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Implementing the π-Calculus in Java 
Liwu Li, University of Windsor, Canada 

Abstract 
Mobile communicating systems are ubiquitous in the modern world. The π-calculus 
proposed by Milner et al [Milner et al. 1992] sets a theoretical foundation for modeling 
mobile communicating systems such as the Internet, in which links can be sent from 
processes to processes and a process can use a received link to interact with another 
process. Here, we present a language named π-language for programming π-calculus 
processes and a compiler named pi2j for translating the π-programs to Java code, 
which can be compiled with the Java compiler to JVM bytecode and, then, executed on 
the Java Virtual Machine. Thus, we implement the π-calculus in the Java language. 

1 INTRODUCTION 

The π-calculus was introduced by Milner et al. [Milner et al 1992] for modeling the 
changing connectivity inside mobile communicating systems, in which links between 
concurrently running processes can be passed from processes to processes and a process 
can use a received link to communicate with another process. It is similar to the λ-
calculus as a theoretical model of sequential computation, the π-calculus can be used to 
model modern concurrent systems [Milner 1999; Sangiorgi and Walker 2001]. The π-
calculus has aroused intensive interests in research to study its applicability, extensibility, 
and other properties. For example, it has been shown that the π-calculus is powerful 
enough to model various data structures, object-oriented programs, and communicating 
systems. The π-calculus is also the basis of several experimental programming languages 
such as Pict [Pierce and Turner 2000], Join [Fournet and Maranget 1997], and TyCO 
[Vasconcelos and Bastos 1998]. In this paper, we shall denote a π-calculus process expression in 
the ASCII directly by denoting Greek letters and typographical notations used in the π-
calculus process expression with ASCII words. Then, we show how to translate the ASCII 
code of the π-calculus process expression to the Java language. Thus, we realize the 
dynamic communication mechanism of the π-calculus by invoking the Java 
multithreading mechanism.  

We present an ASCII-based language called π-language for coding π-calculus 
process expressions. Using keywords in ASCII to denote the Greek leters and other non-
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ASCII symbols, the π-language represents π-calculus process expressions faithfully. Its 
grammar improves the syntactic rules of the π-calculus by eliminating ambiguities in the 
syntax rules of the π-calculus. We can compile the translated π-calculus process 
expressions into Java to explore the multithreading and synchronization mechanism of 
Java. We describe the Java concurrent classes that we developed to support the 
communication mechanism of the π-calculus. Based on the Java classes, we present a 
compiler named pi2j to translate the so-called π-programs into the Java language. Then, 
we can compile and run the Java code that implements π-calculus process expressions. 

This paper is organized as follows. The next section introduces the π-calculus as 
specified in [Milner 1999; Sangiorgi and Walker 2001]. In Section 3, we briefly introduce 
the multithreading and synchronization constructs of the Java language, which are used to 
implement the π-calculus. We present the π-language for coding π-calculus process 
expressions in Section 4. We describe the various Java objects that support the dynamic 
communication mechanism of the π-calculus in Section 5. The compiler pi2j attached 
with the paper is described in Section 6. This paper is concluded in Section 7. 

2 THE π-CALCULUS 

The π-calculus is founded on three notions: name, (atomic) action, and process [Milner 
1999, p. 87; Sangiorgi and Walker 2001, p. 11]. It assumes a countably infinite set Ν of 
names, which are denoted by lower case letters x , y , z , … with possible subscripts. A 
name can be thought of as the name or label of a communication link. It has no internal 
structure. In the π-calculus, a mobile communicating system is represented with a process, 
which may be composed of processes recursively and which performs actions. Processes 
use names to interact each other and pass names through the interactions.  

An (atomic) action π in the π-calculus takes one of the following four forms 
[Sangiorgi and Walker 2001, p. 11]: 

π    ::=  ( )x y  receives name y  through name (link) x  (parameter y  is optional)

 x z  sends name z  out via name x  (argument z  is optional) 

 τ  performs an unobservable internal action 

 [ ]x y π=  performs action π  if names x  and y  are the same 

 

(Only the first three atomic actions are listed in [Milner 1999, p. 11].) A process P  takes 
one of the following four forms [Milner 1999, p. 87]: 
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P    ::= .i i
i I

Pπ
∈
∑  chooses one of alternative processes .i iPπ  for a finite index set I

 1 2|P P  executes processes 1P  and 2P  concurrently 

 new z P  declares a private (bound) name z  for process P  

 !P  supplies (an infinite number of) copies of process P  

 

The dot symbol ‘.’ is a process constructor in π-calculus expressions. A process 
expression .P Q  schedules a sequential execution of the processes P  and Q ; i.e., process 
Q  can proceed only after process P  is exercised. For instance, an addend .i iPπ  in the 

summation 
.i i

i I
Pπ

∈
∑

, indicates that action iπ  must be completed before process iP  can 
start. We say that process iP  is guarded by action iπ  [Milner 1999, p. 87].  

