Berlin 1995.

About the author
Dr. Liwu Li is a professor in School of Computer Science at University
of Windsor, Canada. His research interests include object-oriented
language design and implementation, object-oriented software analysis
and design, and software process design and execution. He can be
reached at liwu@uwindsor.ca and http://www.uwindsor.ca/liwu.

http://www.uwindsor.ca/liwu
mailto:liwu@uwindsor.ca