In the summation expression 
.i i

i I
Pπ

∈
∑

, binary operator ‘+’ is used to connect the 
addends .i iPπ  for i I∈ . The choice and execution of action prefix iπ  of a term .i iPπ  in 

the summation renders other terms .j jPπ  with j i≠  void [Sangiorgi and Walker 2001]. If 

the index set I  is empty, we denote the summation 
.i i

i I
Pπ

∈
∑

 with zero symbol 0 , which 
does nothing and is called an inaction [Sangiorgi and Walker 2001, p. 12]. The 
expression 0  is also used in the π-calculus to terminate a special sequence of dot-
separated actions [Sangiorgi and Walker 2001]. 

A composition expression 1 2|P P  indicates that the component processes 1P  and 2P  
can proceed independently. The composition operator ‘ | ’ is commutative and associative 
[Sangiorgi and Walker 2001, p. 20]. The component processes 1P  and 2P  may 
communicate via a (channel) name x  if one of them has an input action ( )x y  as prefix 

and the other has an output x z  as prefix for some names x , y , and z . The 
communication inside the process 1 2|P P P=  is regarded as an unobservable internal 
action in process P . Component processes 1P  and 2P  can communicate if their action 
prefixes are x  and x , respectively, for some name x .  

For example, process expression ( ). | . ( )x y y z x w w x  can be transmitted to a 

process { / }| ( )y z w y w x  by an internal communication via the name x . The substitution 
{ / }w y  applied to expression y z  requires replace the free occurrences of name y  in 

process y z  with name w . The resulting process is congruent to process | ( )w z w x , 
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which permits another internal communication action via the name w . Particularly, the 

two components in process | ( )w z w x  can communicate via name w  and the process will 

proceed to 0 | 0 0= . Thus, the process ( ). | . ( )x y y z x w w x  executes. 
In the above syntax rule for processes, the new-prefix new z  in the process 

expression new z P  introduces a private (local) bound name z  for the process P . By the 
syntax rule, all the free occurences of name z  in the process expression P  refer to the 
name z  declared by the new-prefix new z . For example, both the third and fourth 

occurrences of the name z  in process expression ( )( ). .z y new z x z z v  denote the bound 
name z  declared in the new-prefix inside the expression. They are different from the first 
occurrence of the name z , which is a free occurrence of name z  in the process 
expression. To avoid accidental capture of bound names, α-conversion can be applied to 
rename bound names and input parameters [Sangiorgi and Walker 2001, p. 15]. We can 
use a new-prefix in the form 1 ... knew z z  to abbreviate a series of new prefixes 

1 ... knew z new z . The new-prefix introduces multiple bound names 1,..., kz z  with k ≥ 1. In 
[Sangiorgi and Walker 2001], Greek letter ν is used for the keyword new . 

A replication expression !P  is composed of the exclamation symbol ‘ ! ’ and a 
process expression P . It provides the power of a parametric recursive process [Milner 
1999, p. 88]. It is equivalent to the composition |!P P . In the following discussion, we 
shall not shrink a process expression |!P P  to the expression !P . The expression !P  is 
expanded to the expression |!P P  only when the component P  may communicate with 
another process. 

In the π-calculus [Sangiorgi and Walker 2001, p. 15], prefixing operator ‘ . ’, 
operator new , condition [ ]x y= , and replication operator ‘ ! ’ bind more tightly than 
composition ‘ | ’, and prefixing binds more tightly than the summation operator ‘+ ’. A 
pair of parentheses can be used to enclose a process expression P  for creating a scope. 

For example, we can represent process expression ( ). | . ( )x y y z x w w x  equivalently as 
( ( ). ) | ( . ( ))x y y z x w w x . 

3 MULTITHREADING IN JAVA 

A thread of execution is denoted in a Java program with a thread object, which is an 
instance of the standard class Thread. The Java Virtual Machine allows a program to 
spawn multiple threads, which run concurrently. The Java language defines a 
synchronization mechanism for programmers to prevent concurrent threads from 
interfering with each other [Arnold et al 2000]. In addition to synchronization, Java 
provides methods wait, notify, and notifyAll in the standard class Object to 
support communication between threads [Arnold et al 2000, p. 244]. For self-containment, 
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we briefly introduce thread creation, synchronization, and communication. More details 
on thread can be found in [Arnold et al 2000, Chapter 10]. 

Thread Creation 
There are two ways to create a thread in a Java program. First, a subclass of the class 
Thread can be instantiated to create threads. In the subclass, we override method run 
of class Thread with specific functionality for the threads, which run concurrently with 
other threads.  

For example, we shall use an object p of class Process to implement a π-calculus 
process. The class Process inherits class Thread. In subclass Process, we override method 
run of class Thread with operations that realize the atomic actions specified in the π-
calculus process. The following Java statement can be used to start the running method 
run of object p: 

p.start(); 

The other way to create a thread is to declare a class that implements the standard 
interface Runnable. The class should implement method run to specify functionality. 
We can instantiate the class to create an instance r, instantiate the class Thread with the 
Runnable object r as the constructor argument, and start to run the created Thread 
object. Thus, method run of object r is executed and the specified functionality is 
realized. For example, since class Thread implements interface Runnable, the above 
Java statement can be replaced with Java statement  

new Thread(p).start(); 

Thread Synchronization 
Java keyword synchronized can be used to qualify a method or statement. Each 
object has a lock, which is acquired implicitly through the call of a synchronized 
method of the object and explicitly through the execution of a synchronized 
statement [Arnold et al 2000, p. 235]. In a Java program, we can synchronize a set of 
threads by following the protocol that before operating on an object, each of the threads 
acquires the object’s lock. Thus, only one of the threads can hold the lock and proceed; 
others are blocked by the lock. The thread holding the object’s lock can complete an 
atomic transaction before it releases the lock.  

When a thread invokes a synchronized method on an object, the thread acquires 
the object’s lock. If the thread already possesses the lock, it will not be blocked and the 
method execution proceeds. If the acquired lock is being held by a different thread, the 
thread is blocked until the lock is released by the other thread. When an object’s lock is 
released, there may be several threads blocked by the lock. An object’s lock is released 
by a thread automatically when method run of the thread returns. A static 
synchronized method of a class acquires the class object’s lock when it is invoked. 
For example, in the implementation of the compiler pi2j, we define the following 
static method newPrefix() in class Blackboard for handling new-prefixes, 
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which are denoted by the parameter np. An invocation of the method newPrefix 
acquires the lock of the class Blackboard. 

public static synchronized void newPrefix(NewPrefix np) 
{ 
 RepeatedSequence rseq = np.seq0.parent; 
 rseq.addBoundVars(np.names); 
 np.removeFlag(); 
} 

A synchronized statement explicitly specifies an object for acquiring the object’s 
lock. The object to be locked may be different from the current object [Arnold et al 2000, 
p. 238]. It is locked before the synchronized statement is executed and is released 
after the statement execution is over. For example, we can remove the synchronized 
keyword from the above method signature and turn the method body into a 
synchronized statement that acquires locking the class Blackboard. That is, we 
can translate the above method to the equivalent method definition: 

public static void newPrefix(NewPrefix np)  
{ 
   synchronized(Blackboard.class)  
   { 
      RepeatedSequence rseq = np.seq0.parent; 
      rseq.addBoundVars(np.names); 
      np.removeFlag(); 
   } 
} 

The standard class Thread defines methods interrupt and interrupted, which 
are inherited by subclasses of class Thread. In one part of a Java program, we can call 
method interrupt for a running thread to request cancelling the thread; in another part, 
we can invoke method interrupted to detect the cancellation request. The execution 
of method interrupt does not halt the running thread. If the running thread is 
executing method sleep or wait for some object when it is interrupted by the method 
interrupt, the sleep or wait method throws an InterruptedException 
[Arnold et al 2000, p. 256].  

Thread Communication 
Java threads may communicate by invoking the methods wait, notify, and 
notifyAll of objects. The methods, defined in the standard class Object, are 
available in each object. The parameterless wait method has signature  

public final void wait() throws InterruptedException 

It causes the current thread to wait until another thread invokes the notify or 
notifyAll method for the object. For the current thread to execute the method for an 
object, it must own the object’s lock (monitor). By executing the wait method, the 
thread releases the monitor and waits until another thread notifies threads waiting on the 
object’s monitor by calling the notify or notifyAll method of the object. The other 
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thread that executes the notify or notifyAll method may need to wait until it 
regains the monitor.  

The notifyAll method has signature 
public final void notifyAll() 

for waking up all the threads that are waiting on this object’s monitor. The awakened 
threads compete in the same way with other threads that compete to lock this object. The 
notify method has signature 

public final void notify() 

After the method is executed for an object, arbitrary one of the threads waiting on the 
object’s monitor is awakened. The awakened thread competes with other threads that 
actively compete to synchronize on this object. Like the method wait, the current thread 
must own an object’s monitor before it can invoke the notifyAll or notify method 
for the object. 

For example, in the implementation of the compiler pi2j, we represent a sequence 
of dot-separated actions with an object of class Sequence. In the run method of the 
Sequence object, the following Java code is used to realize a parameterless atomic 
input action x . The synchronized statement is used for the current thread to acquire 
the lock of object inputAgent, which is an instance of class InputAgent. After 
locking the object, the current thread executes the wait method for the object 
inputAgent to wait until the flag in object inputAgent is removed. 

inputAgent = new InputAgent(this, "x"); 
inputAgent.setupFlag(); 
Blackboard.communicateInput(inputAgent); 
synchronized(inputAgent) { 
   try {  
      while (inputAgent.flag) inputAgent.wait(); 
   } catch(InterruptedException ie) { return; } 
}

 

4 A LANGUAGE FOR CODING π-CALCULUS EXPRESSIONS 

We now present the ASCII-based π-language for coding π-calculus expressions. We 
follow [Milner 1999, p. 89] to encode input and output atomic actions in the π-language. 
ASCII text editors can be used to program in the π-language. 

Atomic Actions 
The π-calculus expression .x y P  uses output prefix x y  to send name y  via (channel) 
name x . We replace the typographical symbol x  with ASCII expression out x and code 
the action expression x y  with expression out x<y> in the π-language. We regard the 
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name y as an argument of the output action out x. The π-language allows using capital 
letters in keywords. For example, all the following three expressions in the π-language 
denote the output atomic action x y . They are equivalent.  

 out x<y> 
 Out x<y> 
 OUT x<y> 

The following three equivalent expressions represent argumentless output action x .  
 out x<> 
 Out x 
 OUT x<> 

The π-calculus process expression ( ).x z Q  uses an action prefix ( )x z  to input a name 
from name x  and assigns the inputted name to the bound name (parameter) z . We shalll 
denote the “input operator” with ASCII expression in x and code atomic action 
expression ( )x z  with expression in x(z) in the π-language. We regard the name z as the 
parameter of the input action in x. For example, all the following three π-language 
expressions denote the same input action ( )x z .  

 in x(z) 
 In x(z) 
 IN x(z) 

The following three expressions represent the same parameterless input action x .  
 in x() 
 In x 
 IN x() 

In the π-calculus, process expression .Rτ  using Greek letter τ  denotes an action that is 
invisible to the environment outside the agent that executes the action. Following the Pict 
language and other applications [Pierce and Turner 2000; Canal et al 2003], we denote 
the atomic action τ  with keyword tao in the π-language. For example, the π-language 
expression  

tao.in x(z).out z<y>  

denotes a process. It schedules an internal action τ , an input action ( )x z , and an output 
action z y , which sends name y  via the name received by the input action ( )x z . The 
keyword tao is also caseless. For example, the following π-language expression denotes 
the same π-calculus process as the above π-language expression.  

TAO.IN x(z).OUT z<y>  

Other than the keywords such as in, out, and tao, names in the π-language are case 
sensitive. For example, the following π-language expression is different from the above 
π-language expression.  

TAO.IN X(Z).OUT Z(Y)  
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In the π-calculus [Milner 1999], keyword new  is used in the prefix new wr  in a process 
expression to declare a series of private bound names 1... mw w w=

r with 0m > . We keep the 
keyword new  and denote the π-calculus prefix 1... mnew w w  with π-language prefix  

new w1 … wm   

The keyword new is caseless. For example, the π-language expression new x y new z 
out w<x>.out w<y>.out w<z> denotes π-calculus process 

. .new x y new z w x w y w z . It uses two new-prefixes to introduce names x, y, and z. It 
sends the private names out through the name w. The expression is equivalent to new x y 
z out w<x>.out w<y>.out w<z>. 

Syntactic Rules 
The grammar of the π-language consists of the following production rules, in which 
terminal symbols are printed in color blue. A pair of curl braces { and } followed by an 
asterisk ‘*’ is used to enclose a grammar component that may be repeated zero or more 
times. A pair of curl braces followed by the plus symbol ‘+’ encloses a component that is 
repeated at least once. A pair of square brackets [ and ] encloses an optional component. 
A Java identifier denoted with nonterminal id consists of letters, digits, and underscore 
‘_’ and can be started only with a letter. 

<process> ::=  <summation>  { | <summation> }* 
<summation> ::=  <repeatedSequence>  { + <repeatedSequence> }* 
<repeatedSequence> ::=  [ <actionSequence> ] { ! <actionSequence> }* 
<actionSequence> ::=  { <restriction> }* <atomicAction>  

{ . { <restriction> }* <atomicAction> }* 
<atomicAction> ::=  <outAction> | <inAction> | <silentAction> | ( <process> ) 
<restriction> ::=  < newPrefix > | <condition> 
<newPrefix> ::=  new { <id> }+ 
<condition> ::=  [ <id> = <id> ] 
<outAction> ::=  out <id> [ < [ <id> ] > ] 
<inAction> ::=  in <id> [( [ <id> ] ) ] 
<silentAction> ::= tao 

In the above grammar, operators introduced at lower levels bind more tightly than the 
ones at a higher level. Hence, the grammar is compatible with operator precedence 
ordering: 
 | 
 + 
 !, ., new, in, out, tao, [, =, ], <, > , (, ) 

A difference between the above grammar and the π-calculus [Milner et al. 1989] is about 
the precedence ordering of operators ‘|’ and ‘+’. In the above grammar, the composition 
operator ‘|’ is assigned the lowest precedence because in system modeling for, say, the 
jobshop [Milner 1999, p. 62] or the storage system [Sangiorgi and Walker, p. 32], a 
system usually consists of indepednent, concurrent agents (components), which are 
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bound together using the operator ‘|’. Choice decisions supported by the operator ‘+’ are 
lower-level decisions made by indivisual agents. 

The above grammar makes a syntactic simplification for the π-calculus. In the π-
calculus, the repetition operator ‘!’ is prefixed to an atomic action expression π  and the 
dot operator ‘.’ can connect an action 1π  and a repeated action !π  in the π-calculus 
expression 1.!π π . Here, we omit the connector ‘.’ inside the process expression 1.! .π π  For 
example, the π-calculus expression ! ( ).! .0x z y z  shown in [Sangiorgi and Walker 2001, p. 
13] will be coded with expression ! in x(z) ! out y<z> in the above grammar. An 
advantage of replacing the two-symbol operator “.!” in the π-calculus with the single-
symbol operator ‘!’ is simplification of parser construction. Logically, occurrences of the 
repetition operator ‘!’ in a sequence of actions separate the sequence into maximal 
sequences that do not contain operator ‘!’.  

In the above grammar, nonterminal <atomicAction> denotes an input x(y), an output 
x z , a silent action τ, or a process expression enclosed within a pair of parentheses 
( and ). The nonterminal <restriction> denotes either a prefix 1... mnew w w or a condition 
[ ]x y= . Multiple restrictions denoted by the nonterminal <restriction> may be prefixed to 
the atomic actions in an action sequence, which is denoted with the nonterminal 
<actionSequence> and which does not include any of the operators ‘!’, ‘+’ and ‘!’. The 
action sequences, denoted by nonterminal <actionSequence>, can be connected with 
operator ‘!’ to form a repeated sequence, which is denoted with nonterminal 
<repeatedSequence> and which may be prefixed with the operator ‘!’. Several repeated 
sequences, denoted with nonterminal <repeatedSequence>, can be connected with 
operator ‘+’ to form a summation, which is denoted with <summation>. Several 
summations , denoted with the nonterminal <summation>, can be connected into a 
process expression denoted with nonterminal <process>. Since a process expression 
enclosed within a pair of parentheses ( and ) is an atomic action, the above grammar 
defines process expressions recursively. 

The π-language can be used to encode an empty process, which amounts to the 
inaction process 0 . The empty process denoted as 0  can be deduced as follows: 

<process> ⇒ <summation> 
⇒ <repeatedSequence> 
⇒  [ <actionSequence> ] 
⇒ ε 

We can represent the empty process ε with a pair of parentheses () in the π-language. In 
fact, the process () is an instance of the nonterminal <atomicAction> of the above 
grammar. Similarly, expression ().() is also a π-language process expression. By the 
above discussion, we omit the inaction symbol 0 in the π-language. 
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5 TRANSLATING π-PROGRAMS TO JAVA 

Process Decomposition 
We follow the syntactic structure of the π-language grammar to compile a π-calculus 
process expression into Java objects. Specifically speaking, we use the objects of the 
following Java classes to organize the grammar components identified in a π-language 
process expression. The following table shows that the Java classes correspond to 
nonterminal symbols in the π-language grammar. We ascribe responsibilities to the Java 
objects in the following discussion. 
 

Nonterminal Symbol Java class 

process Process 

summation  Summation 

repeatedSequence  RepeatedSequence 

actionSequence Sequence 

newPrefix NewPrefix 

condition Condition 

outAction OutputAgent 

inAction InputAgent 

silentAction SilentAgent 

Table 1: Nonterminals in the π-language grammar and their Java incarnations 
 
Each of the classes Process, Summation, RepeatedSequence, and Sequence 
inherits the standard class Thread. Therefore, the run method of an object of any of the 
classes can be started as a new thread. We enclose the object’s responsibility in the 
objects’ run method. 

We use an object of class Process to represent a π-language process expression. 
Its run method encloses the translations of all the summation components of the π-
language process and, thus, all the actions specified in the process.  

An object of class Summation is used to represent a π-calculus summation 
expression .i i

i I
Pπ

∈
∑ . An addend or term .i iPπ  in the summation is parsed as 



 
Implementing the π-Calculus in Java 

 
 
 
 

168 JOURNAL OF OBJECT TECHNOLOGY VOL. 4, NO. 2 

repeatedSequence component. The run method of the Summation object encloses 
translations of all the repeatedSequence components in the summation and, thus, encloses 
all the actions specified for the summation.  

We use a RepeatedSequence object to realize a maximal sequence of atomic 
actions that are connected with either the dot operator ‘.’ or the repetition operator ‘!’. 
Each of the atomic actions in the sequence can be qualified with conditions and new-
prefixes, which are represented with objects of classes Condition and NewPrefix, 
respectively. The sequence corresponds to an addend .i iPπ  of the summation .i i

i I
Pπ

∈
∑ . 

The run method defined in the RepeatedSequence object is explained as follows.  
A RepeatedSequence object is responsible to keep the current value w for each 

name y declared locally in the repeated sequence. The value w is assigned to the name y 
by an input action such as in x(y). It is represented as a substitution { / }w y  applied to 
the repeated sequence in a π-calculus process expression. We use a dictionary named 
substitution in the RepeatedSequence object to keep the current values w  of 
names y . In addition to the name w, we also keep an object sequ of the 
RepeatedSequence class in which the name w is declared. The name w and the object 
sequ are encapsulated in an object, which is the value of key y in dictionary 
substitution. 

In the root process object of a Java program that represents a π-program, we use an 
instance variable root to hold an object of class RepeatedSequence. The object 
root keeps all the free variables of the π-calculus process expression and the current 
values of those free variables that have been changed by input actions. 

The action sequence represented by the RepeatedSequence object is divided by 
the repetition operator ‘!’ into maximal sequences of atomic actions that do not include 
the repetition operator. We represent each of the atomic action sequences with an object 
of class Sequence. The run method of the Sequence object encodes the π-language 
translations of all the actions in the action sequence. We represent the actions with 
objects of classes OutputAgent, InputAgent, and SilentAgent. The conditions 
and new-prefixes in front of the action expressions are represented with objects of classes 
Condition and NewPrefix. 

While translating a π-language process expression, we create anonymous subclasses 
of the classes Process, Summation, RepeatedSequence, and Sequence. In the 
run methods of the unique objects of the anonymous classes, we enclose the Java 
translations of components of the π-language process expression. For example, the π-
language process in x.out x<y> + out x | out y consists of two summations in 
x.out x<y> + out x and out y. The first summation consists of two repeated 
sequences in x.out x<y> and out x. The second summation consists of only one 
repeated sequence, which is an action sequence of length one. The repeated sequence in 
x.out x<y> contains no replication operator ‘!’ and, therefore, is composed of an 
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action sequence. Thus, the given π-language process consists of three action sequences. 
The π-language process expression is compiled to the following Java program, in which 
three Sequence objects are created.  
   import java.util.*;  
   public class PiProgram { 
      public static void main(String args[]) { 

    new Process(2) { 
    public void run() { 

    new Summation(this) { 
       public void run() { 

                    new RepeatedSequence(this)  { 
                    {   seqs = new Sequence[1]; } 
                       public void run() { 
                          seqs[0] = new Sequence(this) { 
                             public void run() { 
 
                inputAgent = new InputAgent(this, "x"); 
                inputAgent.setupFlag(); 
                Blackboard.communicateInput(inputAgent); 
                synchronized(inputAgent) { 
                try {  
                   while (inputAgent.flag) inputAgent.wait(); 
                } catch(InterruptedException ie) { return; } 
                } 
                if (dead()) return; 
          
                outputAgent = new OutputAgent(this, "x", "y"); 
                outputAgent.setupFlag(); 
                Blackboard.communicateOutput(outputAgent); 
                synchronized(outputAgent) { 
                try {  
                   while (outputAgent.flag) outputAgent.wait(); 
                } catch(InterruptedException ie) { return; } 
                } 
                if (dead()) return; 
                             } 
                          }; 
                          new Thread(seqs[0]).start(); 
                      } 
                   }.start(); 
                   new RepeatedSequence(this) { 
                   {   seqs = new Sequence[1]; } 
                       public void run() { 
                          seqs[0] = new Sequence(this) { 
                             public void run() { 
                 outputAgent = new OutputAgent(this, "x"); 
                 outputAgent.setupFlag(); 
                 Blackboard.communicateOutput(outputAgent); 
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                 synchronized(outputAgent) { 
                 try {  
                    while (outputAgent.flag) outputAgent.wait(); 
                 } catch(InterruptedException ie) { return; } 
                 } 
                if (dead()) return; 

                             } 
                          }; 
                          new Thread(seqs[0]).start(); 
                       } 
                    }.start(); 
                 } 
              }.start(); 
              new Summation(this) { 
                 public void run() { 
                    new RepeatedSequence(this)  { 
                    {   seqs = new Sequence[1]; } 
                    public void run() { 
                       seqs[0] = new Sequence(this) { 
                             public void run() { 
                 outputAgent = new OutputAgent(this, "y"); 
                 outputAgent.setupFlag(); 
                 Blackboard.communicateOutput(outputAgent); 
                 synchronized(outputAgent) { 
                 try {  
                    while (outputAgent.flag) outputAgent.wait(); 
                 } catch(InterruptedException ie) { return; } 
                 } 
                if (dead()) return; 

                              } 
                           }; 
                           new Thread(seqs[0]).start(); 
                        } 
                     }.start(); 
                  } 
               }.start(); 
            } 
         }.start(); // root process 
      } // main 
   } // PiProgram  
 

Action Realization 
Inside the run method of a Sequence object, we create objects to perform atomic 
actions. For example, the input action in x presented in the π-language process in 
x.out x<y> + out x | out y is realized with the following Java code, which 
instantiates class InputAgent to create an object inputAgent that encapsulates the 
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name x . It sets the flag value in the object inputAgent. The method 
communicateInput of class Blackboard is invoked to handle the input action. If 
the input action can be communicated with an existing output action, the communication 
takes place; otherwise, the static method communicateInput enters the object 
inputAgent into a queue. The flag value in object inputAgent is removed by the 
method communicateInput after the input action is communicated with an output 
action x  presented in a different summation.  

inputAgent = new InputAgent(this, "x"); 
inputAgent.setupFlag(); 
Blackboard.communicateInput(inputAgent); 
synchronized(inputAgent) { 

try {  
while (inputAgent.flag) inputAgent.wait(); 

} catch(InterruptedException ie) { return; } 
} 
if (dead()) return; 

As shown in the above Java code, before the input action is communicated, the running 
Sequence thread that has the input action as prefix waits by invoking the wait method 
of the object inputAgent. While the Sequence thread is waiting, if the class 
Blackboard finds an output action to communicate with the object inputAgent, the 
flag value of the object inputAgent is removed so that the thread will continue its 
operation. As described in Section 2, the class Blackboard may need to render the 
Sequence thread void. In the latter case, the Sequence thread invokes method dead 
to detect whether it is void. If the test results true, the Sequence thread terminates 
with a return statement. 

Parent Relation 
In the above Java program, a thread object is created with the keyword this as 
constructor argument. The constructor relates the created thread object and the current 
object with a parent relation. In the classes Process, Summation, 
RepeatedSequence, and Sequence, an instance variable parent of type 
Sequence, Process, Summation, or Repeated-Sequence is used to hold the 
parent of an object. The parent relation at the class level is shown in the UML class 
diagram in Fig. 1. As indicated in the above Java program, the parent relation in a Java 
program that realizes a π-calculus process expression has a hierarchical structure, the root 
of which is an object of the class Process. 
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Figure 1 The parent relation for π-programs 

For example, a process is composed of summations. A reference of the corresponding 
Process object is assigned to the parent attributes of the Summation objects. In the 
above Java program, the constructor invocation of each anonymous class uses keyword 
this to relate the created object and its parent. 

Action Synchronization 
Running threads may interfere each other. We realize an action, new-prefix, or condition 
with a static synchronized method of class Blackboard. The static 
methods acquire the lock of the class object of the class Blackboard and are, thus, 
synchronized. We use the static method communicateInput of class 
Blackboard to illustrate the synchronization mechanism. The method signature is 

public static synchronized void communicateInput(InputAgent ia) 

Assume the argument object ia of the communicateInput method represents input 
action in x(z). The object ia initially records only the Sequence object seq0 of 
which the input action is the current prefix and the names x and z. Note that the names x 
and z may have been replaced with other bound names declared in the same or different 
repeated sequence. The current values of the names x and z can be found in the 
RepeatedSequence objects that are ancesters of object seq0. An instance method 
named setup of class InputAgent is invoked by the communicateInput method 
to find the current values arg0 and arg1 of the names x and z recorded in object ia.  

The communicateInput method looks for a queued object oa of class 
OutputAgent such that  
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• The object oa represents an atomic action out y<w>, 
• The current values of names y and w recorded in object oa are denoted with arg0 

and arg1, respectively, and 
• The value arg0 in ia and value arg0 in oa are the equal. 
If the search for a queued object oa succeeds, the communicateInput method 
performs a communication between the threads that have ia and oa as prefix actions, 
respectively. Then, the threads can continue their respective run methods. Otherwise, the 
object ia is entered into a queue to wait for an output action to which it can 
communicate. The communication process consists of the following activities: 
• If the name z is declared in RepeatedSequence object sequ, the value of the 

key z in the dictionary substitution in object sequ will be replaced with the 
value arg1 in the object oa. Thus, the output argument is assigned to the input 
parameter. 

• If any queued input or output action that stores an arg0 or arg1 value for the name 
z declared in RepeatedSequence sequ, the arg0 or arg1 value is replaced by 
the value arg1 in object oa. 

• Remove the flag values in the objects ia and oa. The flag removals permit the 
threads waiting for the flags to continue their executions. 

6 COMPILER PI2J 

Usage of the Compiler 

Compiler pi2j is pronounced as “π to J(ava)”, which means translating π-language 
process expressions to Java programs. It is a Java application generated with JavaCC 
[JavaCC 2003]. Suppose the π-language program of a π-calculus process is in the file pi-
program.txt. We can use command 

java pi2j pi-program.txt 
to invoke the Java application pi2j for translating the file pi-program.txt to a Java 
program, which has default name PiProgram.java. If a class name MyClass is placed 
in the command 

java pi2j pi-program.txt MyClass 
The above command will define a class MyClass in Java file MyClass.java. The Java 
file PiProgram.java and MyClass.java can be compiled with the Java compiler by 
issuing one of the commands 

javac PiProgram.java 
javac MyClass.java 

The resulting JVM bytecode file can be executed with one of the commands 
java PiProgram 
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java MyClass 
The java application is compressed into the jar file pi2j.jar with the command 

jar -cmf pi2j.jar *.class 
The compiler pi2j can be applied to translate the file pi-program.txt to the JVM bytecode 
file PiProgram.java with the command 

java -jar pi2j.jar pi-program.txt 

Action Queue 
In the execution of a π-language process expression, if an input or output action π  cannot 
be communicated with a waiting output or input action, the action π  is entered into a 
queue to wait for a new output or input action for the purpose of communication. We now 
use the π-calculus process expression . .new x y new z w x w y w z  discussed in Section 4 
to illustrate the queuing functionality of the compiler pi2j.  

Assume the file pi-program.txt consists of the π-language code new x y new z out 
w<x>.out w<y>.out w<z>. We compile the π-program pi-program.txt into the Java 
program PiProgram.java with compiler pi2j and compile PiProgram.java to 
bytecode file PiProgram.class. An execution of the bytecode file PiProgram.class 
displays the following information on the standard output.  

Keep into queue output action:  
   An out action in sequence: Thread[Thread-5,5,main] 
   the parameters are w and x 
   the parameter values are "Thread[Thread-1,5,main] + w" 
   and "Thread[Thread-4,5,] + x". 

The above output indicates that output action prefix out w<x> is placed into a queue by 
the class Blackboard. It also indicates that the output action belongs to a thread object 
denoted by expression Thread[Thread-5,5,main], the arg0 value for the free 
name w is an encapsulation of thread object Thread[Thread-1,5,main] and name 
w, and the arg1 value for name x is an encapsulation of thread object 
Thread[Thread-4,5,] and name x. Note that the bound name x is declared in 
thread Thread[Thread-4,5,]. The execution of the bytecode file will not terminate 
naturally since the Sequence thread Thread[Thread-5,5,main] has action out 
w<x> waiting for communication. 

Similarly, if the file pi-program.txt consists of the π-language code in x.out 
x<y> + out x | out y, an execution of the JVM byte code that is compiled from the π-
program places objects that represent the action prefixes in x, out x, and out y into 
queues by the class Blackboard. The execution will not terminate due to three waiting 
sequence threads. 
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I/O Communication 
We use a π-calculus process ( ). | ( )w x x z w y w r+  to illustrate action communication 
supported by the compiler pi2j. Assume file pi-program.txt consists of π-language code 
out w<x> + in x(z).out w<y> | in w(r), which encodes the π-calculus 
process. An execution of the JVM bytecode compiled from the file pi-program.txt 
displays the following information on the standard output. The first operation displayed 
on the standard output queues the output action w x , which is the action prefix of the 
first repeated sequence in the process expression. The second operation queues the input 
action ( )x z , which is the prefix of the second repeated sequence. The prefix action ( )w r  
of the second summation can communicate with the waiting output action w x . The 
following information uses word Communicate and a pair of curl braces to show the 
action communication. Since the performance of the prefix of the first repeated sequence 
renders the second repeated sequence void, there will be no active Sequence thread left 
in the queue after the communication. Thus, the execution of the JVM bytecode compiled 
from the π-program out w<x> + in x(z).out w<y> | in w(r) terminates. 

Keep into queue output action:  
   An out action in sequence: Thread[Thread-8,5,main] 
   the parameters are w and x 
   the parameter values are "Thread[Thread-1,5,main] + w" 
   and "Thread[Thread-1,5,main] + x" 
Keep into queue input action:  
   An in action in sequence: Thread[Thread-10,5,main] 
   the parameters are x and z 
   the parameter values are "Thread[Thread-1,5,main] + x" 
   and "Thread[Thread-1,5,main] + z" 
Communicate { 
 input action: 
   An in action in sequence: Thread[Thread-12,5,main] 
   the parameters are w and r 
   the parameter values are "Thread[Thread-1,5,main] + w" 
   and "Thread[Thread-1,5,main] + r" 
output action: 
   An out action in sequence: Thread[Thread-8,5,main] 
   the parameters are w and x 
   the parameter values are "Thread[Thread-1,5,main] + w" 
   and "Thread[Thread-1,5,main] + x" 
 

7 CONCLUSION 

The π-calculus proposed by Milner et al [Milner et al 1992] is a theoretical model of 
mobile communicating systems. Here, we present an implementation of the π-calculus in 
the Java language by exploiting the Java multithreading and thread communication 
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mechanism. We decompose a π-calculus process into different components and 
implement the components with classes Process, Summation, 
RepeatedSequence, and Sequence. The Sequence objects are execution threads, 
which enclose the actions specified in π-calculus processes and which can run 
concurrently. 

 The Java implementation of the π-calculus makes it possible for using the π-
calculus to control and simulate real-world mobile communicating systems. The Java 
implementation of the π-calculus handles only the communication actions but no control 
actions or other operations. A research topic is to incorporate controlled operations into 
the π-processes.  
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